VAT AL S T 94— 3
(2000. 1. 1D

BE Y 7 MNLARETEREER
EAR ESE A

i B ARFER B T FE R B LA I
T 464-8603 % R TAEX ANEHRT
BEE 1 052-789 3312, email: ntakagi@nuie.nagoya-u.ac.jp

50 % L 3AHERACARFEAOKBACO NS LR EOOORE Y 7 MRON— Fy 27 TATYX
ARIBEL. SAUCHS (T RIS OBR Y R, CHREIE T, EHIC L B VPR E L ARORRICH
FRELRAEL &, 2ORCYROPEBREOTHRENEENL, BET L7V T AL T, FEBEROT
BRI L. BB L R HEROTEHOEHF L KL L ¥ 7 FOATIT) MHROEHSHES, FROERHRIL,
FRRNEMEIC LD, SFNERN—TVa v ERITEDL, INLRTRY, IFFHEED SV IHAEEEE LT
EHTE S, HEEHAE LCEREEY S, VLS IEBIEL TS, ARTHE, B2 07 VT XLDF
Mz HEt L, ZONEFRBERIC OV TENS,

S0 ¥ EARAME. VHREE. A R T 7Ty XA, BEY T METATY XA, VLS I

A subtract-and-shift cube rooting circuit

Naofumi Takagi and Toshiaki Minami

Department of Information Engineering, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
phone: +81-52-785--3312, email: ntakagi@nuie.nagoya-u.ac.jp

Abstract A hardware algorithm for cube rooting which is used for solving algebraic equations of third or fourth
degree is proposed, and a design of a cube rooting circuit based on the algorithm is shown. In cube rooting, the
digit recurrence equation on the residual includes the square of the partial result of the cube root. In the proposed
algorithm, the square of the partial result is kept, and is updated by addition/subtractions and shifts as the residual.
‘Different specific versions of the algorithm are possible, depending on the radix and the digit set of the cube root,
the type of representation of the residual and the square of the partial result, and the digit selection function. Any
version of the algorithm can be implemented as a sequential (folded) circuit or a combinational (unfolded) circuit.
The implementations have a regular cellular array structure suitable for VLSI realization. In this report, details of
a radix-2 version of the algorithm and its sequential implementation are shown.

key words Computer arithmetic, cube rooting, hardware algorithm, digit recurrence algorithm, VLSI.

1 Introduction

Advances of VLSI technologies make it attractive to ac-
celerate important complex operations by special hard-
ware. It is also nice to avoid intermediate rounding errors
between atomic floating point operations, but only have
a bounded error for the final result of a complex opera-
tion. In this report, we propose a digit recurrence algo-
rithm for cube rooting which is used for solving algebraic
equations of third or fourth degree.

For cube rooting, as square rooting, we can derive digit
recurrence equations on the residual and on the partial
result. However, the recurrence equation on the resid-
ual includes the square of the partial result of the cube
root, and therefore, a naive calculation of the j-th resid-
ual requires a j-digit square calculation. In the proposed
algorithm, we keep the square of the partial result, as
well as the partial result itself, and derive a recurrence
equation on it, so that we can calculate it, as well as the
residual, by addition/subtractions and shifts. We select
each cube root digit from a redundant digit set by esti-
mating the residual and the partial result. We perform
addition /subtractions appearing in the calculation of the
recurrence equations on the residual and on the square
of the partial result without carry/borrow propagation
by representing them in a redundant representation such
as carry-save form or signed-digit representation. We use
the on-the-fly conversion algorithm [1] for calculating the
recurrence equation on the partial result.

Different specific versions of the algorithm are possible,
depending on the radix of the cube root, the redundancy
factor of the cube root digit set, the type of representa-
tion of the residual and the square of the partial result,
and the cube root digit selection function, as digit recur-
rence algorithms for division or square rooting [2]. Any
version of the algorithm can be implemented as a sequen-
tial (folded) circuit or a combinational (unfolded) circuit.
Pipelining can also be used. The implementations have
a regular array structure suitable for VLSI realization.

In this paper, we first define the computation of the
cube root. Then, we show a general algorithm for cube
rooting in Section 3. We show a radix-2 version of the
algorithm in Section 4, and consider its sequential imple-
mentation in. Section 5.

2 Cube rooting

We consider computation of the cube root of the mantissa
part of a floating-point number Fy = (—1)5x .28x . My
where 5x (€ {0,1}), Ex, and Mx (3 < Mx < 1) are
the sign bit, the exponent part, and the mantissa part of
Fx, respectively. The cube root of Fy is Fp = (—1)5% -
255 (Mx -27%)% where k = Ex mod 3 € {0,1,2}.
Therefore, in this report, we consider the computation
of C = X%, where 273 < X < L. 3 < C < 1 holds.
We assume X is represented as an n-digit r-ary fraction
where 7 = 2%, Namely, X = 31 ;77" We intend to

compute the result C in n-digit precision, i.e.,

——r_"SX%vC<r_".

1)

3 General algorithm

3.1 Recurrence

Here, we derive a general digit-recurrence equations for
radix r, where r = 2°.

As digit-recurrence algorithms for division or square
rooting [2], the cube root digit g; is obtained step by
step. Let C[j] be the partial result after j iterations.
Then, C[j] = C[0] + ¥20_, gir ¢, where C[0] is the initial
value of the partial result. The recurrence equation on

the partial result is

Cli+1] = Cl]+gpr . (2)

We select the cube root digit ¢;,1 from a redundant digit
set {~a,---,-1,0,1,---,a}, where £ < a <r. The final
result is C = Cln] = Y1 qir %

We define a residual (or scaled partial remainder) Wj]
as

Wlj) =r'(X ~ C[jP). ®3)

Subtracting r times (3) from the equation for W[j + 1],

we get the recurrence equation on the residual as

Wii+1] =
W 5] = 3C[a1 — 3C[lgs v 7 = gh r TP

Since this equation includes the term —3C[j]?g;t1, we
need squaring of j digit number C[j] for the calculation.
To avoid the squaring, we keep C[j]? and update it by
addition/subtraction and shift.

Let C[j]? be S[j].
Wj] is rewritten as

Then, the recurrence equation on

Wii+1]:=

Wil = 3S[jlgje1 = 3CHIg . r 770 = ¢Sy r PR
(4)

The recurrence equation on S[j] is

Sl +1] = S+ grr TTHRCE] + gjar).

(5)

From (1), (C —r ™) < X < (C +r~™)% must hold.
Since C = Clj] + Yi—;4; v~ and the minimum and
the maximum cube root digit values are —a and a, re-
spectively, from (3), we get the bounds for W[j] as

=3C[jFp + 3C[jlp*r~7 = p*r= ¥ < WJj]
<3C[jPp + 3C[lpPr = + p*r=?,
where p = %7 is the redundancy factor of the cube root
digit set.

Now, we consider the initial values of the residual and

the partial result. Initially,
=3C[0]%p + 3C[0]p* - p* < W[j]
< 3C[0]p +3C[0]p* + p°

must hold. Since 273 < X < 1and £ < p <1, we can
satisfy these bounds by letting
Clo]
wio]

1,
X -1

When p = 1, we can also satisfy the bounds by letting

clo] = o,
wlo] = X.

The algorithm for cube rooting consists in performing
n iterations of calculation of the recurrence equations (2),
(4) and (5). In each iteration, we first produce the shifted
residual #W[j], and then, select the cube root digit g;41
by examining the shifted residual and the partial result
C[j]. We will discuss on this later. Finally, we perform
the calculation of the recurrence equations.

The general algorithm is summarized as follows:
Algorithm [CBRT)

Step 1:
clo]:=1;
S[0]:=1;
wo] =X -1,

Step 2:

forj:=0ton—1do

{

Select ;41 from {—a,---,—1,0,1,---

Clj+1] = Cl] + gj41r™97Y

S5 + 1] = S[5] + qjrr 7 2C[] + gjar I

Wi + 1] := rWij] - 3S[jlgj+1

— SC[j]qJZ-HT*J*l - q?Hr’Zj’?;
} m|

When p = 1, we can replace Step 1 by C[0] := 0, S[0] :=
0, and W{0] := X. We will discuss on selection of the

cube root digit ;41 in the next subsection.

,al;

We can increase the speed of the implementation with
a small increase in hardware complexity by performing
the addition/subtractions in the recurrence equations with-
out carry/borrow propagation by the use of a redundant
representation. Therefore, in this report, we concentrate
on this type of implementations. Namely, we represent
the residual W[j] and the square of the partial result
S[4] in a redundant representation, such as the carry-
save form or the (binary) signed-digit representation, and
perform the addition/subtractions without carry/borrow
propagation.

Since —3 < W{j] < 3, we can represent W[j] by either
a carry-save form with 3-bit integer part (including the
sign bit) or a binary signed-digit representation with 3-
bit integer part. Since 0 < S[j] < 1, we can represent S[j]
by either a carry-save form with 1-bit integer part (which
is the sign bit) or a binary signed-digit representation
with 1-bit integer part.

Although we may represent the partial result C[j] in
a redundant representation as well, we keep the non-
redundant representation of it by the on-the-fly conver-

sion [1].

3.2 Cube root digit selection

We have to select cube root digit ¢;41 from {—a,---, -1,
0,1,---,a} so that the bounds for W[j + 1], i.e.,

— -2

—3C[j + 1p + 3C[j + 1]p?r—i~1
< Wi+
< 3C[+11%p+3C[+ 1)p*r=3~1 4 pPr=2-2,
are satisfied.
Let the interval of rW([j] where k£ can be selected as
@41 be [La[3), Urlj)). Then,

Li[j] = 3C[i1* (k — p) + 3C[j)(k — p)*r=77"
+(k = p)*r 272,
Ukls] = 3CLi1 (k + p) + 3C[)(k + p)?r—3 7"
+(k+p)*r =72,

—19—

Note that the lower bound of the interval for £ = —a and
the upper bound of the interval for k = a are equal to the
lower bound and the upper bound of rW{j], respectively.

The continuity condition of adjacent intervals Uy_1[j] >
Ly (7] yields

(2p — 1)BC[5)? + 3C[j](2k — 1)r 7+

+(BK* =3k +p —p+ r H) > 0. (6)

The left-hand side of (6), i.e., (2p—1) (3C[5]>+3C[5](2k—
Dy 971+ (3k%— 3k +p?—p+1)r~29-2), indicates the over-
lap between consecutive selection intervals. This overlap
is used to simplify the selection function.

gj+1 depends on rW[j] and C[j].
we can select g;1 by estimates of them. Let the digit se-
lection function be Select(rW[j], C[j]) where rW[j] and
Clj) are estimates of rW[j] and C[j], respectively. Then,

Using the overlap,

the function is described by a set of selection constants,
{mi(CliDk € {—a +1,---,—-1,0,1,---,a}}, where k is
selected as ;41 if mg(C[j]) < rW[j] < mrs1(C[H]).

We obtain W [j] by truncating rW{j], which is in a re-
dundant representation, to t fractional bits. (Note that
not r-ary digits but bits.) We obtain C[4] by truncating
C[j] to d fractional bits. (Note again that not r-ary digits
but bits.) Since C[j] is in the non-redundant representa-
tion, O[j] = C[j} for the small j’s such that 7 > 27¢
and C[j] < Clj] < C[j] + 27% — r~7 for the other j’s.

When W/j] is in the carry-save form, rW [j] < rW[j] <
rW[j] + 27+, Therefore,

mi(C[j]) > max(Li[j]),
Cl4)

(7

(mi(ClH) —27H +271 < rg[i,r]lwk_l[m

(8)

must be satisfied. Namely, my(C[j]) must be a multiple
of 27 that satisfies (7) and (8). Here, max sy (Le[4])
denotes the maximum value of the lower bound of the
interval of rW|j] where k can be selected as gj+1 when
" the estimate of C[j] is C[j]. minc—,[].](Uk,l[j]) denotes
the minimum value of the upper bound of the interval
of rW{[j] where & — 1 can be selected as gj4; when the
estimate of C[4] is C[j]. Note that the maximum value of
W [j] for which k—1 is selected as g; 1 is mi (C[f]) —27*.

When W{j] is in the binary signed-digit representation,
W) — 27t < rW[j] < rW[i] + 27, and hence,

mi(Cl]) — 27" > max(Lg[f]),
Cl4)

(me(C) —27 +27F < gx[i;]l(Uk_l[m

must be satisfied.
In both cases, the minimum overlap required for a fea-
sible digit selection is

min(Uy-1[4])
felt)

- max(Lelj]) 2 27
Clil

Since maxg;1(Lx[s]) and min g (Ug—1[j]) depend on j,
a different selection function might result for different j.
When r = 2, a =1 and p = 1, a single selection function
for all j exists. When = > 4, no single selection function
for all j exists, and therefore, we should find J so that
a single selection function can be used for j > J and

consider the cases for j < J separately.

3.3 Representation of the partial result

We intend to have the ordinary non-redundant r-ary rep-
resentation (with digit set {0,1,---,r — 1}) of C[j] by
the on-the-fly conversion [1]. Since g;4; is selected from
{—a,---,-1,0,1,-- -, a}, there are two possible carry val-
ues, L.e., 0 and —1, into the j-th place of C[j+1]. We keep
the non-redundant representations of C[j] and C[j]—r~7.
Let the non-redundant representations of C[j] and C[j]—
r~3 be C[§]* and C[j]~, respectively.

Initially, when C[0] = 1, C[0]* := 1 and C[0]” := 0.
When C[0] = 0, C[0]T := 0 and C[0] := —1.

We can obtain C[j + 1]* and C[j + 1]~ by selecting
C[5]* or C[j]~ and concatenating the j+1-th digit to the
selected one, respectively. When ¢;41 < 0, C[j + 1]t :=
O3] +(gj+1 +7)r~7~" and Cli+ 1]~ := O[]~ + (gj+1 +
r—1)r~7=1. When ¢;41 = 0, C[j + 1]* := C[j]* and
Clj+ 1~ = C[j|~ + (r — 1)r771. When g¢;41 > 0,
Cli+1" = Cll" +gj4ar™? " and Ci+1]7 = Clj]" +
(gj+1 —Dr770

For the calculation of the square of the partial re-
sult (recall (5)), we have to produce g;+1777~1(2C[j] +
gj+177771) as an adder input. We can make the calcu-
lation simpler by producing the adder input as a non-
redundant number from C[j]* and C[j]~.

4 A radix-2 version

Different specific versions of the algorithm are possible,
depending on the radix and the digit set of the cube root,
the type of representation of the residual and the square
of the partial result (carry-save or signed-digit), and the
digit selection function. In this section, we show details
of a radix-2 version of the algorithm.

Here, we consider the case that the radix of the cube
root is 2, the cube root digit setis {—1,0,1},1e.,a =1

and the redundancy factor p = 1, and the residual Wj]
and the square of the partial result are represented in the
carry-save form. We represent W[j] as a carry-save form
with 3-bit integer part (including the sign bit), and S[j]
by one with 1-bit integer part (which is the sign bit).

The recurrence equations are

Cli+1] := CH+277 g1,
SH+1 = S+ 277 2CG] + 4127071,
9)
wWli+1] =
2W(j) - 3S[ilas+1 — 3CUlaT 412777 — ¢f a2 7%
(10)

Since p = 1, initially, we can let

clo] = o,
s[] = o,
w[o] = X.

Now, we determine the cube root digit selection func-

tion. From (7) and (8), m[j] must satisfy

max(Lg[j]) < mx[j] < min(Ux-1[j]) — 27"
Clj) Clil

To obtain the function, we get the values of max; (Lel])
and mine; (Ue-1j])-

max(Lo[j]) 30 + 3¢t — 2722,
ol

O:

min(U_1[j])
Cl4]
max(L[j])
Cls]

0,

min(Uolj) 3C[)° + 3012777t + 2752

i

min(U_1[j]) = max(L;[j]) = O independent of j and
Clil. A

When j = 0, since C[0] = C[0] = 0, max(Lo[0])
—272 and min(Up[0]) = 272. Since 2W[0] = 2X > 272,
q1 must be 1. Therefore, mg[0] can be any number <
—27% and m;[0] must satisfy 0 < m;[0] < max(0,272 —
2-). Since q; = 1, W[1] =2X ~ 272> 0.

When j = 1, since C[0] = C[0] = 27!, max(Lo{l]) =
—7-2"* and min(Up[1]) = 19 - 271 Since 2W[1] > 0,
g» must be 0 or 1. Therefore, mp[1] can be any number
< —27" and my[1] must satisfy 0 < m4[1] < 19-274-2¢.

From the fact that W[j + 1] = 2W[j] when ¢;11 = 0,
for j > 1, C[j] > 271. Hence, for j > 2, max(Lo[j]) <
9. —27* and min(Uy[j]) > 3 - 272. Therefore, for j > 2,

mo[j] must satisfy 9- —27% < mg[j] < -2 and m4[j]
must satisfy 0 < my[j] <3-272 - 2%

Hence, by letting ¢t = 1, we can obtain a single digit
selection function which is independent of j and C[j] as
{mo = -2}, my =0}.

This radix-2 version of the algorithm is summarized as

follows:
Algorithm [CBRT_R2]
Step 1:
Clo]t == 0;
c] =-1
S[0] :=0;
wi0] := X;
Step 2:
for j:=0ton—1do
{ ~
-1 if 2W[j]< -1
g1 =4 0 if 2W[l=—5
1 if 2W[j]>0

(2W[j]: truncation of 2W[j} to 1 fractional bits.)
Obtain C[j + 1]7 and C[j + 1]7;
(By on-the-fly conversion.)
Sl +1] = S[j] + 4512791 20 + g2 0);
(Carry-save addition.)
Wi+ 1] = 2W[j] — 35[jlgj1
= 3C[la} 2 = g 27
(Carry-save additions.)
} o
C[n]" is the final result C.
Fig. 1 shows an example of cube rooting according to
[CBRT.R2]. In the figure, 1 denotes —1.

5 A radix-2 cube rooting circuit

Any version of the algorithm can be implemented as a
sequential (folded) circuit or a combinational (unfolded)
circuit. Here, we consider implementation of the radix-2
version of the algorithm shown in the previous section
as a sequential circuit which performs one iteration of
Step 2 in each clock cycle.

The circuit consists of a combinational circuit part
and registers. We need registers REG-WC and REG-
WS, REG-CP, REG-CM, and REG-SC and REG-SS, for
storing W[j], C[j]T, C[j]~, and S[j], respectively. Since
Wj] and S|j] are in the carry-save form, we need two
registers for storing each of them.

To remove j-bit shift of C[j] from the calculation of
the residual W[j + 1] (equation (10)) and also from the

calculation of the square of the partial result S[j + 1]
(equation (9)), we keep 27C[j]* and 277C[j]~ instead
of C[j]* and C[j]".
place, we prepare a shift register SREG-J whose content

To indicate the position of 2j-th

is 277 and is shifted one place to the right in each cycle.
The combinational circuit part consists of the following
blocks.

1. A cube root digit selector DS for selecting the cube
root digit ¢; 41 by examining significant bits of rW{j].

2. An on-the-fly converter OTFC for the on-the-fly
conversion to obtain C[j+1]* and C[j+1]~, which
mainly consists of selectors.

3. An adder input generator AIG-S for generating the
adder input g;1127971(2C[j] + ¢;+127771) in the
calculation of the square of the partial result from
C[4]* and C[j]~, which mainly consists of a selec-
tor.

. A carry save adder CSA-S for adding S[j] and the
adder input produced by AIG-S and producing S[j+
1].

5. An adder input generator AIG-W for generating
the adder input —g;4+1(3(S[j] + Cljlg;+127971) +
97,127%772) in the calculation of the residual, which

mainly consists of carry-save adders.

. Carry save adders CSA-W for adding 2W[j] and
the adder input produced by AIG-W and produc-
ing W[j + 1].

Fig. 2 shows a block diagram of the circuit. REG-CP,
REG-CM and OTFC should be of 2n-bit length. The
other registers and blocks should be of n + logn + m-bit
length where m is a small constant.

The length of the clock cycle (the logical depth of the
combinational circuit part) is a small constant indepen-
dent of n. The amount of hardware is proportional to n.
The circuit has a regular linear cellular array structure
with a bit-slice feature suitable for VLSI realization. We

can perform n-bit cube rooting in n + 1 clock cycles.

Of course, we can construct a sequential circuit which
performs more than one iterations of Step 2 per clock

cycle, or further, a combinational circuit.

6 Concluding remarks

We have proposed a hardware algorithm for cube rooting
and shown details of a radix-2 version of the algorithm
and its sequential implementation.

In the algorithm, in order to remove a squaring from
the residue calculation, we keep the square of the par-
tial result and update it by addition/subtractions and
shifts as the residual. Different specific versions of the
algorithm are possible, depending on the radix and the
digit set of the cube root, the type of representation of
the residual and the square of the partial result, and the
digit selection function. Any version of the algorithm
can be implemented as a sequential (folded) circuit or a
combinational (unfolded) circuit. The implementations
have a regular cellular array structure suitable for VLSI
realization.

We are now designing a radix-2 cube rooting circuit
LSI.

References

[1] M. D. Ercegovac and T. Lang: ‘On-the-fly conver-
sion of redundant into conventional representations,’
IEEE Trans. Comput., vol. C-36, no. 7, pp. 895-897,
July 1987.

[2] M. D. Ercegovac and T. Lang: Division and Square
Root - Digit-Recurrence Algorithms and Implemen-
tations, Kluwer Academic Publishers, 1994.

X = [.010110]

Clj] Sl j+1 W]
0. 0.000000000000 000.010110000000
L. 0.000000000000 000.000000000000
0000.10110000000 2
1 0000.00000000000
4+ 0.010000000000 1111.101111111111(+1)
1111.111111111112(+1)
0.1 0.010000000000 001.100100000010
0.0 0.000000000000 110.110111111110
0011.00100000010 2W
1 1101.10111111110
4+ 0.010100000000 1111.110011111111(+1)
1110.111111111111(+1)
0.11 0.000100600000 000.111100000010
0.10 0.100000000000 110.101111111110
0001.11100000010 2W
i 1101.01111111110
+ 1.110100111111(+1) 1100.010001111000
0101.001100001000
0.101 0.010000111110 111.001001110000
0.100 0.001000000010 001.101100010000
1110.01001110000 2w
1 0011.01100010000
+ 0.000101010000 1111.110010111111(+1)
1110.111010001111(+1)
0.1011 0.011101101100 010.100110110010
0.1010 0.000000100100 101.110010011110
0101.00110110010 2W
1 1011.10010011110
4+ 0.000010110100 1111.101110000011(+1)
1110.110010111111(+1)
0.10111 0.011111111100 000.101100101110
0.10110 0.000001001000 110.100110110110
0001.01100101110 2w
i 1101.00110110110
0.101101
C = [.101101]

Figure 1: An example of cube rooting according to [CBRT R2]

ISREGﬂT*I

i REG-CP_| i REG-SS_|
A4
[rREG-CM | [rREG-SC_]
@

AIG-W

A\ A y l L-_-_l
CSA-S ¥ Y v
] CSA-W

— |
|

Figure 2: Block diagram of a sequential circuit based on [CBRT_R2]

