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A logic function f has a disjoint bi-decomposition iff f can be represented as f = h(g;(X}), g2(X3)),
where X, and X are disjoint set of variables, and h is an arbitrary two-variable logic fuction. f has
a non-disjoint bi-decomposition iff f can be represented as f(X1, X2, z) = h(g1(X1, 7), g2(X2, 2)),
where z is the common variable. In this paper, we show a fast method to find bi-decompositions

without using decomposition charts. Also, we enumerate the number of functions having bi-
decompositions.



Figure 1.1: A simple dis-
joint decomposition.

Figure 1.2: A disjoint
bi-decomposition.

I Introduction

Functional decomposition is a basic technique
to realize economical networks (1]. If the func-
tion f is represented as (X1, X2) = h(g(X1), X2),
then f can be realized by the network shown in
Fig. 1.1. To find such a decomposition, a decom-
position chart with 2" columns and 2"? rows are
used, where n; is the number of variables in X;
(i = 1,2). When n is large, the decomposition
chart is too large to build. Recently, a method
using BDDs has been developed [12, 18]. This
greatly reduces memory requirements and compu-
tation time. However, it is still time consuming,
since we have to check all the ("‘:‘"') partitions
of n = n; + ny. In this paper, we consider bi-
decompositions of logic functions, a restricted class
of functional decompositions, that have the form
f(Xl,Xg) = h(g1 (X] )’92(X2))- Flg. 1.2 shows the

realization of this decomposition.
The reasons we consider bi-decompositions are as
follows:
1) Some programmable logic devices have two-
input logic elements in the outputs [6, 13].
2) If f has a bi-decomposition, then the optimiza-
tion of the expression is relatively easy.
3) If f has no bi-decomposition, then the compu-
tation time is quite small.
A resticted class of bi-decompositions has been con-
sidered by [7]. The goals of this paper are

1) Present a fast method for finding bi-
decompositions.

2) Enumerate the functions that have bi-
decompositions.

Most of the proofs are omitted. They can be avail-
able from authors.

II Disjoint Bi-Decomposition

Definition 2.1 Let X = (X, X3) be a partition
of the variables. A logic function f has a dis-
joint bi-decomposition iff f can be represented as
f(X],Xz) = h(_q](X1),g2(.)(2)), where h 13 any

two-variable logic function,
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Figure 2.1: Decomposition chart.

If f has a disjoint bi-decomposition, then f can be
realized by the network shown in Fig. 1.2.

Definition 2.2 Let X = (X1,X3) be a partition
of the variables. Let ny end ny be the number of
variables in X1 and X3, respectively. A decomposi-
tion chart of the function f for a partition (X1, X2)
consists of 2™ columns and 2™ rows of 0s and 1s.
The 2™ distinct binary numbers for X are listed
across the top, and the 2™ distinct binary numbers
for X, are listed down the side. The entry for the
chart corresponds to the value of f(X1, X2).

Example 2.1 Two decomposition charts for the
function f(zy,Ty,23,%4) = T1Z3 @ Tars are shown

in Fig. 2.1 (a) and (b). (End of Ezample)

Note that the decomposition chart is similar to the
Karnaugh map with a different ordering for the cell
locations.

Deflnition 2.3 The number of distinct column
(row) patlerns in the decomposition chart is called
column (row) multiplicity.

Example 2.2 In Fig. 2.1 (a), the row and column
maultiplicities are two. In Fig. 2.1 (b), the row and
column multiplicities are four. (End of Ezample)

Definition 2.4 Let pu(f : X1, X2) be the column
maultiplicities for f with respect to X; and Xy. Let
p(f + X2, X)) be the row multiplicities for f with
respect to X and X;.

Theorem 2.1 [I, 3] f has a disjoint bi-decom-

position of form f(X1,Xz2) = h(g1(X1), 92(X2)) iff
/'l(f : leXZ) < 2 and l'l'(f : X2le) <2

III Non-Disjoint Bi-Decomposition
Definition 3.1 Let X, and X, be disjoint sets of
variables, and let = be disjoint from Xy and X;. A
logic function f has a non-disjoint bi-decomposition
if f can be rtepresented as f(X1,Xp,z) =
h(g1 (X1, x), g2(Xz, 1)), where h is a two-variable
logic function. In this case, x is called the common
variable.



< xl

Figure 3.2: A real- Figure 3.3: Non-disjoint
ization of f(z,y,z) = bi-decomposition for
gz Vzyz. f(z,y,2) = ZFz V zyz.

A function f with a non-disjoint bi-decom-
position can be realized by the network shown in
Fig. 3.1

Lemma 3.1 Let X = (X1, X2, z) be a partition of
the input variables. Let h(gy,g;) be an arbitrary
logic function of two variables. Then,

h(g1(X1,2), 92( X2, 2))=Zh(91(X1,0), 92(X2,0)) V
zh(g1(X1,1), 92(X2,1)).

(Proof) For x = 0, the left-hand side of the equa-
tion is h(g;(X1,0), g2(X2,0)), and the right-hand
side of the equation is also A(g;(X1,0),g2(X2,0)).
Similarly, for z = 1, and the equality holds. 8

Definition 3.2 Let z be the common variable of
the non-disjoint bi-decomposition. Let f{X1, X3,a)
be a sub-function, where T is set to a 0 or 1.

Theorem 3.1 f(X;,X,,z) has a non-disjoint bi-
decomposition of the form h(g1(X1,z),92(X2,7))
iff  f(X1,X2,0) and f(X1,X,,1) have
disjoint bi-decompositions h{gp1(Xi), go2(X2)) and
hMg11(X1), 512(X2)), respectively.

Example 3.1 Consider the three-variable func-
tion: f(z,y,z) = TFZV zyz. Suppose modules
that realizes any function of two variables can be
used. The straightforward realization shown in
Fig. 3.2 requires five modules. The Shannon ez-
pansion with respect to z s f(z,y,z) = Tf(0,y,2)V
z2f(l,y,z), where f(0,y,2z) = §Z, and f(1,y,2) =
yz. Note that both f(0,y,z) and f(1,y, z) have bi-
decompositions with h(z,y) = zy. Since, g1(z,y) =

Xy =(x;, %) X1 =(x, 1)
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Figure 3.4: Functions in Example 3.2

Tgor(X1) V zgn(X1) = zZg V zy, and g2(z,y) =
Zgo2(X2) V zg12(X2) = Iz V z2. We have
H=z,9,2) = qi(z,y)g(z,2) = (FF V zy)(Tz V
zz). From this ezpression, we have the network in
Fig. 3.3. This network requires only three modules.

(End of Ezample)

Example 3.2 Consider the five-variable function
f = 35fo V z5f1, where fo and f; are shown in
Fig. 3.4. Since both fo and fi have disjoint bi-
decompositions of the form h(g1(X1),92(X2)), f =
Zgfo V 25 f1 has a non-disjoint bi-decomposition as
follows:

[=35{513) ® 2374} V 25{T122 ® (23 V 74)}
={z5(%1%q) V z5(2122)}
@{55(1‘314) \ 1:5(.1:3 \ 14)}
(End of Ezample)

The converse 1s true also.

Up to now, we only considered the case where there
is a single common variable. However, the theorem
can be extened to k common variables, where k > 2.

Definition 3.3 Let X, X,, and X3 be disjoint
sets of variables. Let f(X),X,,a) be the sub-
functions, where X3 is set to a € {0,1}*, and k
denotes the number of variables in X3.

Theorem 3.2 Let X, Xz, and X3 be disjoint
sets of variables. Then, f has a non-disjoint bi-
decomposition of form

f(Xla X27 X3) = h(g] (X19X3)7 g?(szxa))

iff f(X1,X2,a) has a decomposition of the form
h(g1a{X1),92a(X2)) for all possible a € {0,1}*,
where k denotes the number of variables in Xj.

IV A Fast Method for Bi-Decom-
positions

In this section, we show necessary and sufficient
conditions for a function to have a disjoint bi-
decomposition. Then, we show efficient algorithms
to find disjoint bi-decompositions. In the previous
sections, h{g1, g2) is an arbitrary two-variable logic
function. To find a disjoint bi-decomposition, we
need to consider only three types:



1) OR type: f = g1(X1) V g2(X2),

2) AND type: f = g1(X1)g2(X2), and

3) EXOR type: f = g1(X1) ® g2(X2).
Since f has an AND type disjoint bi-decomposition
iff f has OR type disjoint bi-decomposition, we
only consider the OR type and EXOR type bi-
decompositions.

Definition 4.1 z and % are literals of a variable
z. A logical product which contains at most one
literal for each variable is called a product term or
a product. Product terms combined with OR oper-
ators form a sum-of-products expression (SOP).

Definition 4.2 A prime implicant (PI) p of a
function f is a product term which implies f, such
that the deletion of any literal from p results in a
new product which does not imply f.

Definition 4.3 An irredundant sum-of-products
expression (ISOP) is an SOP, where each product is
a PI, and no product can be deleted without chang-
ing the function represented by the expression.

Definition 4.4 Let f(X) be a function and p be a
product of literal(s) in X. The restriction of f to
p, denoted by f(X|p) is obtained as follows: If x;
appears in p, then set z; in 1 in f, and if T; appears
inp, then set z; in 0 in f.

Example 4.1 Let f(z;,z2,%3) = z122 V Zp13 and
p = z1z3. f(X|p) is obtained as follows: Set zy =
z3 = 1in f, and we have f(X|z123) = f(1,22,1) =
T9ViIg=1. (End of Ezample)

Lemma 4.1 p is an implicant of f(X), iff
f(Xlp)=1.

Example 4.2 By Lemma {.1, T3 18 an im-
plicant of r1zy V Toxz3, shown in Ezample 4.1.
(End of Ezample)

Theorem 4.1 (OR type disjoint  bi-decom-
position) f has a disjoint bi-decomposition of form
F(X1,X2) = g1(X1) V g2(Xz) iff every product in
an ISOP for f consists of literals from X; only or
X, only.

Definition 4.5 % = . z! = r.

Corollary 4.1 If f(z1,%2,...,%,) has e PI of the
form z3'z3? - - g4, where a; € {0,1}, then f has

no OR type disjoint bi-decomposition.

Let z;(: = 1,2,...,n) be the input variables of f.
Let py Vpy V-V p; be an irredundant sum-of-
products expression for f, where p; (i = 1,2,...,1)
are PlIs of f. Let II; be the trivial partition of

(1,2,...,n}, Iy = [{(1},{2},..., {n}].

Algorithm 4.1 (OR type disjoint
bi-decomposition: f(X1,X2) = g1(X1) V 92(X2)).

1. Fori=1 tot, form II; from Il;_; by merging
two blocks Q1 and Qy of I;_1 if at least one
literal in p; occurs in both Q; and €.

2. If I, has at least two blocks, then f(Xi,X3)
has a disjoint bi-decomposition of the form
f(X],Xg) = yl(Xl) \ yz(Xg), with X1 the
union of one or more blocks of I, and X, the
union of the remaining blocks.

Example 4.3 Consider the ISOP: f(z1,%2,...
,Tg) = 122V T223VT4T5VE5Tg. The products xyz;
and Tyx3 show that xy, xq, and z3 are in the same
block. Also, the products z4zs and x5z show that
T4, T5, and zg are in the same block. Thus, we have
the partition [{1,2,3},{4,5,6}]. The corresponding
OR type disjoint bi-decomposition is f(X1,X,) =
g1(X1)V g2(X2), where Xy = (21,22, 73) and Xg =
(4,25, 76)- (End of Ezample)

Example 4.4 Consider the function f with an
ISOP: f(z1, 23, 23,24, 25) = T1Z273 V T3T4T5.
1) The product zyzax3 shows that x1, z3, and 3
belong to the same block.
2) The product z3z4z5 shows that z3, 4, and x5
belong to the same block.
Thus, all the variables belong to the same block.
From this, it follows that f has no OR type decom-
position. (End of Ezample)

Theorem 4.2 (AND type disjoint bi-decom-
position) f has a disjoint bi-decomposition of form
[(X1,X3) = g1(X1)g2(Xz2) iff every product in an
ISOP for f consists of literals from X; only or X,
only.

Lemma 4.2 [1{] An arbitrary n-variable function
can be uniquely represented as

f(zlaz'lv*“»zn) =
ag ® (171 D aze ® -+ D anZn)
(2122122 D a13T 123 B - D An—1nTn-1Zn)

D---Daiz.nT1T2° Tn, (4.1

where a; € {0,1}. The above ezpression is called a
positive polarity Reed-Muller ezpression (PPRM).



For a given function f, the coeflicients a¢, a1, as,. ..,
@12..., are uniquely determined. Thus, the PPRM
is a canonical representation. The number of prod-
ucts in (4.1) is at most 2", and all the literals are
positive (uncomplemented).

Theorem 4.3 (EXOR type disjoint bi-decom-
position) f has a disjoint bi-decomposition of the
form f(X1,X2) = g1(X1) @ g2(X2) iff every prod-
uct in the PPRM for f consists of literals from X,
only or X, only.

Corollary 4.2 If the PPRM of an n-variable func-
tion has the product zyz9---z,, then f has no
EXOR type disjoint bi-decomposition.

Theorem 4.4 When f has an EXOR type disjoint
bi-decomposition, the number of true minterms of
f 18 an even number.

Corollary 4.3 When the number of true minterms
of f is an odd number, then f does not have an
EXOR type disjoint bi-decomposition.

The significance of this observation is that at
least one half of the functions can be quickly re-
jected as candidates for EXOR type disjoint bi-
decomposition.

Let z; ( = 1,2,...,n) be the input variables of
f. Let pr ®p2®--- D p, be PPRM for f, where p;
(i=1,2,...,t) are products. Let, II; be the trivial
partition of {1,2,...,n}, Iy = [{1},{2},...,{n}].

Algorithm 4.2 (EXOR type disjoint bi-decom-
position: f{X1,X2) = g1(X1) @ g2(X2)).
1. Fori=1tot, formII; from Il;_; by merging
two blocks O and Qg of II;_y if at least one
literal in p; occurs in both )y and §)5.

2. If I, has at least two blocks, then f(Xi,X3)
has a disjoint bi-decomposition of form
f(Xl,Xz) = gl(Xx) $g2(X2), with X, the
union of one or more blocks of II, and X, the
union of the remaining blocks.

Example 4.5 Consider the PPRM: f(z),z,...
,Tg) = 1Ty D ToTy B T4T5 B T, The
products rixy and T9z3 show that z,, x4, and
z3 are in the same block. Also, the products
z4x5 and rsxe show that x4, x5, and g are
tn the same block. Thus, we have the partition
[{1,2,3}, {4,5,6}]. The corresponding EXOR type
disjoint bi-decomposition is f(X),X3) = g1(X;) &
92(X3), where X1 = (r1,72,23) and X, =
(z4,z5,76)- (End of Ezample)

Algorithm 4.3 (Non-digjoint bi-decomposition).

X, Xp,25) = 91(X1,2:) @ 9o Xz, 2i), where

® denotes either OR, AND, or. EXOR. Let

(X1, X2,3;) be a partition of the variables x,

z2,..., and r,. Fori=1 ton, do

i) Let fo; = f(X1, X2,0). (Setz; to 0). Let fy; =
f(X1,X3,1). (Setz; to 1).

4) If both fo; and fi; have the same type
of disjoint bi-decompositions with the same
partition, then f has a non-disjoint bi-
decomposition.

V  Complexity Analysis of the Algo-
rithms

5.1 OR type disjoint bi-decomposition

We assume that the function is given as an ISOP
with ¢ products. Note that ¢ < 2"~! [15]. The time
to form the partition of variables is O(n - t).

5.2 EXOR type disjoint bi-decomposition

A PPRM can be represented by a functional de-
cision diagram (FDD [5, 14]). Each path from the
root node to the constant 1 node corresponds to a
product in the PPRM. Thus, the partition of the
input variables is directly generated from the FDD.
The number of paths in an FDD is O(2"), where
n is the number of the input variables. However,
we can avoid exhaustive generation of paths as fol-
lows: Let p; and ps be products in a PPRM. If all
the literals in p; also appear in pg, then p; need
not be generated in the Algorithm, since the prod-
uct p; that contains more literals than p, is more
important. By searching the paths with more liter-
als first, we can efficiently detect functions with no
disjoint bi-decomposition.

Example 5.1 Consider the function f(X) given
as a PPRM: f(X) =1 Dr1T9 DT3T4 DT 1T2T5%6.
In constructing the partition of X, we need not
consider the products z, or 1z, since T1T9T5Zg
has the literals of =1 and z,zy. In this case,
the product z\zyz5z¢ shows that zy, 3, x5, and
z¢ belong to the same group. Also, the product
324 shows that z3 and x4 belong to the same
group. Thus, X is partitioned as X = (X1,X,),
where Xy = (x1,23,25,2¢) and X2 = (z3,74).

(End of Ezample)

Definition 5.1 Letp be a product. The set of vari-
ables in p 15 denoted by

V(p) = {zilzi or Z; appears in p}.

For ezample, V(x1x224) = {z1, 72,24}



Definition 5.2 Let F be a PPRM. A product p is
said to have mazimal variable set V(p) if there is
no other product p’ such that V(p) C V(p').

Example 5.2 For the PPRM, F = 2122 ® 1123 ®
T1T273 @ T4, V(m1za) = {21,272}, V(z123) =
{z1,23}, V(z17223) = {z1,22, 73}, and V(24) =
{z4}. Thus, z1z9z3 and =4 have mazimal variable

sets. (End of Example)

Theorem 5.1 A function f has an EXOR type
disjoint bi-decomposition if a function f' from the
PPRM of f by eliminating implicants not having
mazimal variable sets has an EXOR type disjoint
bi-decomposition.

The following theorem says that if a function has
an EXOR type disjoint bi-decomposition, then the
number of products in the PPRM is relatively
small.

Theorem 5.2 If f has a disjoint bi-decomposition
of the form f(X1,X2) = g1(X1) ® 92(X2), then the
number of products in the PPRM is at most 2™ +
272 — 1, where n; is the number of variables in X;

(i=1,2).

VI Number of Functions with Bi-
Decompositions

6.1 Functions with a small number of vari-
ables

In the previous sections, we showed that disjoint
bi-decompositions are easy to find. In this section,
we will enumerate the functions with disjoint bi-
decompositions.

Definition 6.1 A function f is said to be nonde-

generate if for all z; f{|%:) # f(|z:).

Definition 6.2 Two functions f and g are NP-
equivalent, denoted by f " g, iff g is derived from
f by the following operations:

1) Permutation of the input variables.

2) Negations of the input variables.

The following is easy to prove.

Lemma 6.1 If f has a disjoint bi-decomposition
and if f "° g, then g has also the same type of
disjoint bi-decomposition.

Lemma 6.2 All the two-variable functions have
disjoint bi-decompositions.

(Proof) The NP representative functions of two
variables are z1z9, 1 V 79, and z; & z2. All of
them have disjoint bi-decompositions. B

Example 6.1 There are 22" = 256 three-variable
logic functions of which 218 are nondegener-
ate. These nondegenerate functions are grouped
into 16 NP-equivalence classes as shown in Ta-
ble 6.1 [8). In this table, the column headed
by N denotes the number of functions in that
equivalence class. Eight classes have disjoint bi-
decompositions, and three have non-disjoint bi-
decompositions. Note that 146 functions have bi-
decompositions. (End of Ezample)

The number of functions with AND type disjoint bi-
decompositions is equal to the number of functions
with OR type disjoint bi-decompositions.

In the case of disjoint bi-decompositions, a
function has exactly one type of decomposition
(Lemma 6.4). On the other hand, in the case
of non-disjoint bi-decompositions, a function may
have more than one type of bi-decompositions.

Example 6.2 Consider the three-variable function
f = 173 V z179. This function has three types of
non-disjoint bi-decompositions:

(OR type bi-decomposition)
=Z1Z3 P X2y (EXOR type bi-decomposition)
=(z1 V 23)(%1 V 22) (AND type bi-decomposition)

[=T123V 1179

(End of Ezample)

6.2 The number of functions with bi-
decompositions

Harrison [4] has counted the number of nonde-
generate functions. Specifically,

Lemma 6.3 [{/: Let a(n) be the number of non-
degenerate functions on n variables. Then,

n

am)=Y" (:)(-1)"-*22‘ ~27",

k=0

where a{n) ~ b(n) means lim E(—nl =1

o B(n)

Lemma 6.4 A nondegenerate function f has at
most one type of disjoint bi-decomposition:

1 f(Xh, X2) = g1(X1) - 92(X2),
2. f(X1,X3) = q1(X1) + 92(X2), o7
3. f(X1, X)) = g1(X1) & g2(X2),

where gy and g, are nondegenerate functions on one
or more variables.

Theorem 6.1 The number of func-
tions Ngisjoint(n) with disjoint bi-decompositions is



Table 6.1: NP-representative functions of three variables.

Representative functions N | Type | Property
1|21 ®z2P x5 2 { EXOR | Disjoint
2| z12913 8 { AND [ Bi-Decomposition
J|zaVzz Va3 8| OR
4| xi(z2 V z3) 24| AND
5 r v o 3 % 24 OR
6|zi1(z2 & 73) 12| AND
7 Xy V(lz@z:g) 12 OR
8|z1 ®xox3 24 | EXOR
9| z1z223 V 1 T253 4
10|(z1Vea V) (31 VI V) | 4 Non-Disjoint
11| Z1z3 V22 24 Bi-Decomposition
12| z1%233 V 2214 24
13 (11 ViV .‘7:3)(12 V x3) 24
14| z122 V223 V 137 8 No
15 |x1zg Vazaa V123 VI Z233 | 8 Bi-Decomposition
16 | Z1zoz3 VX1E223 V X122%3 8 :
N: Number of the functions in the class.

Table 6.2: Number of functions.

n=2|In=3|n=4

All the functions

16| 256 | 65536

Nondegenerate functions

10| 21864594

Disjoint | AND 4 44| 1660
Functions with OR 4 44| 1660
bi-decomposition EXOR 2 26| 914
Non-disjont 0 32{ 3860
Total 10 146 | 8094

Nuisjoint(n) = Adis(n) + Ougis(n) + Egis(n), where

Adis(n)=n! Z H (“(') - Ad..(t)) i ;ll_;

ky kg, ka20 =1
Vky43kg 4 tnkn=n

Osia(m)=nt ¥ H("")‘Od'-"’) &

ky kg, kn20 '
u,+7k7+ 4nka=n

E4io(n)=2n! Z H (a(i) - E,;..(z)) 2“‘1’“‘!

L kn20 =1
lk1+2k2+ ‘4nkn=n

where the sums are over all partitions of n except
the trivial partition n = 0-140-2+---40-(n—1)+1n
(i-e. the sum is over all partitions where k, = 0),

and where Ad,'a(l) = Od,',(l) = Ed,',(l) = 0.

Table 6.2 shows the number of functions with dis-
joint bi-decompositions up to n = 4,

VII Representations
of Functions with Disjoint Bi-
Decompositions

7.1 Expressions for the functions with bi-
decomposition

Definition 7.1 A logical sum that contains ai
most one literal for each variable is called a sum
term. Sum terms combined with AND operators
form a product-of-sums (POS).

Definition 7.2 Among the SOPs for f, the one
with the minimum number of products is a minimal
SOP (MSOP). Among the POSs for f, the one with
the minimum number of sum terms is @ minimal

POS (MPOS).

Definition 7.3 The number of products in the
sum-of-products ezpression G is denoted by 7(G).
The number of products in an MSOP for f is de-
noted by T(MSOP : f). The number of sum terms
in MPOS for f is denoted by T(MPOS : f).

Theorem 7.1 Let f have an OR type disjoint
bi-decomposition: f(X,Y) = g(X)V h(Y). Let
Gm(X), and Hy,(Y) be MSOPs for g and h, respec-
tively. Then Gr(X)V H,y(Y) is an MSOP for h.



Also, T(MSOP : f) = 7(MSOP : g) + T(MSOP :
h).

Corollary 7.1 Let f have an AND type disjoint
bi-decomposition: f(X,Y) = g(X)h(Y). Let
Gn(X) and Hp(Y) be MPOSs for g and h, respec-
tively. Then, Gpn(X)Hn(Y) is an MPOS for h.
Also, n(MPOS : f) = n(MPOS : g} +7x(MPOS :
h).

Theorem 7.1 and Corollary 7.1 shows that if f has
an OR (AND) type disjoint decomposition, then
the minimum expressions can be obtained by min-
imizing sub-functions independently.
7.2 BDDs for the functions with bi-
decomposition

Definition 7.4 Let N(BDD: f) denote the num-
ber of non-terminal nodes for f, for a given order
of input variables.

Theorem 7.2 If f has a disjoint bi-decomposition
of form f(Xy,X3) = h(g1(X1),92(X2)) and 3f h is
a unate function, then the BDD for f is represented
with N(BDD : ¢1(X1))+BDD : N(g2(X2)) nodes.

Theorem 7.3 If f has a disjoint bi-decomposition
of form f(X1,X2) = h(g1(X1),92(X2)) and if h
is a non-unate function, then N(BDD : f) =
N(BDD : gi(X1) + N(BDD : ¢:(X2)) +
min{N(BDD : g:(X1)), N(BDD : g:(X3))}-

VIII Conclusions and Comments

In this paper, we presented the bi-decomposition,
a special case of functional decomposition. Disjoint
bi-decompositions have the following features:

1) They are easy to detect; we use ISOPs or
PPRMs rather than decomposition charts.

2) If the function has an OR (AND) type bi-
decomposition, then we can optimize the ex-
pression separately.

3) Programmable logic devices exist that realize
bi-decompositions.

We enumerated functions with bi-decompositions.

Among 218 nondegenerate functions of 4 variables,

146 have bi-decompositions. Also, we derived for-

mulae for the number of disjoint bi-decompositions.

Since the fraction of functions with decomposi-
tions approaches to zero as n increase [4], the frac-
tion of functions with bi-decompositions also ap-
proaches to zero as n increases. Future problems
include the investigation of benchmark functions
with bi-decomposition.
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