w o B OB M 194
(1996. 2. 9)

REBHMPILLANLEF DI 2L -3 > ETIVDEK
— LY Z 2R DBBRRBICED CERE -

mE HE C¥ IWE BEE

W AE T2 BT - WRIEH

T 192-03 HEHMAEFHREAR 1-1
Tel: 0426-77-2745 Fax: 0426-77-2756
E-mail: uchida@isys.eei.metro-u.ac.jp

HoElL TOEyHDNYIAL—Ta IlBWTEELRIER, YIal—YayOHMCELLY I
L—SariiEEyIal—LaryrBESBIRTAIZILETHL. AHETIR, BR2MBMLLAVERD
$32l—3avEFIOERFELIREL, FOEBRTAVTY L2525, 61, VIAYEREE
BMEERTAHILICLY, CRLOERFENEEERICL > TEREND I LERT. K&, AT
A DLX 7Oty HICBALLEEER, YIal—2a ryEFXfLoERIHI0HI2H T L RRHERLL.

X—g—F T Ial—vay, vArusokyH, FL—RF-—7N, HMBLFE

Generating a Hierarchical Simulation Model on the
Basis of Functional Model of Register Transfers

Takeshi UCHIDA Hitoshi Kivya Akihiko YAMADA

Department of Electronics and Information Engineering, Faculty of Technology,
Tokyo Metropolitan University

1-1 Minami-Ohsawa, Hachioji-shi, Tokyo, 192-03
Tel: 0426-77-2745 Fax: 0426-77-2756

E-mail: uchida@isys.eei.metro-u.ac.jp

Abstract In simulation of processors, it is important to select suitably both simulation speed and pre-

cision for the purpose of simulation. In this paper, we propose two abstraction methods for generating
each simulation model at different levels of abstraction; then provide its generation algorithm. Further-
more, we show these methods are implemented as the function composition based on the functional

representation of register transfers. Finally, applying these methods to DLX processor, the simulation
model is generated in less than 30 sec. for 30 instructions.

Key words Simulation, Microprocessor, Trace Table, Abstraction Methods

1 Introduction

Simulation of processors is one of the indispensable
techniques for evaluating performance, numerical
analysis of application programs, exploiting par-
allelism, and so on [6]-[10]. Although there exist
in general tradeofls between simulation speed and
simulation precision, these two factors are suitably
selected for the purpose of simulation.

On the other hand, retargetable simulation mod-
els are required in hardware/sofltware codesign, be-
cause the reconstruction of simulation models is re-
quired when the architecture of a target processor
is changed [5]{9].

For these reasons, various techniques for the
simulation have been investigated. However, these
techniques are almost restricted to the case of a
fixed target processor or the case of fixed preci-
sion [9][10][13].

In order to provide the simulation model that
is retargetable and can simulate a target processor
at different levels of abstraction, we therefore pro-
pose abstraction methods to generate this model
automatically.

2 Basic concepts

In this section, we summarize our hierarchical sim-
ulation model (ISMAP), which can simulate state
transitions following execution of instructions in a
target processor, and its generation flow.

HSMAP has a hierarchical structure of abstrac-
tion. This structure is similar to that of the inter-
preter model [1]. In this structure, ISMAP has
different views of behavior and of time. For this
reason, HSMAP can simulate state transitions with
different simulation cycles and different behavioral
granularity.

In this work, we treat processors, which use no
parallelism of instructions, as target processors.

2.1 The hierarchical structure of abstrac-
tion

Table 1 shows the basic structure of abstraction
and the different views of behavior and of time at
each level of abstraction: In this paper, we call a
behavioral and a temporal unit in these views a
primary operation and a regular interval, respec-
tively. These two views are important factors that
affect both simulation speed and simulation preci-
sion. As a result, HSMAP can select appropriate
granularity of behavior and of time for the purpose
of simulation.

2.2 The hierarchical simulation model

As shown in the above, HSMAP has the differ-
ent level of abstraction. However, we represent
HSMAP as a finite state machine in a unity form
(shown in Fig. 1).

In Fig. 1, STATE and § indicate a state (e.g., an
instruction memory, a data memory and registers)
and a state transition function following execution
of instructions, respectively. The input z is an in-
teger vector that controls execution of instructions.

8(s, x)
== fi| oo =
N 5
K P
x Xy X2 N

(a) FSM model

(b) Function é

Figure 1: HSMAP

The function § consists of some functions corre-
sponding to primary operations executed at regular
intervals (e.g., instruction cycles, machine cycles
and so on) as shown in Fig. 1, because each in-
struction is carried out by serial execution of these
operations, which are specified according to an ab-
straction level (shown in Table 1). For the above
reason, the vector = has elements where only sin-
gle element is 1 and others are 0; this 1’s element
selects exactly the primary operation carried out
at the regular interval.

As a result, HSMAP can be defined as the fol-
lowing unity form:

s = §(s,x) (1)
fa(8), Ja z,=1A
§(s,z) = Vn#a z,=0 , (2)
3, Vn 2, =0
T = (:”l’x?v""mN)’ (J)

where s is a state, n and a are integers (1 < n,a <
N), z, € {0,1} and f1,- -+, fxv are functions corre-
sponding to the primary operations.

2.3 Generation flow

Figure 2 shows the flow to generate HSMAP. In
this figure, the input, RTL, indicates the specifica-
tion, which consists of conditional register transfers
at the clock phase level with no detail to control
execution of instructions. The output in this flow

is SIM_MOD, which is defined as Eq. (1).

Table 1: Structure of abstraction hierarchy

ABSTRACTION LEVEL

TEMPORAL VIEW | BEHAVIORAL VIEW

INSTRUCTION

instruction cycle

instruction

Micro machine cycle micro-instruction
Crock clock cycle register transfer
Puase clock phase register transfer
state : a set of s.
Inputs .
’éonditional expr : an expression: state— VAL.
RTL RT statements

Behavioral Abstraction
Temporal Abstraction

Simulation
Environment

Outputs
C program

N

Figure 2: Generation flow of HSMAD

RTL is represented as the functional model de-
scribed in Sect.3. From RTL, SIM_MOD is gener-

ated by the abstraction methods described in Sect.4:

e behavioral abstraction

¢ temporal abstraction

SIM_MOD is implemented as a source code of C
language; this code is compiled on a host computer.
As a result, we can get a simulation model that is
executable on the host computer.

3 The functional model of register trans-
fers '

In order to represent register transfers as a func-
tional model, we consider applying the functional
model of Gannon et al. [3] to register transfers. In
this section, we propose a new functional model of
register transfers so that abstraction methods can
be treated as operations on this functional model.

3.1 Notations

In the rest of this paper, the following notations
are used (2] [3]:

s : a state function: VAR— VAL, where VAR and
VAL are a set of variable names and of values,
respectively. Especially, s; and s, are used to
indicate the input state and the output state,
respectively.

assign : an assignment: stale—state. This has a
form: v := expr, v € VAR.

If the variable v has the value a, then the rcla-
tion between v and a is written as

[v] (s) = s(v) = a,v € VAR,a € VAL, (4)

where [-] denotes the function that computes the
same values as its argument “”. Let X, Y and
+(X,Y) be expressions, then its value in the state
s is given as

HX Y = +([X](s),[Y1(s)- (5)

For Boolean expressions, it is almost the same. Let
X and Y be expressions; and let X > Y be a
Boolean expression, then its value in the state s
is given as

_ [true, [X](9) 2 [Y](9)
X ZY””‘{false, [XI(s) < V() ~ @

Let A be an assignment, v := expr (v € VAR),
then its functional represcntation is given as

[A] = {(si,8)]s.=si

except that s,(v) = si(expr) } . (M

From Eq. (6) and Eq. (7), a conditional assignment,
“if o then assign”, is obtained as

[if o then A] = {(s;,[A)(s:)) | [e] (s:)}

U {(sirsi) | = [a](si)}, (®)
where o and A indicate a Boolean expression and
an assignment, respectively.

3.2 An extended functional model

In order to applying the function model [3], we
extend this model as follows: We firstly define a
conditional register transfer as a set of assignments,
which are executed concurrently on its condition:

if & then {Ry,Ry,---,Rrp}, 9)

where Ry, --,Rpas indicate concurrent assignments
and « is represented as a Boolean expression. To
simplify, we use “a = r” instead of Eq. (9).

Secondly, we consider the functional model cor-
responding to Eq. (9). There exists an impor-
tant difference between register transfers and Pas-
cal statements, the target of the model [3]: register
transfers allow concurrent assignments. By con-
sidering this concurrence, we have the functional
model of register transfers:

[r] = {(Si,so) | 8o = si ezcept that
A lom)(s0) = leapral ()}, (10)
1<m<M

where v,, € VAR (m =1,2,---,M) and Vi,j v; #
v;. This equation has the same form as Eq. (9) if
M=1.

Finally, from Eq. (8) and Eq. (10), we can also
get the functional model of the conditional register
transfers as the following form:

la=r] = {(si[r](si)) | [l (s:)}
U {(si80) | ~[a] (si)} (1)

4 Proposed Methods
HSMAP has the different views of behavior and of

time as shown in Table 1. In order to generate au-
tomatically each simulation model that has both
a different primary operation and a different regu-
lar interval, we consider two abstraction methods:
One is behavioral abstraction to synthesize each
primary operation at an upper level from primary
ones at a lower one. The other is temporal ab-
straction to generate both each starting point of
the primary operations at the upper level and the
order of their execution.

4.1 Behavioral abstraction

A simple example of behavioral abstraction is shown
in Fig. 3, where the primary behavioral operations
(My, -++, Ms) at the micro level are synthesized
from those (Cy, :--, C11) at the clock level. Be-
sides, 7, --+, 75 indicate sets, each of which in-
cludes primary operations carried out in the same
interval at the upper level (micro level). In this
paper, we call this set a cluster.

Here, we consider the process of the behavioral
abstraction shown in Fig. 3, which shows that each
upper level operation is constructed from lower level
operations. For example, M2 is synthesized from
C3, C4 and Cj that are sequentially executed in
the same machine cycle. Assumed that these op-
erations are given as Eq. (8), then M, is obtained

Micro Level Machine cycles

ottt

[CiTGTGTC TG G [Cr]Cs [C [Cro] i
h I | PR)

T, T, Ty T, T
B |
Clock Level Clock cycles

Figure 3: Example of behavioral abstraction

by the function composition for the cluster 7q:

[M,] [Ca] 0 [C4] o [Cs}, (12)
Lp {[C3],[C4], (G5}

where o denotes the function composition.

From the above reason, the behavioral abstrac-
tion is defined as the function composition for a
cluster 7:

i

]

Wl = [Lie[La]o---o[Lk]
= [Lr]C-- (L] ([La]))), (13)
T = {[Ll]7[L2])""[LK]}7

where [U] and [Li] (k = 1,2,---, K) denote func-
tions that correspond to primary operations at an
upper level and a lower one, respectively.

The behavioral abstraction can therefore be car-
ried out automatically by the trace table [3], a tech-
nique for the function composition.

4.2 Temporal abstraction

We consider again an example in Fig. 3. Figure 4
shows a corresponding example of the temporal ab-
straction. In Fig. 4, each circle denotes a time tick
that indicates the starting point of each primary
operation. Besides, each numerical label of circles
indicates the order of these operations. The arcs
indicate the relation between time ticks at the up-
per level and those at the lower one. This rela-
tion called the temporal abstraction function, F,
which generate the numerical labels at the upper
level (e.g., micro level) from those at the lower one
(e.g., clock level).

This function is given for the general case as
the following form [11]:

VTayTb EN,Ta >T =
F(G(ra)y7a) > F(G(m),m), (14)

where AV is a set of natural numbers and F € N.
In Eq. (14), G is a predicate to indicate the starting

Micro Level

G(t) T F T F F T F T T F F

Rm 8w, Ry IR my
18 20 3@ 40 50 70 8 100 110
LG C, € C Cs G C7| ’ Cy Cyp Clll
i 1
™, 2 ®3 7a s
Clock Level

Figure 4: Example of temporal abstraction

points at an upper level. In addition, F is defined
if and only if G is true.

Since Eq. (14) has enough degree of freedom
to be selected, we cannot directly apply the func-
tion F to generating automatically the start points
and the numerical labels. We therefore give the
function F for the particular case to generate the
starting points and the numerical labels.

Firstly, we consider an example in Fig. 4 to de-
cide the predicate G. Each starting point is gener-
ally selected as the time tick whose numerical label
is the smallest in a cluster. Therefore, G is obtained
for a cluster 7 as:

G(r) & T=v(rgl:]g"(getf([bk])), (15)

where 7 € N, get, (-) indicates the numerical label
of its argument and Ly is the same in Eq. (14).
Secondly, in order to give the numerical label at
an upper level as incremental series (e.g. 1,2,3,-:-),
we impose the following conditions on the function

F:

G(1) = true, (16)
F(G(1),1) =1 1
and
F(G(a)sa) = F(G(c)e)+1 (18)

if and only if Va,b,c€ N

F(G(a),a) < F(G(b),b) < F(G(c),c)
A F(G(b),b) ¢ N. (19)
Finally, by applying Eq. (15) to Eq. (14) with
the conditions, Eq. (16)-(19), the starting points

of the upper level operations and their order can
be generated as incremental series.

4.3 A generating algorithm

By using the above abstraction methods, we have

the algorithm to generate IISMAP:

Step 1) The abstraction level of IISMAP is se-
lected according to the simulation cycle required
for the purpose of simulation. The specification
RTL has this information.

Step 2) From RTL, the clusters are generated as
the following form:

= {1r1,7|'2,"~,7I'N}.

Step 3) To generate the primary operations and
their starting points, Eq. (13) and Eq. (15) are ap-
plied to the clusters 7, (n = 1,2,---,N).
Step 4) To gencrate the order of the above oper-
ations, Eq. (14) is applied to the results in Stcp
3).

From the above algorithm, we can get HSMAP
defined in Eq. (1).

5 Experimental Results

We have implemented a prototype system in Perl
on a Sun SPARC Station 20. Then we have made
an experiment and applied proposed methods to
thirty instructions of DLX processor [4]. In this ex-
periment, we consider generating each simulation
model at the instruction level, the micro level and
the clock level from the phase level specification.

Figure 5 shows a part of this specification, where
the register transfers are divided into groups. These
groups are made according to each regular interval
at the level of abstraction: In this experiment, we
have selected an instruction cycle, a machine cycle
and a clock cycle.

In Table 2, we show the CPU time required
for generating each of the above three simulation
models. From Table 2, we sce that the CPU time
is less than 30 sec. for thirty instructions of DLX
Processor.

ADD: IF: 1: MAR := PC;
IR := MEM(MAR);
ID: 3: PC := +(PC,4),
A RF(IR<15:11>),
B := RF(IR<20:16>);
EX: 4: TMP := B;
5: C := +(A,TMP);

(M)

MEM:

WB: 6: RF(IR<10:6>) := C;

Figure 5: Example of the specification

6 Conclusions

In this paper, we proposed two abstraction meth-
ods for generating each simulation model at dif-
ferent levels of abstraction; then provided its gen-
eration algorithm. Furthermore, we showed these

[12] Tahar,S.,Kumar,R.: “Towards a Methodology for the

Table 2: Experimental results on Sparc Station 20
Level of Abstraction | CPU time (sec.)

Instruction Level 29.6
Micro Level 24.8
Clock Level 15.2

methods were implemented as the function com-
position based on the functional representation of
register transfers. Finally, applying these methods
to DLX processor, we confirmed that the simula-
tion model was generated in less than 30 sec. for
30 instructions.

References

[1] AnceauF.: The Architecture of Microprocessors.,
Addison-Wesley Publishing Company, (1986).

&

)

Zelkowitz,M.V.:
“A Functional Correctness Model of Program Verifi-
cation”, IEEE Computer, vol.23,No.11, (Nov 1990).

B3

=

Gannon,J.D., Hamlet,R.G., Mills,IL.D.: “Theory of
Modules”, IEEE Trans. on Software Engineering,
' vol.SE-13,No.7, (July 1987).

4

Hennessy,J.L, Patterson,D.A: Compuler Architecture:
A Quantitative Approach, Morgan Kaufmann Publish-
ers Inc. (1990).

[

—

Wolf,W.H.: “Hardware-Software Co-Design of Embed-
ded Systems”, Proceedings of the IEEE, vol.82,No.7,
Pp.967-989, (July 1994).

[6] Gong,J., Gajski,D.D., Nicolau,A.: “A Performance
Evaluator for Parameterized ASIC Architectures”,
Proceedings of the European Conference on Design Au-
tomation, (1994).

Schuette,M.A.,Shen,J.P.. “Exploiting - Instruction-
Level Parallelism for Integrated Control- Flow Moni-
toring”, IEEE Trans. on Computers, vol.43,No.2, pp.
129-140, (February 1994).

7

—

[8

=

Kalavade,A., Lee,E.A.: “A Hardware-Software Code-
sign Methodology for DSP Applications”, IEEE
Design & Test of Computers, vol.10,3, pp.16-28,
(September 1993).

[

)

Diep,T.A., Shen,J.P., Phillip,M.: “EXPLORE: A Re-
targetable and Visualization Based Trace-Driven Sim-
ulator for Superscalar Processors”, Proceedings of the
26th Annual International Symposium on Microarchi-
tecture, pp. 225-235, (1993).

[10] Baudendistel K.: “CLIFF: C Language Interface for
the Functional Simulator”, Proceedings of the I CASSP,
pp. 3263-3266, (1995).

[11] Windley, P.J.: “Formal Modeling and Verification

of Microprocessors”, IEEE Trans. on Compulers,
vol.44,No.1, pp. 54-72, (January 1995).

Formal Hierarchical Verification of RISC Processors”,
Proceedings of the ICCD, pp. 58-62, (1993).

[13] McCrackin,D.C.;Srinivasan,S.: “Trace Driven Pipeline

and Cache Simulation of Multithreaded Computers”,
Simulation, (August 1994).

