& H # ofb 899
(1998. 9. 22

759 2)VEBEKED VISI 7 —F T 7 F +

O Z= 817, W5 5AE

Hbk% TH#H BR - @E LFH
T 980-8579 AT HFEEKREFHE
TEL 022-217-7088 E-mail lee@aso.ecei.tohoku.ac.jp

552 L 7977 VEGERISEREROBTREROEGERL AN LEBEREL L THE
Eénfwé.:@?&@ﬁ%%ﬁﬁﬁ%kﬂ&%ﬁﬁﬁ%b,%@tb7?7&»$mn—va7ﬁ
PETHS, ABTHET T2 5 VERERD VLSI 7 -7 7 F v ¢ RET 2. IFET T2y FOFO
Ly oI Oy bR ALYy T Ay 2 ERERL, FAL TRy 22070ty IiCRAIN R T — 58
B4 L THBLT .

$-0—F 755 ¥ VEHEER, VLSIT—F%7 75

A VLSI Architecture for Fractal Image Coding

O Shinhaeng Lee and Hirotomo Aso

Department of Electrical and Communication Engineering, Faculty of Engeneering,
Tohoku University,
Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
TEL (+81)22-217-7088 . E-mail lee@aso.ecei.tohoku.ac.jp

Abstract Fractal image compression has received great attention in image storage of electronic library
for a quick access. The main problem of fractal image compression is a long encoding time. For this
reasion, the dedicated ASIC architecture for fractal image coding is needed. In this paper, we propose
an efficient VLSI architecture for fractal image coding. First, domain blocks are formed from the range
blocks in processors and the encoding procedure is performed by the regular data flow of domain blocks
into the other processors.

key words fractal image compression, VLSI architecture

1. Introduction

Image compression has been important in re-
lation to image storage and image transmission.
Fractal image coding, proposed by Bansley and
realized by Jacquin MBI, has received great at-
tention in digital image compression 4. The prin-
ciple of fractal image coding is that the image con-
verges to a stable image by iterating the contrac-
tive transformations on an arbitrary initial image.
The image is partitioned into a number of blocks
and is coded by obtaining only the information of
the contractive transformations for the blocks.

Similarly, the main problem of fractal image
coding is the tremendous encoding time needed
due to the large amount of comparisons between
domain and range blocks. A few dedicated archi-
tectures proposed have been utilized global data
communication to providing domain blocks to all
the processors PIEI78] As the number of proces-
sors increase, expanding non-local communication
paths is difficult without slowing down the system
clock. '

In this paper, we propose an efficient VLSI ar-
chitecture using only local communication such
that each processor has memory for a range and
a domain block which is shifted to the next pro-
Cessors. ’

2. Review of Fractal Image Coding
In this section, we will present a review of the
principle of fractal image coding.

2.1 Theoretical Foundations

Let (M, 6) denote a metric space of digital im-
age, where M is the space of discrete domains
finitely bounded, and § is a given distortion mea-
sure. A transformation 7 on a metric space (M,
d) is contractive if there is a constant 0 < s < 1
such that

8(r(w),7(v) < 88(m,v), VmveM. (1)

The factor s is called the contractivity factor of 7.

If M is a complete metric space, then there ex-
ists a fixed point p, for 7, called attractor, such
that

7(ka) = Hay pa € M. (2)

Moreover, if 7 is contractive then 7 may be iter-
atively applied to any image pyg, yielding a stable
image g [,

Jim 7 (o) = pa, Vpo € M, (3)

where 7" means the nt* iterate of 7.

Let porig be an original image we want to en-
code, and constractive such that T(ttorig) = Horig-
Then the transformation 7 can be seen as a lossy
image code for popig.

2.2 Fractal Coding Algorithm

Provided figrig is an N x N pixels gray scale
image, we partition the original image Horig into
a set of non-overlapping R X R pixels range blocks
{ri,}, as follows:

Ng

porig = | mg) TG Nrgz =0 for (i,5) # (3,5),

ij=1

4)

where r(; ;) represents the range block at coordi-

nates (4, j), Ng x Np is the total number of range

blocks. R = {r; ;)|1 < i,7 < Ng} is called range

pool. A set of overlapping D x D (D = 2R) pix-

els domain blocks, {d(mn)|l < m,n < Np}, are

drawn from domain pool D where Np x N, p is the
total number of domain blocks.

A variety of domain pools is used in the lit-
erature. Fixed-spacing domain pools are the
two-pizels-interval domain pool Dy, and half-
overlapping domain pool Dhaty, which are over-
lapped along the vertical and horizontal directions
with the overlapping interval set to 2 pixels and
D/2 pixels, respectively.

For each range block, the coding procedure is
to find one domain block and its transformation
which is the best match of the original range
block. The mapping for the (4, 7)™ range block,
T(4,5)> consists of a scaling factor 5(i,5), offset 0(i,)»
pixel isometry ¢;,1 < k < 8, and spatial contrac-
tion S. A pixel isometry t; maps a square block
to one of the 8 isometries obtained from compo-
sitions of reflections and 90 degree rotations.

The result of applying this mapping is an ap-
proximation to the (4,5)* range block, i) as

follows:

Pig) = 8616 (S(NGg) + 06, (0)
where N(i,7) is a domain block selection func-
tion, which associates the (i, j)** range block with
a domain block from D and I(3,) is an isometry
selection function, which maps the (,;)®* range
block to one of a set of possible isometry opera-
tions.

The encoding process is determining the pa-
rameters in equation (5) for all range blocks such
that the distortion between each range block and
its approximation, § (F(i,j), TG ,j)), is minimized.

The fractal image encoding procedure is shown
as follows:

STEP 1:
Extract range pool R
STEP 2:
Extract domain pool D
STEP 3:
For each range block
For each domain block and each isometry
Compute distance between blocks
Determine the best domain block
STEP 4:
Consider the parameters of the best as a code

In the encoding phase, the most computation-
ally intensive operations are the computation of
distance between range and transformed domain
blocks (STEP 3). The total number of computa-
tions of distance is (Ng) x (Np)? x 8.

3. The Proposed Architecture for
Fractal Image Encoding

We propose an efficient systolic architecture for
fractal image encoding. The proposed systolic ar-
ray is arranged in two dimensional space by the
samé processor elements(PE’s) that are locally
connected and are capable of computing a range-
domain distance. Each range block pre-loaded to
each PE is compared with a single domain block
in parallel. All the domain blocks are shifted and
the process is repeated.

There are two searching schemes, one is full-
search and the other is fast-search by classifica-
tion. The full-search scheme can produce bet-

ter performance than fast-search scheme and pos-
sesses a very regular data flow. Fast-search is used
in sequential fractal encoding to reduce the num-
ber of range-domain comparisons but it was not
chosen in this paper because it would required
random movement of range or domain blocks
across the processor array.

In the design of systolic array to implement
the fractal encoding algorithm in this paper, both
of half-overlapping domain pool and two-pixels-
interval domain pool are considered.

3.1 Half-overlapping Domain Pool

Assume that there are Np x N, PE’s. Since
we assume the total number of PE’s is equal to
the number of range blocks, IV, = Ng. Now the
domain pool is a half-overlapping one Dpq5. The
total number of domain blocks is (N, — 1){Np —1)
due that the overlapping interval is D/2 = R. No-
tice that the size of domain pool Dpg; is smaller
than the size of range pool R.

Figure 1 shows an example of extracting do-
main pool where Ng is 4. In general, domain
block (i, 7) is drawn from 4 neighbor range blocks
as follows:

diij) = Ba(r(i,j)s T(i4+1,4)s T(a,g+1)s T+1,541) (6)

where Ey operator maps a D X D pixels block to a
R x R pixels block by averaging each pixel with its
neighbors and then sub-sampling. The number of
total domain blocks extracted from range pool is
(4-1)(4-1) =29 in Figure 1.

We assume that each range block is loaded into
each PE. The encoding procedure of the proposed
architecture consist of two phases. In the first
phase, domain pool is extracted. Figure 2 shows
the connection of PE’s in first phase. The direc-
tion of the data flow in each PE is determined by
data dependency obtained from equation (6).

The structure of PE of the proposed architec-
ture is shown in Figure 3. Each PE has three
memory modules, an isometry function module,
an average-and-subsample module, a decoder,
and a distance-computation module. Three mem-
ory modules consist of a range block memory, a
domain block memory, and a code memory to

Range Pool : R (i,j)

l’—»i

(1,1) 2,1) [€R))] 4,1)

—.

1,2) 4.2)

1,3) 4.3)

\ /
14 [\2s | G4, | 44

\ /L

A 4
Average-and-
Subsample
Domain Pool :
D(m,n)
(1D 3.1
1,2) (3,2

(1,3) 2,3) (3.3)

Figure 1. Extracting domain pool.

store results obtained. Each range block is loaded
into each range block memory. In the literature,
the architectures have the special memory mod-
ule to store domain pool 617) and memory band-
width becomes a bottleneck since all PE’s access
the same memory to receive domain blocks. How-
ever, the proposed systolic architecture resolves
this problem by using only local data communi-
cation. In the proposed architecture, each PE ex-
tracts a quater of a domain block from a corre-
sponding range block and stores it into domain
block memory.

The average-and-subsample module maps a
range block to the half-size domain block by av-
eraging each pixel with its neighbors and then
sub-sampling and send the half-size domain block
to three neighbor PE’s and domain block mem-
ory of itself. The isometry function module ex-
ecutes eight isometry transformations on its do-
main block. The distance-computation modiile

PE PE PE
an @n *ee N1
E PE PE
1.2) @2 e Np2)

> 0 0 @
N

PE ceoe PE

PE
(1N Ny MNyNy)

Figure 2. The proposed architecture for first
phase in encoding procedure.

Memory for <= Distance
Code computation

PE(i-1,j) Average i A
PE (i,j-1) < and
PE(i-1,j-1) Subsample 8 isometry
functions
PE(i+1,j)
Memory for Memf)ry for PE(i,j+1)
Range Block \D"’“““‘ Block <-I PE(i+1,j+1)

PE(i,j)

Figure 3. The structure of PE of the proposed
architecture.

calculates the distance between a range block and
domain blocks.

The second phase computes distance between
range and domain blocks. The number of com-
parisons between range pool and domain pool is
(Ng)? x (Np)2. In this architecture, each range
block is compared with a single domain block in
parallel and all domain blocks are shifted to be
compared with the next range block. Note that
the systolic computation of the comparison re-
quires a topology of the linear array i.e. a ring
connection. For the systolic computation using a
simple linear array, Nr X Ng steps are needed.

To improve parallelism, we propose a new con-
nection of PE’s by modifying a ring connection.

(1,1) 1)

(1,2) 2,2)

M2 ML) (N,

(1 ,ND)

@N) (N~ 2.Np) (Np- 1N, (Np.Np)

Figure 5. The connection of PE’s for computa-
tion of the comparison.

Figure 5 shows the connection of PE’s, where N,
is an odd number. If N, is an even number, the
path from PE (N, — 1,Np, — 1) to (1,1) is needed
instead of the path from PE (1,N, — 1) to (1,1)
in Figure 5. In Figure 5, each black square has a
range block and a domain block which is shifted
at the next step along with the connection. Each
white square has a only range block and comput-
ing the distance without shifting a domain block
to the other PE’s.

The data flow of the proposed architecture is
shown in Figure 4 where Ngp = 4. In step 0 in
Figure 4, nine domain blocks are extracted from
Steps 1-9 shows the flow of do-
main blocks. Np X Np steps are performed for

range blocks.

the comparisons by the proposed connection of
PE’s. Since Np of Dpqy is smaller than Ng, the
proposed architecture is faster than the straight-
forward architecture using ring connection.

3.2 Two-pixels-interval Domain Pool

If higher quality images are needed, you have
to use the larger domain pool such as two-pixels-
interval domain pool Dyye. The proposed ar-
chitecture for Dy, can be designed by modi-
fication of domain block memory as shown in
Figure 6. Each PE has the extended right do-

main memory(ERDM), the extended bottom do-

Domain Memory < ERDM
(RxR) (R/2xR)
EBDM EDDM

(RxR/2) R/2 x R/2)

Figure 6. The modified domain block memory
for Do

main memory(EBDM) and the extended diagonal
memory(EDDM) to store the extended domain
data from other PE’s as follows:

derRDM(ij) = Ba(T(iv2,5) T(i+2,+1))
deBpMGij) = Ea(rij+2), Ter1542) (1)
deppm(ij) = Ba(T(iy2,4+2))

These data are transmitted immediately after
the first phase before the second phase from the
three neighbor PE’s. After the comparison pro-
cess as soon one for Dpqy, ERDM, EBDM and
EDDM send a line of data to its domain mem-
ory. Since the data in domain memory is obtained
by sub-sampling, a pixel of the extended domain
memory is the data of two pixels in range pool.
The two-pixels-interval domain pool is extracted
and repeat STEP 3 and STEP 4 in the encoding
procedure until each range block has compared
itself against every domain block. (£)% x (Np)?
steps are performed for the comparisons using
Diwo-

4. Conclusions

In this paper, we have proposed an efficient
VLSI architecture for fractal image coding. The
encoding scheme is based on the fixed-size range
blocks and the full-search. Domain pool is formed
form the range blocks in processors and the com-
parison process is performed by the local commu-
nication since each PE has the memory for a range
and a domain block. This architecture can per-
form the comparison process in Np x Np steps by
the modification of the connection of PE’s, where
half-overlapping domain pool (Np < Ng).

Steps | PE(1,1) PE(2,1) PE(3,1) PE(4,1) PE(1,2) PE(2,2) PE(32) PE(42)
0 | D(I,I) D(21) DB, D(1,2) D(2,2) D(3,.2)

1 | D33) D(,1) D(21) D@31 D@2 D@32 DB DE2)
2 | D(23) D@B3) D@,1) D@1 D32 D@B1) DE1) D@E1)
3 | D(1,3) D23 D@33) D(,1) D@B1) D@1) D(1,1) D)
4 | D(1,2) D@E3) D23 DB3) D(21) D@1 D@E3) D1
5 | D(22) D(1,2) D(1,3) D(23) D(,1) D(33) D(23) D@3.3)
6 | D32 D(22 D(1,2) D(1,3) D@33 D@23 D(,3) D(©23)
7 | D(3,1) D@32 D22 D12 D@3 D@3 D@2 D(L,3)
8 | D(21) D@B1) DGB2) D22 D(1,3) D12 D22 D(1,2)
9 D(3,2) D(2,2)
Steps | PE(1,3) PE(2,3) PE(3,3) PE(4,3) PE(14) PE(2,4) PE(34) DPE(44)
0 | D(1,3) D(23) D(3.3)

1 | D@,2) D@3 D@23) D3B3 D13 D3 D@B3) DB3)
2 | D@2 D@2 D@13 D23 D(,2) D@3 D(23) D(23)
3 | D32 D@22 D(1,2) D(1,3) D@22 D(1,2) D@3 D(L3)
4 | DB1) DB2 D22 D12 D@B2 D@22 D12 D2
5 | D(21) D@31 D@32 D22 D@31 D@32 D22 D22
6 | D(1,1) D(21) D@B1) D32 D21 D@B1) D32 D32
7 | D(33) D@,1) D(@21) D@E1) D(,1) D@1) D@31 D(3,1)
8 | D@23) D@33 D@1 D(21) D@B3) D31 DE21) D@21
9 D(1,1) D(23) D(33) D(,1) D(,1)

Figure 4. The data flow of the proposed architecture.

In addition, we have proposed the modified
architecture for higher quality images with the
larger domain pool. This can compute the com-
parisons between range pool and the larger do-
main pool obtained by the extended domain mem-
ory in (£)2 x (Np)? steps.

Further research will focus on the architecture
for fractal image coding using the flexible-size par-
tition schemes such as the quad-tree partition.

References
[1] M. F. Barnsley, Fractals Everywhere, Aca-
demic Press Inc. , San Diego, 1988.

[2] A. Jacquin, “Image coding based on a fractal
theory of iterated contractive image transfor-
mations,” IEEE Trans. Image Processing, vol.
1, no. 1, pp. 18-30, Jan. 1992.

[3] A. Jacquin, “Fractal Image Coding: A Re-
view,” Processing of the IEEE, vol. 81, no. 10,
pp. 1451-1465, Oct. 1993.

[4] Y. Fisher, Fractal Image Compression Theory
and Application, Springer Verlag, New York,

1995.

[6] F. Ancarani, A. De Gloria, M. Olivieri, and
C. Stazzone, “Design of an ASIC Architecture
for High Speed Fractal Image Compression,”
Proceedings Ninth Annual IEEE international
ASIC Conference and Exhibit, pp. 223-6, 1996.

[6] O. Fatemi and S. Panchanathan, “Fractal En-
gine,” Proc. SPIE Int. Soc. Opt. Eng. , vol.
3021, pp. 88-99, 1997.

[7] Z. L. He, M. L. Liou, and K. W. Fu, “VLSI
Architecture for Real-Time Fractal Video En-
coding,” 1996 IEEE International Symposium
on Circuits and Systems, vol. 2, pp. 738-41,
1996.

[8] K. P. Acken, H. N. Kim, K. J. Irwin, and R.
M. Owens, “An Architectural Design for Paral-
lel Fractal Compression,” Proceedings Interna-
tional Conference on Application-Specific Sys-
tem, Architectures and Processors, pp. 3-11,
1996.

