V2T LLS 1 REHET
(2002. 11. 28)

A front-end for better behavioral synthesis

Lovic Gauthier Natasha Devroye Hiroyuki Tomiyama Kazuaki Murakami
Institute of Systems & Information Technologies/Kyushu
Fukuoka SRP Center Building 7F
2-1-22, Momochihama, Sawara-ku, Fukuoka City 814-0001, JAPAN
{lovic-gauthier, tomiyama} @isit.or.jp, murakami@1i.kyushu-u.ac.jp

Abstract By allowing higher-level descriptions, behavioral synthesis helps to cope with the growing chips’ complexity.
However, its efficiency has never met the one of RTL synthesis. Our goal is to define a flow that can automatically convert
such high-level specifications to ones that can be efficiently handled by synthesis tools. This flow can be seen as a front-

end for those tools.
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1 Introduction

Progresses in integration allows the production of chips
that contain millions of transistors.

To aid in the definition of methodologies able to han-
dle such complex chips, hardware descriptions are more
and more abstracted. The behavioral asbtrcation level, like
in behavioral VHDL[2], is commonly used in the indus-
try nowadays. However, behavioral VHDL synthesis tools
have never been a complete success[4][6]: they are often
quite efficient in some specific cases, but fail in general.

Nowadays, new kinds of hardware/software specifica-
tion languages have been defined. SpecCl7] is one of those
new languages featuring: object-oriented concepts, hierar-
chical description, abstract communication through chan-
nels, C-like syntax and fast execution. We can also mention
SystemC[1] which has almost the same features.

It is important to notice that these languages are still
similar to behavioral VHDL: the main difference being the
data handling (which is performed through signals in the
case of VHDL, and through software variables for SpecC).
This difference makes SpecC easier to use and faster to
simulate. Therefore, SpecC synthesis tools should have the
same limitation as classical behavioral synthesis tools.

We propose a flow that aims to solve, or ease, these
problems at high-level by an appropriate pre-computing of
the “specification”. This flow uses various techniques for
determining the functionalities or the implementation do-
main (for instance dataflow oriented), for reusing in-library
components, and for performing high-level explorations.
The “specification” we want to address is very close to
the paper specification but is still written in the executable
SpecC language. This flow can be used as a front end of
existing synthesis flows.

The rest of the paper is organized as follows: the sec-
ond section describes some works related to ours, the third
section presents the proposed flow and the fourth section

describes its use on an example. The final section is the
conclusion.

2 Related work

SpecC methodology|[8] implemented in the SCE tool[11],
proposes a several step refinement: architecture refinement
which corresponds to architecture exploration (including
hardware software partitioning), communication refinement
and implementation refinement (which correspond to be-
havioral synthesis). However, it considers that the input
code (called “specification”) can be directly synthesized, as
if it was an implementation. This implies that the user have
to write a “synthesis-efficient specification” which is not
trivial. Moreover, several specific cases can be efficiently
synthesized by specific tools but not by general tools[4].

Some of the techniques our flow uses are based on pre-
vious works. Code recognition is one these techniques. A
lot of work have already been done about it: in verification
[5], in software compiling[9], in logic synthesis[10], etc.
However these works focused mainly on recognizing low
level optimized implementations for validation whereas our
goal is to recognize high-level straight forward specifica-
tion. In-library component reuse (IP-reuse) is also deeply
studied, the main difficulty there being to find the best com-
ponent[12].

3 A pre high-level synthesis flow

3.1 Hardware specifications

The dictionary definition for specification is: detailed for-
mulation, presented as a document, in purpose to be used
as a definitive description, of a system in order to design or
validate'it. This meaning is the most commonly used. As
it is a document (e.g. in a human-like language), we will
call it paper-specification.
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For our input specification we choose the SpecC speci-
fication level as defined in SpecC methodology[8]. But we
try to be as close as possible to the paper specification.

3.2 Presentation of the flow

The input is a high-level description obtained by simply
translating the paper specification into the SpecC descrip-
tion language. The output is an architecture level descrip-
tion defined in the SpecC methodology. This flow assumes
that the hardware/software partitioning has already been
decided. It only focuses on static parts of the system: dy-
namic parts (mainly software) have to be treated in an-
other flow. Before being treated by the flow, the input text
specification is converted to a hierarchical set of graphs
whose top graph represents the different modules of the ini-
tial specification (called behavior in SpecC). Each module
may contains other modules or some behavioral code. This
code is converted to control-data flow graphs.
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Figure 1: The proposed pre-synthesis flow
Figure 1 presents the proposed flow. This flow can be
divided into 3 different parts:

o The analysis part that includes the filtering the rec-
ognizing and the classifying steps. The goal of this
part is to translate the behavioral description into a
set of symbolic objects. The filtering quickly an-
notates each node of the graph with its local prop-
erties, the recognizing tries to indetify precisely the
functionalities (services) and the classifying tries to
regroup specification parts by common kind of im-
plementations (domains, e.g. dataflow oriented or
memory intensive). Domains can be used during the
refinement part to decide which behavioral synthesis
policy should be used.

o The refinement part tries to find the best component
and the best architecture using some performance

annotations. This is a recursive step that includes
the selecting step (that find the component from the
library) and the exploring step (that choose the best
architecture for the components).

o The generation part that will produce the output files
(SpecC). This generation is performed through the
assembly and the expansion of optimized in-library
macros corresponding to the recognized part of the
specification. The non recognized parts are also as-
sembled with the macros, but their iner code is kept
untouched.

As seen in the figure, there are 4 ways (from left to right) to
handle a part of the specification: from a specification part
which goes through each step to one that goes directly to
the selecting step. This last case occurs when the specifica-
tion part is a black box annotated with a service, or directly
a component (module) to use.

Note: the recognizing step is not interesting for all the
cases. For now we have defined 3 grain levels that are in-
teresting to recognize. The first grain level includes the
“complex operators”: they represent some computation op-
erations that are not usually represented by operators, but
that are commonly implemented in hardware computation
units. For example the 1/+/x2 + y? + 22 function is such
an operator. The second grain level includes the generic al-
gorithm patterns, for example all the different kind of loops
(unsorted, sorted, dependant on the indexes and so on). The
last one includes common behaviors that are often used but
hidden and dispatched within a more complex algorithm.

This flow works with a library whose contents is: for
the first part, the symbolic object and the way to identify
them; for the second part, the components and performance
annotations; and for the third part the code elements.

3.3 The objects used in the flow

The flow uses several families of objects. These objects
can be stored within the library, or can be linked to the
specification (introduced by the user or computed during
the flow).

The first family regroups all the plug-in functions for
the flow stored in the library. Plug-ins can be used for the
filtering, the recognizing the classifying and the explor-
ing steps and are respectively called the filters, the recog-
nizers, the classifiers and the explorers.

The second family regroups all the symbols used by the
flow to represent some high-level concepts. These objects
are the services and the domains. A service represents a
functionality or a group of functionalities. For example a
DFT (Discrete Fourier Transform) or a generic divide and
conquer algorithm can be represented by a service. Ser-
vices are the output of the filtering and the recognizing
steps. A domain represents an information for implemen-
tation. For example dataflow oriented can be represented
by a domain. Domains are the output of the filtering and
the classifying steps.



The third family regroups all the parameters that can
be associated to the specification. They can be uset’s anno-
tations, or they can be computed during the filtering or the
classifying steps. A parameter is more precisely a name
associated to a type and a value. They are used by the ex-
ploring and the generating steps.

The fourth family regroups all the modules, the ports
and the channels, that is to say the components that im-
plement the services and their interactions. For example a
DFT can be implementated by a module. Several modules
can implement a same service. They can also be hierar-
chical, containing other modules, ports and channels or
services (a module can provide or require some services).
Finally a module can be partially defined or generic: it is
called a pattern.

The last family regroups all the material for generation:
it is a set of macros that are expanded and assembled in
order to obtain the output of the flow, that is to say the
behavioral code.

4 The flow applied on the JBIG en-
coder

In order to validate our methodology, and to estimate the
difficulty for designing such tools, we applied it on a real
specification: the JBIG image compressing method[3].

4.1 \ Presentation of the JBIG

The JBIG[3] is a lossless bi-level image! compression en-
coding method. It also has a “progressive” capability, which
makes it possible to display low resolution images before
the complete image being available (in case of low-band
transfer for example). Figure 2 shows the global encoding
flow: it repeats D times? a resolution reduction and a dif-
ferential layer encoding (i.e. encoding the differences be-
tween two consecutive resolutions of the input image), and
finally it applies the lower resolution encoder. The figures
3 and 4 detail the two steps of the flow.
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Figure 2: The JBIG encoding flow
In figure 3, resolution reduction produces a lower res-
olution image trying to keep the image quality’. Typical
prediction looks for the most probable pixel conformations

IBi-level images, like black-and-white images, have only two colors.

2D is the lower resolution reduction rate.

3A straight forward resolution reduction, like keeping only one pixel
over two, strongly degrades the image quality.
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Figure 4: The lower encoder part of the JBIG

knowing the lower resolution image, and deterministic pre-
diction looks for the pixels whose value can be deduced
from the encoding mechanism. Adaptive templates and
model templates are used to compute the contexts related
to the pixels that will be used by the adaptive arithmetic
encoder to produce the output code.

In the lower resolution encoding, shown in figure 4,
typical prediction is similar to the previous one, but it uses
only one resolution.

4.1.1 Translation of the JBIG paper specification to
SpecC

Almost all the encoding process has been translated to the

SpecC specification. Only adaptive templates has not been

described because it was not necessary, and let unspecified
by the norm.

The translation has been straight forward as almost all
the algorithms are given in a pseudo-code manner or are
limited to access to some lookup tables. More precisely, a
recurrent operation in the specification is to build for each
pixel an index from its neighbors. This index is then used

- to access a lookup table. It is the case for resolution reduc-

tion, typical prediction, deterministic prediction, and also
adaptive templates. For this, the paper specification gives
the lookup table, and a diagram showing the neighbors of
a pixel annotated with the bit of the index they correspond
to. Therefore the translation consisted only in copying the
tables and coding the memory accesses.

Regarding the hierarchy, we strictly followed the one
given by the paper specification.

In total, the translation process took less than one man
week, with basic verifications. Of course, more time would
be necessary for a complete verification, but as the trans-



lation was mainly a simple copy (sometimes automatic),
the main errors should be only typing-like ones. What is
important to notice is that, on purpose, no effort has been
spent for producing an “optimized” specification: neither
for the behavior nor for the architecture.

In the other sections only the work on resolution reduc-
tion and differential layer encoder will be presented as the
one on the lower resolution encoder is very similar.

4.1.2 Filtering step

The filtering step has been applied independently on each
behavior of the SpecC specification. It consists in quickly
analyzing each variable and each node of the specification
graph, and annotate them with the corresponding services
and domains.

Variable analysis gives similar results for resolution re-
duction, typical prediction, deterministic prediction and mo-
del templates. The following kinds of variables have been
found: some integer variables used as loop and array in-
dexes and also used as limit checkers, some 2 dimension
bit (or bit vector) matrixes used as input or output memo-
ries, some 1 dimension fixed bit or bit vector arrays used as
look up tables (not present in the model template and the
typical prediction), and some temporary integer/bit vectors
(both types are used) used as lookup index (not present in
the typical predition). Typical prediction has another out-
put variable: the LNTP bit.

Variable analysis for the arithmetic encoder bloc return
the following kinds of variables: some integer variables
used as logical, arithmetic and comparison registers (we
mean by register that they are not dataflow temporary vari-
ables that could be easily removed), some integer variables
used as loop indexes, some bit variables used as streamed
output, some 1 dimension fixed integer or bit arrays used
a lookup tables, and some 1 dimension bit (or bit vector)
arrays used as input memory.

After variable analysis, node analysis has been applied.

Using these informations, several groups have been built
for recognition. The first kind of group contains all the 2
dimension memory accesses using the loop indexes. The
second one contains all the loops that englobe the algo-
rithms. The third one contains the limit checks. The fourth
one contains the lookup accesses. The fifth one contains
the bit accesses in the lookup indexes. The sixth one con-
tains the arithmetic and logic operations (for the arithmetic
encoder). The seventh one contains the mask and shift op-
erations (for the arithmetic encoder). Even if these groups
have been given here independantly on the bloc they come
from, they are still linked to them in the methodology. For
instance, recognizing and classifying will be first applied
on each group of each bloc. Another important remark is
that these groups sometimes overlap on each other: it is for
example the case of the seventh and the sixth group (in fact
the seventh group is included in the sixth one).

For this experiment, each of these kinds of groups has
been assumed to be potentially recognized. Due to this
assumption, they are all sent to the recognizing step.

4.1.3 Recognition step

Consecutive 2 dimension memory accesses (the first fil-
tered group) within loops are very common in image pro-
cessing algorithms. Recognition step applied on the first
group are performed simply analyzing the loop and array
indexes (comparing them to some classical 2 dimension
memory accesses within loops). They give different results
according to the bloc they come from. For resolution re-
duction, 2 dimension memory accesses are local, centered
to the index, and do not recover over the loop iteration.
The corresponding service is simply a 9-pixel bloc access
to a 2-dimension memory. For differential typical predic-
tion, two kind of 2-dimension memory accesses are used:
a 9-pixel bloc access as previously, and a 9 pixel bloc ac-
cess with 6 pixels recovered. For deterministic prediction
and for model templates, 9-pixel bloc access with 6 pixels
recovered and and 25-pixel access with 20 pixels recov-
ered. One should notice that the number of pixels within
the blocs are not part of the services, but are parameters
added to the corresponding nodes.

For the second group, a specific recognizer for loops
must be used. It looks for data dependencies inside the
loop with the loop indexes with the goal of determining
which kind of loop it is. For all the specification parts, the
code within the loop uses the loop indexes, but their utiliza-
tion differs: for instance, for resolution reduction, in order
independant, and same memory accesses are not repeated
over iterrations whereas deterministic prediction is order
dependant and same memory accesses can be repeated over
iterations.

For the third, the fifth and the sixth groups no inter-
esting service has been found, so they will be transferred
directly to the classifying step.

For the fourth group, the lookup accesses are consid-
ered as random (as they completly depend on the input),
therefore the corresponding service is simply lookup ac-
cess.

For the seventh group, shift and masks are in fact only
bit accesses. Therefore the service register bit range access
is used.

4.1.4 Classifying step

First the input specification graph is first reordered so that
node within the same group became the closest possible.

From these results (and the filtering annotations) the
splitting were just cutting when the domain of the nodes
change. The splitting result is shown figure 5. For other
input specifications though, splitting can be much more
difficult, especially if different domains are randomly in-
terleaved. Elaborate techniques have then to be used, like
fuzzy computations.

Final annotations put the proportion of different do-
mains of each split part.
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Figure 5: The splitting result

4.1.5 Selecting and exploring steps

As the library is not yet built, exploration and selection
steps for this example has been rather limited. In fact. this
example brought the opportunity to design the first mod-
ules for the library.

For the application, one module for selection is provid-
ing a 2-dimension memory access service. The figure 6
gives the proposed implementation for this module. It is a
generic module whose parameters are the shape of the pixel
buffer, the number of pixels that have to be read in each
pass and the functions applied on the buffer (in our case,
these functions are the building of the lookup indexes, the
context computation, and some comparisons). One could
argue, that such architecture could have been found with
a memory access optimization tool, which may be true.
However, the use of such a tool can also be a result of our
flow through the classifying step. Moreover, these specific
memory accesses are very common so it may be better to
have an already made finely tuned component for that. One
should also notice that the choice of such a module strongly
depends on the kind of memory which is accessed.
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Figure 6: The implementation for the 2-dimension memory
access

Pixels buffer (memory side)

The rest of the specification can be directly handled
by lower level tools. Lookup accesses are quite common,
therefore it may be interesting to add in the library some
modules for them.

Preliminary exploration results are shown in figure 7:
The first level of hierarchy groups all the module into a

Table 1: RTL simulation results

loop modules* The second level of hierarchy groups in a
first module the 2 dimension memory accesses within the
loops, in a second module all the lookup accesses and ta-
bles and in a third module the rest. The third level of hi-
erarchy within the first module separates resolution reduc-
tion memory accesses from the others (as the first one has
no memory recover contrary of the others). Within the third
module, the next level of hierarchy groups together the
comparisons and initializations, and the rest of the arith-
metic encoder is left there.
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Figure 7: The result of the exploration step
4.1.6 Conclusion about the results

This final result shows that the resulting architecture is com-
pletely different from the initial one. Regarding the be-
havior, all the 2-dimension memory accesses has been re-
placed by a single library-based implementation. The rest
of the behavior has been kept, but its order has been changed
to put together parts with similar domains.

For the arithmetic encoder, only the lookup accesses
have been treated, the rest remains untouched, and should
be treated as is by the lower level synthesis tools. The main
reason is that the code of this part does not contain typical
patterns. Further work on our flow will be therefore nec-
essary to handle such kind of behavior, especially in the
filtering and classifying steps.

Finally simple simulation have been performed at the
RTL level with different memory accesses times. Their re-
sults are shown in the table 4.1.6 3

4Resolution reduction and deterministic prediction have a part outside
the x-loop as a complete line have to be computed by them before the rest
of the algorithm can be applied.

5The algorithm complexity is proportional to the image’s size: in our
simulation we used a 80x24 pixel image.



In the table, the first column is for the specification
translated directly to the RTL level without the initial flow,
and the second one for the “optimized” one. The two first
lines give the number of read and write accesses to the
memories, the last lines give the total number of cycles re-
quired for encoding the input image with different memory
access times (respectively 10 cycles, 2 cycles and 1 cycle).
As seen in the table, even with fast memory accesses, the
“optimized” version obtains better performances. Those
results are mainly due to:

1. the fewer memory accesses resulting from the 2 di-
mension memory access component;

2. the grouping inside the same loops of the different
steps of the JBIG encoding algorithm.

The “optimized” vetsion also requires less memory® as the
exploring step make it possible to exploit locality of the
image processing.

Performance similar to ours can be obtained with clas-
sical flow. However, the intial specification have then to be
completely rewritten to adapt it to the behavioral synthesis
tools, which is time consuming and error-prone.

5 Conclusion

SpecC is a useful language for describing complex SoCs at
a high-level of abstraction. However the problems encoun-
tered with behavioral synthesis tools have shown that it is
difficult to generate efficient hardware from high-level de-
scriptions: either the result is bad, or the input specification
is difficult to understand.

Our goal is to convert high-level straight forward SpecC
specification to lower level complex ones that can be effi-
ciently synthesized. In this paper we first defined our spec-
ification, and then proposed a flow that can be considered
as a front-end to existing synthesis flows. The flow con-
tains several steps that treat the input specification follow-
ing different axes: recognizing, classifying and exploring.
The initial filtering prepares the specification (by annotat-
ing it) for these steps, and the selecting step allows the use
of in-library already designed components.

As preliminary experiments, this flow has been applied
on the JBIG encoder. The results shows that, even if the
whole specification has not been successfully handled (the
arithmetic encoder has been mostly untouched), the result-
ing synthesis-optimized architecture and behavior strongly
differ from the initial ones. Using existing synthesis flow
without this front-end would force the user to perform a
complex translation of the initial specification to one that
could be efficiently synthesized, therefore, when automated,
this flow will bring an important gain of productivity. More-
over, with the growing library, the productivity will in-
crease over time.

The results are promising, however there is still a lot
of work do to obtain the automated flow. Additional works

6 Apart from the input image and the output codes, there are memory
needs for only 2 lines.

are also planned to define a library that could use the results
of synthesis to enhance its annotations for achieving better
selecting and exploring results.
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