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Abstract

On a clock-driven system with multiple processors, we consider the model that the set of processors
is clustered into blocks and timing of clock-supply is controlled at block level. By the assumption
that the power is mainly consumed by processors when they are supplied with clocks, we formulate
a job scheduling problem to make the power consumption of the system small. We propose an easily
implementable heuristic algorithm BF-ASAP (Best-Fit/As Soon As Possible) which optimizes each job
sequentially in each block. We show about 30% power reduction on randomly generated instances in
which 100 processors are clustered into 10 blocks, to show the method being promising.
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1 Introduction

Reduction of power consumption of electric devices is re-
quired more and more recently because they are getting
small and portable. There have been various approaches
to improve power consumption in ideas such as to use
low-voltage, multi-voltage, to reduce switching number
of gates, to optimize gate sizing, to change the order of
input terminals[6] and to control the power consumed
by clock-supply. In [3], there is a report that the power
consumed by clock-supply amounts to 30% of the power
consumed in the whole system. Many literatures and
experts are suggesting that the effective approach is to
reduce the power consumed by clock-supply.

In this paper, we consider to reduce the total power
consumed by processors by properly controlling the job
schedule. So far, it has been optimized from the point
of execution time and hardware cost. When a data flow
graph is generated by high-level synthesis, the execution
time of each job is decided in scheduling phase[6]. There
have been two scheduling optimization problems: one is
time-constrained scheduling which minimizes the hard-
ware cost with a due time (period, cycle time) as a con-
straint, and the other is hardware-constrained scheduling
which minimizes the execution time with a given hard-
ware cost as a constraint. The goal of the former is to
make the area of the system minimum and that of the
latter the performance speed fast.

On the other hand, we aim to optimize the power
consumption by scheduling jobs and controlling clock-
supply to the processors with scheduled jobs with hard-
ware cost fixed and period as a constraint. The timing
of clock-supply is determined uniquely from the result
of job scheduling.

Because controlling the clock-supply for each proces-
sor individually causes too much overhead, our frame-
work is to design a system such that processors are clus-
tered into blocks of proper size and clock-supply is con-
trolled at block level.

It is a reasonable assumption that the power con-
sumed by a processor is proportional to the duration
while clock is supplied. If the clock-supply to proces-
sors which is not executing jobs is stopped, the power
consumption of them is spared [1][7][8]. If no processors
in a block are executing jobs, the block needs no clock
to be supplied. Hence the clock should be supplied only
when there exists at least one processor in the block
which is executing job. The duration depends on the
schedule of jobs. Hence the problem is to schedule jobs
in order to minimize it.

This paper proposes an algorithm which schedules
jobs minimizing power consumption when the period
has been fixed to the minimum and jobs have been as-
signed to processors.

A similar problem was defined with an approach[2]:
The problem proposed is to cluster processors into blocks
to minimize power consumption when the period, job
assignment and job schedule are given. But it is not
practical to formulate the problem independent of the
functions of processors and layout. While our formula-

tion is considered more practical because it is assumed
that the job assignment is decided somehow reflecting
the function and layout.

A method proposed in this paper is based on the con-
cept Best-Fit and As Soon As Possible. The former has
been used frequently in Bin Packing[4][5] and the lat-
ter the major principle in minimum duration schedul-
ing. We implemented the method and experimented.
The result showed that about 30% of power is reduced
on the system that 100 processors are clustered into 10
blocks with 1000 execution-order constraints generated
randomly. Though this paper is just offering a principle
and must be enhanced theoretically as well as practically
to apply to practical problems, it is believed promising
by the result.

In section 2, we describe the model of the circuit and
a way to calculate power, and formulate an optimiza-
tion problem. In section 3, we formulate the Minimum
Power Job Scheduling problem and show the computa-
tional complexity with some restrictions. In section 4
we propose a heuristic algorithm. Section 5 is devoted
to experiments. The conclusion is in section 6.

2 Circuit and power model

Consider a system with multiple processors as shown
in Figure 1. A processor is called ON at step ¢ if the
processor receives the i-th clock-edge, and OFF at step
¢ otherwise. The set of processors are clustered into
blocks. The timing of clock-supply is decided at block
level through a clock-controller which is inserted for each
block. The clock is supplied through a clock-controller
which is either of states ON or OFF corresponding to a
clock-edge being passed through to the block or stopped,
respectively. A block is called ON at step ¢ if the block
receives the i-th clock-edge, and OFF at step ¢ other-
wise.

The system executes a task which consists of jobs.
A processor is called active when it executes a job. A
processor can execute a job at a time when it is ON.
Each job is executed continuously by an ON processor.
The number of steps to complete a job is called the
length of the job.

A block should be ON at every step when it includes
an active processor while it can be OFF when all pro-
cessors in it are not active. We assume that the power
consumption of an ON processor per unit time is con-
stant, that is, independent of either active or not and of
the type of processors. Moreover, we assume that the
power consumption of an ON processor is far larger than
that of an OFF processor.

Since the clock-supply is controlled at block level, the
minimization of the ON length of each block leads to the
minimization of the power consumption of the system.

If the job assignment to each processor is given (ac-
tually which we assume), the total number of steps of
active state of a processor is constant. Therefore, it is
the only way for power reduction that the active state
of a processor keeps in step with the active state of the
other processors in the block. We let the block OFF at
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the step when all processors in it are idle, by controlling
the clock-controller.

Let W; (Ws) be the power consumption of an ON
(OFF) processor per step. Let n; and I; be the numbers
of processors in block B; and ON steps of B;, respec-
tively. Let T be the number of steps to complete the
task. The power consumed in B; is described as follows.

pow(B,-) = {11 Wy + (T — li)Wz}TL,‘ (1)

And the power consumed in the system is:
pow(B) =Y pow(B;) (2)
vB

Each job may not be executed independent of the
other jobs. The constraint we consider is the preceding
constraint which is such a relation that one job must be
started after the other job. The preceding constraint is
called inner-processor constraint, inner-block constraint
and inter-block constraint if it is defined between two
jobs assigned to a processor, to different processors in
a block and to different processors in different blocks,
respectively. All these definitions are conventional.

In the following, we assume that an assignment of jobs
to processors is given. We focus on deciding the start
step for each job. The objective of our job scheduling is
to minimize the power consumption of the system.

Our strategy is to schedule one job at a stage after
another. A job is called fized if the start step of the job
has been determined by the algorithm. A processor is
called occupied at step 7 if a fixed job is scheduled to be
executed at step ¢ at the processor. A block is called
occupied at step ¢ if at least one processor in the block
is occupied at step 7. A maximal continuous occupied
steps of a block is called a shadow of the block.

controller

P m o -

block

Figure 1: A multi-processor consisting of six processors
clustered into two blocks, each supplied with controlled
clock.

In Figure 1, the set of processors P = {P;,Ps,P3,P4,Ps,
Ps} is clustered into two blocks By = {Pi, P2, P, P4}
and By = {Ps, Ps}. Examples of scheduling jobs J =
{J1,1,J1,2,...,Js 2} assigned to the processors in Fig-
ure 1 are shown in Figure 2. A job J;; is represented
by a thick line and assigned to processor P;. A preced-
ing constraint is represented by a directed thin edge. A

shaded step represents that the step of the block is oc-
cupied and continuous shaded steps represent a shadow.
The periods of the schedulings in Figure 2 (a), (b) and
(c) are 12, 8 and 9, respectively. The powers of them are
504, 480 and 468, respectively, when W; = 10, Wy = 1.

It is expected that the power consumption of a shorter
period scheduling is smaller because at least the power
Wa of OFF processors is consumed. On the other hand,
it is expected that the power can not be reduced enough
because the flexibility of the scheduling is reduced. The
former of these conflicting expectations is observed in
(a) and (b) of Figure 2, and the latter in (b) and (c) of
Figure 2.

It is interesting to study the tradeoff between period
and power. But in this paper, we assume that the pe-
riod is fixed. Then the value of W5 does not affect the
optimization in scheduling, we let W; and W3 be 1 and
0, respectively, in the following discussion.

3 Problem Formulation and Com-
plexities

The problem is formulated as follows.

Min-Power Job Scheduling Problem

Input : Set of processors P, set of blocks B which is
a partition of P, set of jobs J, assignment of a
job to a processor ¢ : J — P, set of preceding
constraints R and period 7T'.

Output : Schedule of all jobs in J.

Objective : Minimization of the power consumption of
the system.

First we show that the problem is NP-complete in
general considering a special case.

Consider the problems shown in Figure 3 and 4 where
assignment of jobs in the shadows S1, Sy in B; is unique.
Therefore in both cases the remaining problem is to
schedule the jobs assigned to P. In other words, we
have to solve:

Job Scheduling with Two Shadows

Instance : Set of jobs J assigned to P in block B,
shadows Sy, 55 of B.

Question : Are jobs in J scheduled within Sy and S,7

In the instance described in Figure 3, all the jobs
assigned to processor P have no preceding constraint,
while in Figure 4, they have linear-order inner-processor
constraint.

We show two propositions that Job Scheduling with
Two Shadows is NP-complete for the first case and that
it is P for the second case.

For the first proposition, we introduce the problem
PARTITION which is known to be NP-complete for
polynomial reduction[4].
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Figure 2: Examples of scheduling for Figure 1.
PARTITION Minimum Power Job Scheduling Problem is generally

Instance : Finite set A such that each element a € A
has its size s(a) which is positive integer.

Question : Is there a subset A’ of A with a restriction

that ZaeA' s(a) = ZaeA—A’ s(a)?

Theorem 1 Job Scheduling with Two Shadows is NP-
complete.

Proof It is easy to show that Job Scheduling with Two
Shadows is in NP.

We reduce the PARTITION into Job Scheduling with
Two Shadows. For a given instance of PARTITION, we
prepare a job J € J of length s(a) for a € A which is
assigned to processor P € B and two shadows S, S5 of
length 3~ . 4 s(a)/2. There are no preceding constraints
on jobs in J. So Job Scheduling with Two Shadows is
NP-complete. u|

NP-complete because it includes Job Scheduling with
Two Shadows.

For the second proposition, we introduce an algorithm
which provides an optimal solution (Figure 5). Its va-
lidity is self-evident and omitted.

Lemma 1 Algorithm Job_Scheduling_for_Linear_Order_
Two_Shadow outputs an optimal solution.

Finally, we show other cases for which we can solve the
Min-Power Job Scheduling Problem. They are imposed
linear-order inner-processor constraints on all jobs.

The key idea we use is the ASAP (described in Fig-
ure 6). It schedules jobs from the first job in the linear-
order to the last one into as early step as possible. This
algorithm is often used in scheduling problems.

If {B| = 1, the Min-Power Job Scheduling problem is
P. The following fact is well-known.

Lemma 2 Let |B| = 1.
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B:

B2

Figure 3: An instance of Job Scheduling with Two Shad-
ows with no preceding constraint related to jobs in P.

B

B>

Figure 4: An instance of Job Scheduling with Two Shad-
ows with only linear-order inner-processor constraints
related to jobs in P.

1. The power of the scheduling is minimum if and
only if the period of the scheduling is minimum.

2. The minimum-period scheduling can be obtained
by ASAP algorithm in O(|J| + [R]) time.

If there is no inter-block constraint, Minimum Power
Job Scheduling Problem can be solved optimally even if
IB] > 2.

Lemma 3 ASAP algorithm outputs an optimal solu-
tion in polynomial time for an instance with lincar-order
inner-processor constraints if there is no inter-block con-
straind.

Proof Jobs can be scheduled for each block indepen-
dently. The power consumed in a block can be optimized
from Lemma 2. The total power is the sum of the powers
consumed in each block. m]

Algorithm
Job_Scheduling for_Linear_Order_Two_Shadow
(Tnput: J, {S1,S2}, T; Output: scheduling)

1. Schedule jobs assigned to P at as early step
as possible from the first job through the last
one while steps they are scheduled are properly
contained in S;.

2. Schedule unfixed jobs at as late step as possible
from the last job through the first one while
steps they are scheduled are properly contained
in Sz.

3. If there is one unfixed job, then schedule it at
as early step as possible if the number of unoc-
cupled steps of P in S is greater than that in
Sa, at as late step as possible otherwise.

4. Otherwise, schedule the latest unfixed job as
late step as possible and the other unfixed one
as early step as possible.

Figure 5: The algorithm which solves Job Scheduling
with Two Shadows problem with linear-order inner-
processor constraint optimally.

The above discussion holds analogously along with
ALAP (As Late As Possible) strategy which schedules
jobs from the last job through the first one into as late
step as possible. ALAP works only if the period T is
given.

4 Best-Fit/ASAP Algorithm

We propose a heuristic algorithm BF-ASAP for the Min-
imum Power Job Scheduling Problem, which is described
in Figure 7. We have learned the issues that the strat-
egy Best-Fit and ASAP works preferably in reducing
the power and that a single block can be handled eas-
ily. Our proposing algorithm is based on them. More
precisely, the algorithm is sketched as follows: We fol-
low the sequential scheduling. We relax the schedule
of a single block and optimize it keeping the schedule
of other blocks fixed. In a single block optimization, we
apply Best-Fit with ASAP. That is, scheduling jobs into
unoccupied steps aims to maximize the overlap of the
Jobs and the shadows of the block. This is one cycle and
we repeat it appropriate times.

5 Experimental Result

We programmed BF-ASAP with C language. Also ASAP
is programmed to produce the initial solution. It is also
used to compare the performance with BF-ASAP. We
generated 100 instances for the experiment as follows.
Numbers of processors, blocks and jobs are 100, 10 and
1000, respectively. The number of processors in each
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Algorithm ASAP (Input: P, B, J, R, p; Output:
scheduling)

1. Let L =10.

2. Find all the first jobs without preceding jobs.
3. Let the start step of them be 1.
4

. Add into L unfixed jobs not in L such that their
preceding jobs are all fixed.

5. Schedule any job of L in such a way that its
start step is as early as possible and delete it
from L.

6. Go back to 4.

Figure 6: The algorithm which solves Min-Power Job
Scheduling problem optimally when the number of
blocks is 1.

block is evenly 10. The variety of length of jobs is be-
tween 1 and 10.

Associate a linear-order inner-processor constraint with
jobs assigned to the same processor. Also associate an
inner-block constraint or an inter-block constraint with
some pairs of two jobs so as not to generate any loops.
The period T is set to the minimum which is determined
by applying ASAP to all the jobs.

Experimental result is shown in Table 1. Values in
the table is the average of the solutions.

The columns in the table show from left to right sum
of the number of inner-block constraints and inter-block
constraints (x 1000), lower bound of the power, the power
and the execution time (ms) of the schedule solved by
ASAP, the power and the execution time (ms) of the
schedule solved by BF-ASAP, and the rate of power
reduction of BF-ASAP to ASAP (%). Here the lower
bound of the power is the sum of the minimum power
calculated for each block neglecting the inter-block con-
straints. This calculation is possible because the single
block scheduling is solved optimally by ASAP.

From the experimental result, it is observed that the
power solved by BF-ASAP algorithm is about 30% smaller
than ASAP for all cases except the case that the number
of constraints is 0. It is remarkable that every value is
near to the lower bound.

In this paper, we have set the condition of termination
for BF-ASAP algorithm in the following way: “Termi-
nate if power is larger than or equal to previous one
continuously times of the number of blocks.” We show
experimental results to give the validity. First, for the
instances generated in the same way, we compared the
resultant power in five cases of the termination condi-
tions according to the state that the power is larger than
or equal to the previous one continues for: the number of
blocks, twice the number of blocks, three times the num-
ber of blocks, four times the number of blocks and five
times the number of blocks. But we got the solutions of

Algorithm BF-ASAP (Input: P, B, J, R, p, T}
Output: scheduling)

1. (Initial solution) Schedule all jobs by ASAP.
2. (Initial setting) Let L =0,i =1 and j = 1.
3. (Rescheduling) For each B;,

(a) Let all jobs assigned to the processors in
B; be unfixed.

(b) For every job J, compute margin(J)
which is the number of possible schedules
of J. (The earliest schedules is by ASAP
and the latest by ALAP.)

{c) Add into L the unfixed jobs in B; all of
whose preceding jobs are fixed.

(d) Goto5if L=0.

(¢) Choose a job J in L whose margin(J) is
minimum.

(f) Schedule J in such a way that the overlap

with shadows is maximum. (If there is an
arbitrariness, then schedule it into earliest

step.)
(g) Delete J from L and go back to (c).

4. (Power evaluation stage) Calculate the power.

5. (Setting of parameters for termination) Let j =
74 1 if the power is larger than or equal to the
one in the previous stage (the power when B;_;
is rescheduled), and let j = 1 otherwise.

6. (Decision for termination) Terminate if j > |B].

7. (Increment) Let ¢ = {( + 1) mod |B|} + 1 and

go back to 3.

Figure 7: Our heuristic algorithm. Best-Fit strategy is
applied to ASAP.

almost same quality. Next, for the instances generated
in the same way, we compared the resultant power in
the cases of the termination conditions according to the
state that the power is larger than or equal to the previ-
ous one continues for: 1, 2, ..., 20 times, one-third the
number of blocks, half the number of blocks, two-third
the number of blocks, and the number of blocks. Again
we noticed that the last case, which leads the proposed
algorithm, output the best of all.

6 Conclusion

In this paper we assumed a multi-processor model, for-
mulated the problem to decide the clock-supply step
to subsets of processors, and proposed a job schedul-
ing algorithm for low power design. Though the algo-
rithm is not guaranteed to provide an optimal solution,
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Table 1: Comparison of the power solved by ASAP and
BF-ASAP.

# LB ASAP BF-ASAP
(k) | power | power [ time | power | time | (%)
0 8525.7 | 8525.7 3| 8525.7 81 0.0
2 || 10253.1 | 16998.4 5 | 11081.9 37 | 34.8
4 || 11483.4 | 18685.2 9 | 12126.7 60 | 35.1
6 || 12312.4 | 195414 14 | 12775.0 86 | 34.6
8 || 12988.8 | 20176.2 18 | 13389.2 | 119 | 33.6
10 || 13536.0 | 20740.5 24 | 13893.2 | 164 | 33.0
12 || 14097.6 | 21312.3 31| 14407.8 | 226 | 324
14 || 14336.0 | 21433.6 38 | 14651.1 | 315 | 31.6
16 || 14586.1 | 21526.5 48 | 14889.5 | 408 | 30.8
18 | 14935.3 | 21862.4 57 | 15222.7 | 592 | 304
20 || 15233.5 | 22025.3 70 | 15540.4 | 837 | 29.4
22 || 15440.7 | 22036.0 83 | 15742.7 | 1118 | 28.6
24 || 15613.8 | 22316.9 98 | 15897.5 | 1853 | 28.8
26 || 15842.0 | 22362.2 | 114 | 16131.1 | 5015 | 27.9

it achieved about 30% lower power than that obtained
by simply applying ASAP. This result is very significant
in the field of development of LSI as a technique to en-
able the low power design of LSI chip, which shall be
developed urgently because the problem about power is
fatal to the quality and the integration of LSI.

All the discussions in this paper have been made based
on a good result by a simple example. To make our idea
more convincing, we need to pile up the data of various
features. And, it is required to confirm the effect of
application to practical problems.
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