AT LLS T &EH I 106—11

(2002. 5. 24)

TEATINT) ZLIBIEERFEZEL LMEET —5 /NG K

B w7 Rt

1 bR EIRL AT R ER RS RAEUIEA T 9231202 AJIIRAERR DITES 1-1
E-mail: {{k-oshio,mkaneko}@jaist.ac.jp

HHEL FHTE, VIAFTEXL NN TOMEET -5 NAGRIIDOVWTRIEL, #ETINVIVIL=ZEES
BRFBAREBET 40 T4 DERVTEART—INZAERELTWS. FF—INA2ERT 2 L TREE LR
DRGEHE FERT 200 (SR FERL) BREREL, I5LUERVITEETNOTT, 2HREEED
FAEE OB BRI U TR TEAREN (3 DOMET 23 EMRRICORL EH 2 DOELWAEMKRES
) BRETHEDHO0, BREE DU TEESHRBBAORHEUNIL TV, SEROBAB=ZE{ENZTINITIX
LETORERAEWREICL, BHRTEYa—VZBHITHR, BE-BREHEOBRNWT-INAZERTES.
F-J—R HOIE, ZEfk, SRR, FT—FNAEHR, ASIC, LfFHKTTT

Fault Tolerant Datapath Based on Algorithmic Redundancy and Voting

Kazuaki OSHIO! and Mineo KANEKO!

1 Graduate School of Information Science, Japan Advanced Institute of Science and Technology, Hokuriku
Asahidai 1-1, Tatsunokuchi, Ishikawa 923-1292, Japan
E-mail: {{k-oshio,mkaneko}@jaist.ac.jp

Abstract In this paper, we propose a combination of triple algorithmic redundancy and vote-and-writeback
configuration for realizing concurrently error correctable RT-level datapath of a specified computation algorithm.
The vote-and—writeback configuration would contribute to reduce wire complexity around voters, compared with
other conventional voting scheme. When a register assigned for a voted data is faulty, the vote-and-writeback
configuration can not correct erroneous voted data on this register. It is interesting that, even though, fault tol-
erance of the datapath with respect to single fault for any constituent of the datapath can be guaranteed by this
vote-and-writeback configuration and appropriate insertion of voters.

Key words concurrent error correction, triple redundancy, vote, datapath synthesis, ASIC, dependence graph

1. Introduction

By the continuing progress of the fabrication technology,
the possible feature size of each device is becoming smaller
and the possible chip size becoming larger, which enable us
to integrate huge number of transistors and nets in a single
chip. For such highly integrated systems, failure rate be-
comes also higher, and faults at operation time may lead to
serious failures. To prevent such failures, various approach-
es to fault tolerance have been proposed; for example, s-
patial redundancy such as triple modular redundancy and
reconfiguration with spare resources, time redundancy such
as rollback, and mixture of thefn. Algorithm-based fault
tolerance (ABFT)[1] is another type of approach to fault

tolerance, which introduces redundant algorithm for error—

detection/correction to the original algorithm. ABFT has a
great advantage in fault tolerance especially for computation
algorithms in linear algebra with high regularity, such as ma-
trix operations and signal processing. However, on the other
hand, computation algorithms to which ABFT is applicable
are heavily limited and also operations for error correction
are somewhat complicated.

Antola, et al.[2] proposed high—level synthesis of data path-
s with concurrent self-checking abilities based on duplication
of an input computation algorithm. They treated only the
on-line error detectability, but not the issue of error correc-
tion. Hashimoto, et al.[3] proposed scheduling of duplicat-
ed tasks for fault tolerance. Their main target is the fault
tolerance in multiprocessor systems, and assumptions adopt-

ed there, such as fail-stop ability of processing element, the

message—arrival triggeredfask execution, and reliable net-
work, are not accepted for fault-tolerance in RT-level archi-
tectural design.)

In this paper, we focus our attentions on concurrently error
correctable ASICs for applications which need highly real-
time responses. We introduce triple algorithmic redundancy
and vote operation to satisfy real-time-ness and to enable
us to apply our scheme to various types of computation algo-
rithms; algorithms may contain not only linear algebra but
also nonlinear operations, conditional branches, etc. And we
propose a novel error—correction scheme in the context of
datapath synthesis.

At first, we define behavior in nominal and faulty state for
each datapath element. Especially, vote operation has a spe-
cial feature in our scheme, that is, it receives input data to be
voted only from registers and it writes the result back, when
it detects disagreement between input data, to the register
which holds incorrect data. In our error-detection/correction
model, interconnection fault is equivalent to an element fault
which drives the interconnection, and multiplexer fault is e-
quivalent to an element fault which receives multiplexer’s
oxitput. Hence we can conclude that k fault tolerant system
for faults on functional units, registers and voters becomes
a k fault tolerant system for faults on functional units, reg-
isters, voters, multiplexers and nets. Next we show condi-
tions for datapath, which executes triplicated algorithm, to
possess single fault tolerant property. Here, we introduce a
special subgraph which consists of directed paths from voted
data to voted data for the algorithm, and we derive nec-
essary and sufficient condition for datapath to tolerate any
single fault and to continue producing at least two correc-
t outputs among three corresponding outputs in triplicated
algorithm. As the result, relation between resource sharing
and vote insertion is clarified, which can be used to generate

fault tolerant RT level description in the context of datap-

ath synthesis. Lastly we demonstrate how our scheme can

generate better solutions in the trade—off between required

resource and makespan.

2. Error—Correctable Datapath Based on
TRAV

2.1 Datapath Model and Fault/Error Model
Datapath considered in this paper contains “functional u-

nits”, “registers”, “multiplexers”, “nets” and “voters”.

o A functional unit has multiple inputs and a single output.

o A register has a single input and a single output.

e A multiplexer has multiple inputs and a single output
which is an input of either a functional unit, register or

voter.

e A net has a single input terminal(an output terminal of a
functional unit, a register or a voter) and multiple output
terminals(each of which is an input terminal of a func-
tional unit, a register, a multiplexer or a voter).

e A voter has three inputs and two outputs; one output
is a voted result and the other is a control signal which

indicates inconsistent input.

Fault is considered on every constituent shown above. Out-
put(s) of each faulty constituent may be erroneous. We as-
sume that output of each constituent, even if it is faulty, can
be seen as a logically meaningful value, i.e., logical 0 or 1 for
every signal bit, from other constituents. When the number
of faulty constituents is less than or equals to k, we call it as
k faults.

2.2 Triplication with Votes

A computation algorithm is (G, Dp), where G = (V, A) is

a dependence graph and Dp is a set of primary outputs.

eV is the disjoint union of a set of operations O and a
set of variables D, and A is a set of directed arcs form an
operation to a variable or from a variable to an operation.

¢ Every operation in O has its indegree at least one and its
outdegree exactly one.

e Every variable in D has its indegree at most one. A
variable having indegree 0 is called primary input, the
other variable having indegree exactly one is called inter-
nal variable. 'We denote a set of primary inputs as Dy
and a set of internal variables as Do.

o There is an one-to—one correspondence between O and
Do, and d(o) denotes a variable generated by an opera-
tion o € O, whereas o(d) does an operation which gener-
ates a value for a variable d € Do. On the other hand,
pred(o), o € O, denotes a set of input variables used by
o, and succ(d), d € D, denotes a set of operations which
use a variable d.

e A subset of Do is specified as a set of primary outputs.

we denote a set of primary outputs as Dp.

In this paper, we focus our attention on on-line error cor-
rectable datapaths. Among various algorithm-level redun-
dancies, we choose triple algorithmic redundancy and error
correction by voting as our basic strategy for error correction,
because of its simplicity in error-correcting mechanism and
its wide applicability without depending the type of input
algorithms. ‘

Given an input computation algorithm (G, Dp), output
of our problem is a Triple Redundant computation Algo-
rithm with Voting (TRAV, in short) (Gr,Drp) and it-
s hardware-temporal mapping. A dependence graph of a
TRAV Gr = (Vr,Ar) contains three copies of the input

algorithm G, = (01U D1, A1), G2 = (O2 U D, A2) and
G3 = (03U D3, As), votings, output variables of votings and

voting-related arcs.

(U (Oi U D,)) U Oy UDy

i=1

Vr

Ar = AfUA U A3 U Ay

where Oy is a set of votings, Dy a set of voting resﬁlts, and
Ay a set of voting-related arcs.

For a system whose dependability relies on voting, unde-
pendability of a voter generating a primary output becomes
its drawback, and in many cases we need to use a sufficiently
reliable voter for it. However, a primary output is a kind
of interface between a computation algorithm and outside
world, and the requirement to this interface may vary de-
pending on applications and outside world. Hence, we now
introduce a somewhat relaxed definition on “fault tolerance”
as follows. ’
[Definition 1] A RT level datapath which performs TRAV
is called “k-fault tolerant” when, for each primary output of
an input computation algorithm, at least two of correspond-
ing three data in TRAV are error free even if any k or less
constituents of the datapath are faulty.

2.3 Error—Correction Model

With respect to vote insertion, we can consider several al-
ternatives. Fig.1 shows two typical and conventional vote
insertion styles. In a single-vote configuration (Fig.1(a)),
the possibility of fault on the vote becomes a bottle-neck
for the system reliability. In a triplicated—vote configuration
(Fig.1(b)), the hardware overhead in the number of voters
and redundant nets may possibly become larger.

With the purpose of reducing network complexity in RT
level architecture, we propose a vote-and-writeback config-
uration (Fig.2). In this model, if one of the corresponding
three data is claimed to be erroneous by a vote, it is replaced
with the vote result.

Corresponding to this vote—and—writeback model, we as-
sume the following with respect to RT level architecture (also

refer to Fig.3).

e A voting is always performed on three corresponding data
from each of Gi,i = 1,2, 3, stored at registers.

e A voter is a three-input, two—output constituent of dat-
apaths, where one output is a voting result and the other
output is the code to represent which one of three input
disagrees with others.

e A faulty voter may possibly outputs erroneous voting re-

sult and/or erroneous code to identify erroneous input.

Under the vote-and-writeback configuration and assump-

tions imposed above, the following holds.

(b) Triplicated vote

Fig.1 Two conventional configurations of vote insertion.

Fig.2 Vote and write-back.

write-back control
Il Lig y

Reg Reg

voting result

Fig.3 Hardware around voting.

e A fault on a net can be treated equivalently as a fault on
a module(functional unit, register or voter) whose output
is the input terminal of the net. .

e A fault on a multiplexer can be treated equivalently as a
fault on a module(functional unit, register or voter), one

of whose inputs is the output terminal of the multiplexer.

As a result, we can conclude the following.

[Lemma 1] If a RT level datapath is k fault tolerant with

respect to faults on functional units, registers and voters,
then the datapath is k fault tolerant with respect to faults
on any constituents, i.e., functional units, registers, voters,

multiplexers and nets.
3. Condition for Single Fault Tolerance

As we have mentioned before, voting will be done on data
at registers, not on data appeared at the output of functional
units. We introduce some definitions for convenience’s sake.
[Definition 2]

voted, the data is called a voted data. Primary inputs are

If corresponding three data of a variable are

treated as voted data, while they need not to be voted.
[Definition 3] For a voted data or a primary output data
d, a subgraph of DG, which contains d and all vertices (un—
voted or voted data or operation) and arcs from which d is
reachable without passing through any other voted data, is
called a corn induced by d. d is called the output of the corn
and other voted data in the corn is called the input of the
corn.

Note that any voted data (except primary input data) is
contained in two or more corns, for one of which as an output
and for the other as input. An output value of a corn is the
voted result if its original output is not coincide with oth-
er corresponding two original values, otherwise its original
value.

[Definition 4] - The corn decomposition in each copy of in-
put dependence graph is the same, since the topology and
voted data are identical for all three copies of the depen-
dence graph. Three corresponding corns are called a stage.

Outputs of a stage are the three outputs of corns of the stage.

corn induced

dl
by . voted variable

primary input
Fig.4 Exarmple of a corn.

[Definition 5] If outputs of a stage are error—free, the stage
is called fair. If outputs of a stage contains exactly one erro-
neous value, the stage is called marginally fair. If outputs of
a stage contains more than one erroneous values, the stage

is called unfair.

Now we assume without loss of generality that an input
dependence graph is irredundant, i.e., for any vertex (opera-
tion or data) in the graph, there exists at least one primary
output which is reachable from the vertex. For such an ir-
redundant dependence graph, a RT level datapath is fault
tolerant if and only if every stage is either fair or marginally
fair for faults under consideration.

The following shows conditions for a RT level datapath to
be single fault tolerant.

[Theorem 1] A RT level datapath based on TRAV and

vote-and-writeback model is single fault tolerant if and only

if the following two conditions are satisfied.

Cl: Any two corns in a stage do not share a same re-
source(functional unit, register, etc.).

C2: Any two votings for inputs and output of a stage do

not share a same voter.

S

G1 G2 G3
N (7 Y

—
Cik (E‘zk Csk
013 Czj % C3
Cim Com C3m

L
7
L._k< f& _J/ f
no resource sharing no resource sharing
[(&3)] (C2)

Fig.5 Illustration of the conditions CI and C2.

The necessity of C1 and C2 is straightforward. (1) If two
corns in a stage share a resource r and r is faulty, the original
outputs (before voting) of these two corns may possibly be
erroneous. Hence, voting can not correct error and the stage
becomes unfair. (2) If two set of corresponding three inputs
(a,a’,a") and (b,¥',b") to a stage share a voter v and v is
faulty, then one of a, ¢’ and a” in a corn of the stage and one
of b, b’ and b” in another corn of the stage may possibly be
erroncous. As a result, the original outputs (before voting)
of these two corns may possibly be erroneous. Hence, voting
can not correct error and the stage becomes unfair. (3) If a
set of corresponding three inputs (a,a’,b”) and a set of cor-
responding three original outputs (before voting) (v,%",y")
of a stage share a voter v and v is faulty, then one of a, a’ and
a” in a corn of the stage (say a) may possibly be erroneous
and hence one of y, ¥/, ¥ in the same corn with erroneous
input (that is, y) is erroneous before voting. In addition to

this, the voting for (y,y’,y") may possibly overwrite correct

value (y' or y”) with an incorrect value. As a result, the
stage becomes unfair.

The sufficiency of C and C2is proven by showing the fol-
lowing two auxiliary lemmas, but their details are omitted
for lack of space.

If C1 and C2 are satisfied, then three original

outputs (before voting) of every corresponding three corns

[Lemma 2]

(i.e., every stage) contain at most one erroneous data.

[Lemma 3] If C1 and C2 are satisfied and three original
outputs (before voting) of corresponding three corns (i.e., a
stage) contain at most one erroneous data, then the stage is

either fair or marginally fair.

4. Synthesis Problem and Design Exam-
ples

Fault tolerant datapath synthesis problem, where its fault
tolerance is based on TRAV and vote-and-write-back mod-
el, is summarized briefly as follows. An input instance of
the problem is a computation algorithm (G,Dp) and re-
source information, and output is a TRAV (Gr,Drp), a
schedule of O; U Oz U O3 U Oy, and resource assignment;
0O; U O3 U O3 to a set of functional units, Oy to a set of
voters and Dy U D2 U D3 to registers. The resource assign-
ment and vote insertion must satisfy conditions CI and C2
of Theorem 1.

Development of a synthesis method and related algorithm-
s is left as a future problem. Here we only demonstrate
how resource sharing between different copies of a computa-
tion algorithm contributes to the optimality of datapath de-
sign. Fig.6 shows the differential equation benchmark which
is used as an input computation algorithm, where loops in
the original algorithm are broken to form a DAG. If we apply
TRAV without resource sharing between copies of a compu-
tation algorithm, operations in each copy is to be executed
sequentially (makespan in this case is 15) even if four or
five ALUs are available.

resource sharing, one in case that four ALUs are available

Fig.7 shows two schedules under

(its makespan is 12) and the other in case of five ALUs (its
makespan is 10).

Fig.8 shows the dependence graph of a modified fourth-
order Jaumann wave digital filter which is used as the second
example, where loops in the original algorithm are broken to
form a DAG. If we apply TRAV without resource sharing be-
tween copies of a computation algorithm, operations in each
copy is to be executed sequentially (makespan in this case
is 21) even if four or five ALUs are available. Fig.9 shows
two schedules under resource sharing, one in case that four
ALUs are available (its makespan is 18) and the other in case
of five ALUs (its makespan is 16).

Fig.8 Fourth-order Jaumann wave digital filter benchmark.

5. Conclusion

In this paper, we propose the vote-and-writeback mod-
el in Triple Redundant computation Algorithm with Vot-
ing(TRAV) for fault tolerant datapath. The vote-and-
writeback configuration would contribute to reduce wire
complexity around voters, compared with other convention-
al voting scheme. When a register assigned for a voted data
is faulty, the vote-and—writeback configuration can not cor-
rect erroneous voted data on this register. It is interesting
that, even though, fault tolerance of the datapath with re-
spect to single fault for any constituent of the datapath can

be guaranteed by this vote-and—writeback configuration and

£
§

3
§

N
[~

TN
Nl A€

oy
|~

oY
=

]

NN SPL
XX

- ;

dbePD e ED)

O D S s
N
NN

are
N

C]

)
800

NA

VARV
oy -

ORCHEE

@
NN

ALOL ALU4 AZOS Az A0S ALU3 ALOC

ATA [ATANNA

VA V.VERV.Y)
ARNANN AN ATS
HOIOMO;GIGMG
EOIOZa OO

Fig.7 Single fault tolerant schedule and assignment of modified differential equation
benchmark. Left: without resource sharing, Center: in case of four ALUs, Right:

in case of five ALUs.

ALUL ALUS ALU2 ALOS ALUZ . ALOL ALO4 ALDZ ALD4 | ALUS ALDL

2 ALDS. ALU ange

o

JORNNONNG

OIONNCINC
AREC/ANG

A\VEA

o

o
T
N1

A Q@ \/

»
I N

DEDE
OdD ED ED ¢

OOERCIViC)

3 3 - A@
0101'4%.%

xr

\/ '
SOONNACHNA!
A WA \g

Fig.9 Single fault tolerant schedule and assignment of fourth-order Jaumann wave digital
filter benchmark. Left: without resource sharing, Center: in case of four ALUs,

Right one: in case of five ALUs.

appropriate insertion of voters.

In TRAV, vote insertion, assignment and schedule inter-
act each other, which makes the design problem being com-
plicated. Dévelopment of a synthesis method and related

algorithms is left as a future problem.]

Acknowledgement — This work is partly supported by Re-
search Body CAD21, Tokyo Institute of Technology, Japan.

References

[1] Kuang-Hua Huang, and Jacob A. Abraham, “Algo-rithm—
Based Fault Tolerance for Matrix Operations”, IEEE Trans.

[4]

Computer, Vol.c-33, No.6, June 1984.

Anna Antola, Vincenzo Piuri, and Mariagiovanna Sami,
“High Level Synthesis of Data Paths with Concurrent Er-
ror Detection”, Proc. IEEE Symp. DFT in VLSI Systems,
pp.292-299, 1998.

Koji Hashimoto, Tatsuhiro Tsuchiya, and Tohru Kikuno,
“Effective Scheduling of Duplicated Tasks for Fault Tol-
erance in Multiprocessor Systems”, IEICE Trans. Inf. and
Syst., Vol.LE85-D, No.3, pp.525-534, 2002.

Ramesh Karri, Kyosun Kim, and Miodrag Potkonjak,
“Computer Aided Design of Fault-Tolerant Application
Specific Programmable Processors”, IEEE Trans. Comput-
er, Vol.49, No.11, pp.1272-1284, November 2000.

