〔チュートリアル講演〕

DSM 配線とスーパーコネクトへの期待

桜井 貴康

東京大学、国際・産学共同研究センター 〒153-8505 東京都目黒区駒場 4-6-1

E-mail: tsakurai@iis.u-tokyo.ac.jp

あらまし今後の電子システムを考えるとシステムインパッケージやグローバルインテグレーションの重要性が増す。そこでは、数 $+\mu$ m といったデザインルールを有するスーパーコネクト技術が活躍する。このようなスーパーコネクト技術は VLSI が直面する IR ドロップや RC 遅延といった問題を解決するにも有効である。また、ディープサブミクロン配線の諸問題の解決を考えるとき、インダクタンスなどボードやパッケージでの設計知識が役立つ可能性がある。

キーワード VLSI、DSM、配線、スーパーコネクト

Deep Sub-Micron Interconnects and Expectation to Superconnect

Takavasu Sakurai

Center for Collaborative Research, and Institute of Industrial Science
University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, Japan, 153-8505

E-mail: tsakurai@iis.u-tokyo.ac.jp

Abstract Superconnect technology which is based on interconnections around 10um design rule is expected to realize new realm of electronic system integration together with System-on-a-Chip approaches. The superconnect technology will be helpful in solving deep submicron (DSM) interconnection issues of VLSI's such as IR voltage drop and RC delay problems. The accumulated knowledge database on board and package will be also useful in confronting DSM interconnection issues like inductive effects.

Key words VLSI, DSM, Interconnect, Superconnect

1. Abstract

Superconnect technology which is based on interconnections around 10µm design rule is expected to realize new realm of electronic system integration together with System-on-a-Chip approaches. The superconnect technology will be helpful in solving deep submicron (DSM) interconnection issues of VLSI's such as IR voltage drop and RC delay problems. The accumulated knowledge database on board and package will be also useful in confronting DSM interconnection issues like inductive effects.

2. Scaling and Issues of Current LSI Technology

Taking a close look at the scaling law, we can see that the following three crises are leaning over the LSI technology.

- · Power crisis
- · Interconnection crisis
- Complexity crisis

The power crisis is depicted in Fig.2. Lower operation voltage naturally increases operation current, which in turn requires thicker metal layers for the current to be distributed throughout the chip without IR-drop. One of the key approaches to low-power design is the memory embedding. By embedding memories, inter-chip communication power can be reduced by two orders of magnitude. The memory embedding, however, is an expensive option, since it increases process steps. A new system-level integration can be a solution to this problem.

As for the interconnection crisis, RC delay increase and IR-drop issue are some of the more stringent issues. Thicker metal layer used in an interposer/package/board may mitigate the problem.

Complexity crisis can only be solved by re-use of the pre-designed blocks and designing at higher abstraction level. Thus, System-on-a-Chip (SoC) where many pre-designed IP's are amalgamated at the higher abstraction is one of the candidates to cope with the complexity crisis. Future electronic systems, however, cannot be built only with the SoC, since many SoC issues have become evident as follows.

- · Huge initial investment for masks & development
- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- · IP testability, upfront IP test cost
- · Process-dependent memory IP's
- · Difficulty in high precision analog IP's due to noise

Process incompatibility with non-Si materials and/or MEMS

The huge investment in developing the SoC process to embed different kinds of technologies is one of the most vital issues.

3. Superconnect

Recently, however, a new system-level integration called 'superconnect' is attracting attention[1-4], which may solve SoC problems. The superconnect connects separately built and tested chips not by printed circuit boards but rather directly to construct high-performance yet low-cost electronic systems. The superconnect may use around 10 micron level design rules [4]. Sometimes LSI's in the superconnect are connected in three-dimensional fashion to achieve the higher performance and the smaller geometry. System-in-a-Package (SiP) composed of stacked chips using bonding or interposers is one realization of the superconnect. The superconnect mitigate IR-drop problems and RC delay problems.

There has been a large gap between on-chip and off-chip interconnects in terms of power, density, performance, cost and turn-around-time. Basically, the large gap comes from the big difference between the design rules of on-chip and off-chip interconnects. It can be said that there is a technology vacuum at present between $1\mu m$ level on-chip interconnect and $100\mu m$ level off-chip interconnect. The superconnect will fill the gap between on-chip and off-chip interconnect, making use of $10\mu m$ level design rule.

Some of the important issues in the future systemlevel integration are as follows.

- Special design tools for placement & route for co-design of LSI's and assembly
- High-density reliable substrate and metallization technology
- low-cost, available known good die (reworkablility and module testing)

4. Issues in Deep Sub-Micron (DSM) Interconnects

The issues for DSM interconnects are summarized as follows:

Larger current

IR drop (static and dynamic)

Reliability (electro-migration)
Smaller geometry / Denser pattern

RC delay

Signal Integrity Crosstalk noise Delay fluctuation Higher speed Inductance EMI

Among others, IR drop and RC delay problems can have help from the superconnect technology. To fully utilize the merit of the thick metal layers of superconnect, codesign of VLSI and assembly will be necessary. As for inductive effects which appear in low resistance interconnects in VLSI's such as clock lines, power lines and wide buses, the knowledge accumulated in board and package designs will be transferred to VLSI community.

References

- [1] T.Sakurai, "Superconnect Technology," Trans. C of IEICE, May 2001.
- [2] M.Koyanagi et al., "Neuromorphic Vision Chip Fabricated Using Three-Dimensional Integration Technology," ISSCC Digest of Tech. Papers, pp.270-271, Feb.2001.
- [3] K.Ohsawa, H.Odaira, M.Ohsawa, S.Hirade, T.Iijima, S.G.Pierce, "3-D Assembly Interposer Technology for Next-Generation Integrated Systems," ISSCC Digest of Tech. Papers, pp.272-273, Feb. 2001.
- [4] M.Kimura, "Superconnect: 21st Century LSI Production and Design Method", Nikkei Microdevices, no.180, pp.62-79, June 2000.

Scaling Law

Transistors		Scaling coefficients		1				
V _{CC} Tr. dimensions Drain current Gate capacitance Tr. delay Tr. power Power density Tr. density	[V] (x) (i-1/x x/x V^1.3) (C-1/x xx) (d-CV/i) (P-VI-CVV/d) (p-P/x/x) (n-1/x/x)	1	K=2 ja = \frac{\lambda \left(\frac{\lambda \text{T}}{\text{T}} \right)^{\infty} \ \frac{\lambda \left(\frac{\text{T}}{\text{T}} \right)^{\infty} \ \frac{\lambda \left(\frac{\text{T}}{\text{T}} \right)^{\infty} \ \frac{\text{T}}{\text{T}} \right)^{\infty} \ \text{T}					
Interconnects Type Scaling scenario		Local Scaled	Global Anti-scaled	inverter delay and other formulas JEEE JSSC vel25, no.2, pp.584-594, Apr. 1990.				
Line thickness Width Separation Oxide thickness Length Resistance Capacitance RC delay/Tr. delay	[T] [W] [S] [H] [L] [R _{11.7} -LW/H] [C _{11.7} -LW/H] [D-R ₁₀ C _{10.7} /d]	1 ft 1 ft 1 ft 1 ft 1 ft 1 ft k 1 ft	k - k - k - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	***		**************************************		
Current density DC noise / V _{pp}	[J-pWL/V /W/T] [N-JWTR/V]	-						

Scaling Law

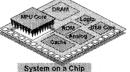
 Favorable effects

 Size
 x1/2

 Voltage
 x1/2

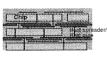
 Electric Field
 x1

 Speed
 x3

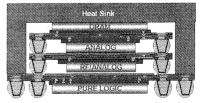

 Cost
 x1/4

Unfavorable effects
Power density x1.6
RC delay/Tr. delay x3.2
Current density x1.6
Voltage noise x3.2
Design complexity x4

Issues in System-on-Chip

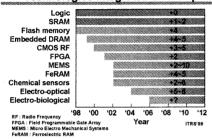

- Un-distributed IP's (i.e. CPU, DSP of a certain company)
- · Low yield due to larger die size
- Huge initial investment for masks & development
- IP testability, upfront IP test cost
- · Process-dependent memory IP's
- Difficulty in high precision analog IP's due to noise
- Process incompatibility with non-Si materials and/or MEMS

SoC vs. SiP



- Smaller area
- Shorter interconnect
 Optimized process for each die (Analog, DRAM, MEMS...)
 - Good electrical isolation Through-chip via
- Heat dissipation is an

Superconnect example based on three-dimensional assembly



K.Ohsawa, H.Odaira, M.Ohsawa, S.Hirade, T.Iijima, S.G.Pierce, "3-D Assembly Interposer Technology for Next-Generation Integrated Systems," ISSCC Digest of Tech. Pagers, pp.272-273, Feb.2001.

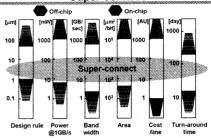
Issues in superconnect

- · Special design tools for placement & route for codesign of LSI's and assembly
- High-density reliable substrate and metallization technology
- · Low-cost, available known good die (reworkablility and module testing)

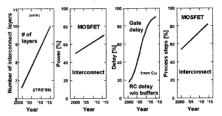
Technologies integrated on a chip


New system level integration

- SoC: High-performance but issues remain
- Printed circuit board (PCB): Low-performance


- New system level integration : Superconnect
 - Connects separately built and tested chips not by the PCB but rather directly to construct high-performance vet low-cost electronic systems
 - May use around 10 micron level design rules

Super-connect


Nikkei microdevices

Super-connect

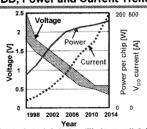
Interconnect determines cost & perf.

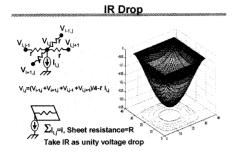
P: Power, D: Delay, A: Area, T:Turn-around

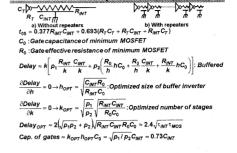
DSM interconnect design issues

Larger current

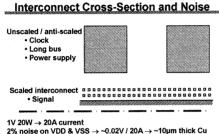
IR drop (static and dynamic) Reliability (electro-migration)

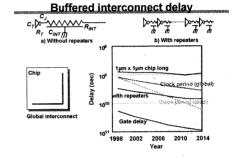

Smaller geometry / Denser pattern RC delay Signal Integrity

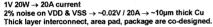

Crosstalk nois Delay fluctuation

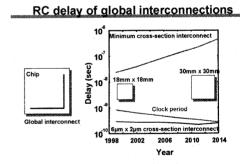

Higher speed

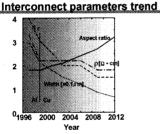
Inductance EMI

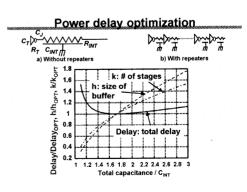

VDD, Power and Current Trend

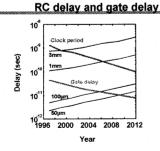


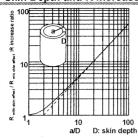





Repeaters



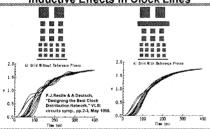




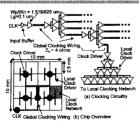
Skin Depth and R Increase

Shorter interconnect in 3-D assembly

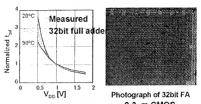
System on a chip


 $\frac{\# \ of \ devices \ in \ d \ (3D)}{\# \ of \ devices \ in \ d \ (2D)} = \frac{1}{3} \left(2 \frac{d}{h} + \frac{h}{d} \right)$ $\approx \frac{2}{3} (\# \ of \ stacked \ chips \ in \ d)$

d: Manhattan distance h: Height between chips


3-D assembly

Inductive Effects in Clock Lines

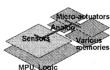

Board design practice is imported in LSI.

H-tree clock distribution

M.Mizuno, K.Anjo, Y.Sumi, H.Wakabayashi, T.Mogami, T.Horiuchi, M.Yamashina, "On-Chip Multi-GHz Clocking with Transmission Lines," ISSCC, pp.366-367, Feb. 2000

Reverse temperature dependence

0.3μm CMOS


K.Kanda, K.Nose, H.Kawaguchi, and T.Sakural, "Design impact of Positive Temperature Dependence of Drain Current in Sub 1V CMOS VLSI's", CICC99, pp.563-586, May 1999.

LSI in 2014

Year	Unit	1999	2014	Factor
Design rule		0.18	0.035	
Tr. Density	/cm2	6.2M	390M	30
Chip size	mm2	340	900	2.6
Tr. Countperchip ()		21M	3.6G	100
DRAM capacity	T	1G	1 T	1000
Local clock on a chip	Hz	1.2G	17G	
Global clock on a chip	Hz	1.2G	3.7G	3.1
Power	W	90	183	
Supply voltage	V	1.5	0.37	
Current	A	60	494.6	Ħ
Interconnection levels		6	10	1.7
Mask count	1	22	28	1.3
Cost / tr. (packaged)	en ts	1735	22	0.01
Chip to board clock	Hz	500M		
# of package pins		810	2700	
Package cost	cents/pin	1.61	0.75	0.5

International Technology Roadmap for Semiconductors 1998 update sponsored by the Semiconductor Industry Association in cooperation with European Electronic Component Association (ECA), Electronic Industries Association of Japan (EIA), Korea Semiconductor Industry Association (KSIA), and Taiwan Semiconductor Industry Association (KSIA), International Technology Roadmap for Semiconductors : 1999 edition. Audin. T.X.International SEMATECH, 1999 edition. Audin.

Possible electronic system in 2014

MPU, Logic Configurable units

- Sensors/actutors
- 0.035µm 3.6G Si FET's with VTH & VDD control
- Locally synchronous 17GHz clock, globally asynchronous
- Chip / Package / Board system co-design for power lines, clocks, and long wires (superconnect)