BN BROEES PIERE 2003— SLDM=—111 (16)
IPSJ SIG Technical Report 2003,/10,°23

% B BRI 2 -V e — (L FIR #ifd

- iE §h—T Thierry BLU' Michael UNSER'?

T BUEENT K% KB TEMARRE T 240-8501 BREHI{R L7 AR EHS 79-5
1t Biomedical Imaging Group, BIO-E/STI, Swiss Federal Institute of Technology Lausanne (EPFL),
CH-1015 Lausanne, Switzerland.
E-mail: koichi@ynu.ac.jp, {thierry.blu,michael.unser}@epfl.ch

HoEL AT, LEEBEEEZHAV L FIR #EELZREET 3. £2LOMMERME—-OBEBEERHV
THEREZTSD, BRETRERECORL 2BEHEELZHVS. COEREOEKEREEREMEOZDD
“partition of unity” OFFIEZE T 2 LB H SN, NIERE FOMOZHEHREI AWV, T LEREEEEH
W EEDR - BERAF—LI TR 74V EAERWET 4 VAN VO THERTES. COMKTEERC LI,
HBEMEFHRTNUL, TV T ANV REFIR 7 ANV EDOBTHKTESZTLTHS. E, BLOZEYV—T LY
MIFEE T ERT AT AR TH S, BRI IEHEEIREES T ERCERTZ LN TES. 354
MREBIVEIC B35 2 aL—ya VEEL T, TOEBREOHER TS 5.

F—0—F il WEHE, TV ENRV Y, Yz—T Lk

Generalized FIR Interpolation by Multiple Generators

Koichi ICHIGE!, Thierry BLU'", and Michael UNSER'

1 Department of Electrical and Computer Engineering, Yokohama National University .
79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
11 Biomedical Imaging Group, BIO-E/STI, Swiss Federal Institute of Technology Lausanne (EPFL),
CH-1015 Lausanne, Switzerland.
E-mail: koichi@ynu.ac.jp, {thierry.blu,michael.unser}@epfl.ch

Abstract We present a simple but generalized interpolation method for digital images that uses multiwavelet-like
basis functions. Most of interpolation methods uses only one symmetric basis function; for example, standard and
shifted piecewise-linear interpolations use the “hat” function only. The proposed method uses ¢ different muiti-
wavelet-like basis functions. The basis functions can be dissymmetric but should preserve the “partition of unity”
property for high-quality signal interpolation. The scheme of decomposition and reconstruction of signals by the
proposed basis functions can be implemented in a filterbank form using separable IIR implementation. An impor-
tant property of the proposed scheme is that the prefilters for decomposition can be implemented by FIR filters.
Recall that the shifted-linear interpolation requires IIR prefiltering, but we find a new configuration which reaches
almost the same quality with the shifted-linear interpolation, while requiring FIR prefiltering only. Moreover, the
present basis functions can be explicitly formulated in time-domain, although most of (multi-)wavelets don’t have
a time-domain formula. We specify an optimum configuration of interpolation parameters for image interpolation,
and validate the proposed method by computing PSNR of the difference between multi-rotated images and their
original version.
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1. Introduction

Interpolation is one of the standard operations in digi-
tal signal/image processing{l],{2]. In most of high quality
interpolation methods, input signals are first transformed
into weight parameters of the given basis function by pre-
filtering (decomposing). After that a continuous signal is
reconstructed as a weighted sum of shifted basis functions
by reconstruction filtering. The inherent problem of those
algorithms with prefiltering is that the prefilter often makes
Gibbs phenomenon (oscillations) which is favored by the fact
that the prefilter is generally given as an IIR filter. A way
to reduce Gibbs oscillations would be to employ multiple
generators (basis functions) instead of one. This is because
the prefilters for multiple generators can be FIR filters for a
certain range of parameters values.

In the first part of this paper, we will be investigating FIR
interpolation using multiple generators. Then we will pay
a special attention to the family of piecewise-linear interpo-
lation because of its simplicity and low computational cost.
Among the multitude of algorithms that have been proposed,
piecewise-linear interpolation is still the method of choice for
many applications due to its low computational cost.

Recently, two of the present authors have proposed shifted-
linear interpolation [4] which greatly improves the quality
of reconstructed signals/images while preserving the low
computational complexity of piecewise-linear interpolation.
While it clearly outperforms the classical algorithm in terms
of quality, it has one negative side effect; namely, the in-
troduction of a Gibbs-like phenomenon (oscillations) when
interpolating step-like functions, as mentioned in the litera-
ture [4]. The presence of these oscillations tends to increase
the dynamic range of the output image; this effect is espe-
cially noticeable in successive interpolation experiments such
as multiple image rotations.

Both standard and shifted linear interpolation methods
employ wavelet-like basis functions that are shifted replicates
of a single generator: the “tent” function, which has a central
axis of symmetry. In principle, this type of representation
can be generalized by introducing multiple generating func-
tions which are not necessarily symmetric anymore. How-
ever, to be acceptable from an approximation theoretic point
of view, the representation should preserve the “partition
of unity” property; more generally, it should allow for the
perfect reconstruction of linear polynomials([5]. The ques-
tion that we address in this paper is whether or not there
are advantages to switching to representations with multiple
generators for the task of signal/image interpolation.

We will do so by considering a generalized piecewise-linear

model whose knots are not necessarily equally spaced nor

symmetrically placed. The underlying model, however, re-
mains regular in the sense that the distribution of the knots
follows a periodic pattern. In this context, it is of great inter-
est to determine the optimal placement of the knots so that
the interpolation error is minimized. Interestingly, we will
see in the case of two generators that the optimal placement
of the knots is not at the sampling locations, nor that they
should necessarily be equally spaced.

We will first start from a generalized model of multiple
piecewise-linear generators, and describe the special case of
two generators in detail [6]. Then we evaluate the approach
with respect to the specific task of signal/image interpola-

tion [7]. We will apply the method to image interpolation and

' compare its various versions with the traditional approach.

This will allow us to determine the optimal parameters values
for best performance according to two criteria: (1) maximum
PSNR (Peak Signal-to-Noise Ratio), and (2) minimization of
the Gibbs-like oscillations. With respect to this last item, we
found that the prefiltering (decomposition) scheme could be
implemented by FIR filters for a certain range of parameter

values, which essentially gets rid of this problem.
2. Problem Formulation

Consider a sequence of samples f[n] = f(nT) sampled
from a function f(z) with the sampling interval T. In case
of one basis function ¢(z), the interpolation function fr(z)
reconstructed from the samples f[n] is given by a linear com-
bination of shifted. basis functions as

fr(@) =Y clnle (T -n), (1)

nez

In (1), c[k] denotes the weight parameter that are obtained
by enforcing interpolation condition fr(nT) = f(nT):

cln] = b3" * f[n],

where

-1 —-n 1
Qb kT = o

In case of ¢ basis functions {<pj(m)}§;é, the interpolated
function fr(z) is given by a linear combination of ¢T-shifted

basis functions as

fr(z) =Y q‘jcj[k]%' (% - kq)
keZ j=0
=S cke (-; - k:q) (2)
kezZ

where ¢ and ¢(z) respectively denote the weight vector and

the basis vector as

clk] = [colkl, c1[k], ... ,cqur[K]]T,
o(z) = [po(z), e1(z), ...

s pa-1(@)]”



The objective of this paper is first to establish the prefiltering
relations in the multiple generator case, and then to investi-
gate whether interpolation quality can be improved by using

multiple basis functions instead of one.

3. Generalized Piecewise-Linear Multiple
Generators

This section develops the concept of piecewise-linear in-
terpolation with multiple generators, and studies the case of
two generators in detail.

3.1 General Principle

We first start from g different basis functions: ¢o(x), ¢1(z),. ..

Hereafter, the sampling interval T is set to be one for the
simplicity.
For integer values of z, (2) is reduced to

fn) =3 clk"p(n — kq). 3)

kez

The Discrete-time Fourier transform (DTFT) of (3) can be

written as
F(e™7) = By(e )T Ce™) @
where
F(e ) = Z f(n)e ™,
nez
Bo(e ) = Y g(me ™.
nez
Ce™™) = > clkle 7.
keZ

In (4), F(e ) and B,(e™7*) are 2n-periodic in w, and
C(e™7%) is 2m/g-periodic in w.

w=ww+2ri w4+ 2#12—1 in (4), C(e™7%) remains

Thus, if we substitute

unchanged. Then we can rewrite the g-corresponding equa-
tions in the matrix form as in (5). Therefore, the DTFT
C(e7%) of the coefficients cx can be derived by (6).

A filterbank implementation of this equation is shown
in Fig. 1, where the prefilters ®(z) = [®o(2),®1(2), ...,
®4-1(2)]" and the reconstruction filters &(z) = [®o(z), D1(z),
vy Bg1(2)]T are given by ...

For a certain class of basis functions, the determinant of
the matrix in (5) becomes a delay (e™7%“) which is the nec-
essary and sufficient condition for the prefilters ®(z) to be
FIR.

3.2 Case of Two Basis Functions

Here we consider the case of two generating piecewise-
linear functions ¢o and ¢1. The representation of those func-
tions can be dissymmetric but mirror to each other to satisfy

the “partition of unity” as in Fig.2, i.e.

Fig. 1 Filterbank construction of the proposed scheme with g

generators.
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which reconstructs a signal by

fln] = Z colk]poln — 2k] + Z cilklp1[n — 2k].
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Fig. 2 Basis functions

The parameters 7 and « correspond to the shift and the
dissymmetry, respectively. For any z € R, the basis func-

tions satisfy the partition of unity:

Z{gao(z —2n) + ¢1{z — 2n)} = 1.

nez

If 7 + a < 1, the prefilters and the reconstruction filters
can be derived using the frequency domain approach devel-
oped in the previous subsection. In this case, the matrix in
(5) can be written as (9), which leads the FIR expressions of

the reconstruction filters ®o(z) and ®1(z) as follows.

Bo(z) = “—3):%—
() = (l1-7—-a ;f?a—rfa)z_l’

The inverse of the matrix in (6) can be derived as (10), which

also leads the FIR expressions of the prefilters ®o(2) and
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§1(Z) as

do(2) = 2-T—-a) - (1—T—a)z,
&1(z) = —T+ (1 +7)z.

The prefilters $o(z) and &1(2) can also be derived by time

domain calculation based on the recursive equations:

147
2—abo[n]+ 2—a

T 2—T1—«
P

1-7—«a

flen] =

an],

fl2n+1] =

aln].

Also, the reconstruction filters ®o(z) and ®:(z) can be com-
puted based by

qn] = 2-7—a)f2n]-(1—-7—-a)f[2n+1],
cn] = —7f[2n]+ (1 +7)f[2n + 1].

The whole process can be drawn in a filterbank form as in
Fig.3.

Fig. 3 Filterbank construction of the proposed scheme with two

generators.

If 7 + o = 1, the prefilters ®; and &; become

2-a){l-T—a)+72—T—0a)z
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éo(z) =
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D1(z) = Q-n2-17—a)+7(l-7— a)z=?’




they are implemented by Forward/Backward IIR filtering.
4. Simulation

In this section, we evaluate the proposed scheme of two
piecewise-linear generators through some simulations.

The tested images are: “Lena” mainly has low frequency
components, “Baboon” in Fig.4 contains every frequency
component, and “Particles” is a binary image and regarded
as an extreme example [7].

We tested various combinations of values of the parame-
ters 7 and « for those three images to see which combination
is the most suitable. Fig.5 depicts the behavior of PSNRs
for various values of the parameters 7 and a. From Fig.5,
we can see that the case of the shifted-linear interpolation
(t = 0.21, 0 = 0) was the best for all of three images with
respect to PSNR. Indeed the reconstructed images are sharp
as shown in Figs.4(c), much more precise than in the case of

standard linear interpolation in Figs.4(b).

Wi e

(a) Original

(¢) Shifted-Linear (d) T =0.21,a = 0.58

Fig. 4 Rotated Images of “Baboon”

Fig. 5 PSNRs of the rotated images for various combinations of
parameters « and 7. Note that the optimum solution is
obtained in white regions (white=18.5dB, black=15dB or
less, Linear: 16.2dB, Shifted-Linear: 18.6dB, Proposed:
18.0dB).

In Fig.5, we also find that there is another local optimum
PSNR around 7 = 0.21 and o = 0.58. The PSNR here is a
little bit lower than that in the shifted-linear case, but the
reconstructed images have almost the same quality as shown
in Figs.4(c),(d). The maximum and minimum values of the
reconstructed images are very wide in the shifted-linear case,
and are closer to the original in the local optimum case as
listed in Table 1. As we see in Fig.4(c), there are some white
and black pixels like impulse noise. The values of these pixels
are very far from the original range, they are the very reason
of data in Table 1.

Table 1 Maximum and minimum values of the original and ro-

tated images {7]

Lena Baboon Particles
Min/Max | Min/Max | Min/Max
Original 0/255 6/227 0/255
Linear 0/255 6/227 0/255
Shifted-Linear —105/369 | —31/384 | —420/1015
Proposed —50/343 | —5/245 | —200/410
(1 =0.21,a = 0.58)

The wide range in the shifted-linear interpolation is a
consequence of its Gibbs-like oscillations when interpolating
step-like functions. Figure 6 shows the result of interpolating
aunit step function. Shifted-linear interpolation causes oscil-
lation for several steps. In the local optimum case (7 = 0.21
and « = 0.58), there are two possible behaviors (a) and (b)
due to two different basis functions. The oscillation in (a)
is smaller than that in Shifted-linear, and the case (b) does
not make any oscillation. They lead to the smaller range in
Table 1.

— — — Linear

---- Shifted-linear

—— = Proposed (a)
Proposed (b)

O—T \\/# : : .I

Fig. 6 Interpolation of a unit step function.

Computation time for the proposed scheme is almost the
same with that for the shifted-linear interpolation, if the pro-

cesses for ¢o and c; in Fig.3 can be executed in parallel.



5. Concluding Remarks

In this paper, a concept of generalized piecewise-linear
multiple generators and its applications have been presented.
The present multiple basis functions can be regarded as
generalized piecewise linear interpolators. We also devel-
oped a scheme of decomposition and reconstruction of sig-
nals/images by two dissymmetric piecewise linear basis func-
tions in a form of a filterbank. Then the scheme was evalu-
ated through computer simulation of digital image rotation.

The error in interpolation and the optimum values of the

parameters must be further studied mathematically.
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