HEEA BEHLEYER HERE
IPSJ SIG Technical Report

2003—SLDM-112 (8;
200311728

a2 b= T ORERREIZANT 5T A PESHILRETO Tk

Al W KT s B FlkE

HREMHFEMRERERE FRAFER
T 630-0192 17\ 13 A % ZFFAR T
E-mail: {tsuyo-i,ohtake fujiwara}@is.aist-nara.ac.jp

HOEL AT, 20 O-SOREMECHT 57 A MERILEFERRETZ. REFEIFEAFy HFRIESVTS
h, 3y +a—SOEEHEEFALTCTAMEIT). BFHETRECEZVWEBICH LT, 97 A MREEBANGE
(ISTG) ZEEICAML, TREHAVTTF A MEIT). AFEEHVLILLY, (1) vy A MEKERE, (2) 8wy A MET
Bif, (3) at-speed 7 A M EREND. AFETIR, EBFAHEIERT 272 FNGECELT, AERTSH 2 ISTG #FHK
THETEDL. BB, NUFI—EREACAERICL ST, REFEOFDEERT.

¥—7—F arvio-3, EEKE, 72X MEHLERE, BH7 A MVREEBEREE, atspeed TA M, FAF ¥ IHR

A Method of Design for Delay Fault Testability of Controllers

Tsuyoshi IWAGAKI, Satoshi OHTAKE and Hideo FUJIWARA

Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan
E-mail: {tsuyo-i,ohtake,fujiwara}@is.aist-nara.ac.jp

Abstract This paper proposes a non-scan testing scheme to enhance delay fault testability of controllers. In this scheme,
the original behavior of a given controller is used in test application, and the faults that cannot be detected by the original
behavior are tested by an extra logic called an invalid test state/transition generator (ISTG). Our scheme allows the following:
achieving (1) short test generation time, (2) short test application time and (3) at-speed testing. We experimentally show
the effectiveness of our method. In our method, ISTGs can be designed flexibly in response to the test qualities demanded
by circuit designers.

Keywords Controller, Delay fault, Design for testability, Invalid test state/transition generator, At-speed test, Non-scan
design

(1) combinationally non-activated paths, (2) sequentially

1. Introduction
non-activated paths and (3) unobservable fault effect. A se-

Modern high speed VLSI circuits need delay fault testing
because conventional stuck-at fault testing cannot guarantee
the timing correctness of the circuits. Usually, VLSI circuits
are designed at register-transfer level (RTL). A VLSI circuit
designed at RTL generally consists of a controller, repre-
sented by a state transition graph (STG), and a data path,
represented by hardware elements (e.g, registers, multiplex-
ers (MUXs) and operational modules). Recently, design for
testability (DFT) techniques for RTL circuits have been pro-
posed [5].

In general, delay test generation for VLSI circuits is a
hard problem. In[1], all the redundant path delay faults

in a sequential circuit are classified into three categories:

quential test generation tool (ATPG) spends huge time to
identify these redundant faults, and it is virtually impossi-
ble to identify all of them. To facilitate delay test gener-
ation, standard scan designs [2], [7]~[9] and enhanced scan
designs (1], [3] have been proposed[4]. Given a sequential
circuit, these design methods make most/all faults in cat-
egories (2) and (3) detectable by making all the flip-flops
(FFs) controllable and observable. Thus, since we need only
identifying faults in category (1) by using a combinational
ATPG, the test generation time is significantly reduced and
the fault efficiency becomes higher. However, in scan-based
delay testing, due to the scan-shift operation, the test ap-

plication time becomes longer. In addition, the scan-shift

Pls —» l— POs
Combinational

circuit

Pls: primary inputs
POs: primary outputs
SR: state register

R: reset signal

R

Fig. 1 Synthesized controlier.

operation is performed at a low clock speed while the second
vectors of two-pattern tests are launched at the rated clock
speed. This situation may cause inductive voltage drops
because the operating speed, i.e., circuit current, rapidly
changes. As a consequence of the voltage drops, the test
will fail. Therefore, it is desirable that the operating speed
is constant in the test application. For stuck-at fault model,
a DFT method for controllers, which overcomes the draw-
This

method is a non-scan based approach to achieve 100% fault

backs of scan-based testing, has been proposed [6].

efficiency, short test application time and at-speed testing.
In this method, the above merits are realized by appending
an extra logic, called an invalid test state generator (ISG),
and some extra pins to the original controller.

This paper proposes a non-scan testing scheme, which is
an extension of one in[6], to enhance delay fault testabil-
ity of controllers. In this scheme, the original behavior of
a given controller is used in test application. For only the
faults that cannot be detected by the original behavior, we
append an extra logic, called an invalid test state/transition
generator (ISTG), to the original controller. In order to de-
sign ISTGs flexibly in response to the test quality demanded
by circuit designers, we classify the redundant faults in a
controller into five categories. Based on these categories,
we can choose the test qualities for delay faults by design-
ing ISTGs appropriately. Our scheme allows the following:
achieving (1) short test generation time, (2) short test appli-
cation time and (3) at-speed testing. Experimental results

show the effectiveness of our method.
2. Preliminaries

2.1 Target circuit and fault model

Qur target circﬁits are controllers represented by STGs,
and we target delay faults in the circuits. We assume that
a gate-level implementation of a controller is given, and the
controller has a reset signal, i.e., we can make a transition
from any state to the reset state by activating the reset sig-
nal. Fig. 1 shows a gate-level implementation of a controller.
We also assume that, for a given controller, the mapping in-
formation between each state in the STG and the value of

the state register (SR) (state encoding information) in the

PIs — |— POs

Combinational
circuit
|—» PPOs

PPIs —]

PPIs: pseud primary inputs
PPOs: pseud primary outputs

Fig. 2 Combinational test generation model.

.-Teset

L
Ly
G
-.-~: valid test transition
-~ invalid test transition
: valid test state

{3 invalid test state

Fig. 3 Test states/transitions.

logic synthesis is available.

2.2 Terminologies

Here, we define several terminologies. For any value of the
SR in a sequential circuit synthesized from a given STG, if
the corresponding state of the value is reachable from the
reset state in the STG, then the state is called a valid state.
Otherwise, it is called an invalid state. For a synthesized con-
troller (Fig. 1), a combinational circuit extracted from the
controller by replacing the SR with pseudo primary inputs
(PPIs) and pseudo primary outputs (PPOs) is called a com-
binational test generation model (Fig. 2). Given a controller,
each two-pattern test, (V7,V2), for the combinational test
generation model can be denoted as (I1 &S, [2&5.), where
I and I, are the values of primary inputs (PIs), S1 and S2
are the values of PPIs, and & is a concatenation operator.
Suppose the value of a present state is S1 in an STG. Then,
if the value of the next state is Sz when I is applied, the
two-pattern test is called a valid two-pattern test. Otherwise,
it is called an invalid two-pattern test. The transition corre-
sponding to a valid (resp. invalid) two-pattern test is called
a valid (resp. invalid) test transition. A valid state that
appears in a valid/invalid two-pattern test is called a valid
test state, and an invalid state that appears in an invalid
two-pattern test is called an invalid test state. We show an

example of test states/transition in Fig. 3.
3. Proposed method

3.1 Test architecture

In our testing scheme, the original behavior of a given con-
troller is used in test application, i.e., valid two-pattern tests
are applied by using the original behavior. The faults that

cannot be detected by the original behavior are tested by an

Pls > ——» POs
Combinational
circuit
tout -~ SR

—— [mode

tsel

Fig. 4 Proposed test architecture.

extra logic called an invalid test state/transition generator
(ISTG). Our test architecture is shown in Fig. 4. In Fig. 4,
respective DFT elements play the following roles:

o The ISTG generates invalid two-pattern tests.

e The extra pins of tse1, which we will explain later, dis-
tinguish among invalid two-pattern tests.

e The extra pins of tou: observe the value of the SR.

o The extra pin of tyode and MUXs switch between the
signal from the combinational part of the controller and that
from the ISTG.

This architecture can achieve short test application time and
at-speed testing because the scan-shift operation is never
used.

3.2 Flow of our method

Given a controller, the procedure of our method is per-

formed as follows:

Step 1: Generate valid two-pattern tests under constraints
by using a combinational ATPG.
Step 2: Generate a test sequence under a limited process-

ing time by using a sequential ATPG.
Step 3: Generate invalid two-pattern tests including don’t
care (X) values under no constraints by using a combina-
tional ATPG.
Step 4: Make an ISTG.
Step 5: Construct a test sequence for the original circuit
from all the generated two-pattern tests.

In the next subsection, the details of these steps are ex-
plained.

3.3 Details of our procedure

First, we consider redundant faults in a controller. These
redundant faults are classified into the five categories shown
in Fig. 5 based on tou:, which is our DFT element. The
redundant faults in class (1) are undetectable in the combi-
national part of the controller. These faults are called com-
binationally redundant faults. Some detectable faults in the
combinational part become undetectable due to the limita-
tion of state transitions in the synthesized controller. Such

faults belong to class (3). We call these faults sequentially

(1) Combinationally redundant faults
(2) Sequentially redundant faults
at logic level with tox
(3) Sequentially redundant faults
at logic level without tax
(4) Sequentially redundant faults
at functional level with tax
(5) Sequentially redundant faults
at functional level without to

Fig. 5 Classes of redundant faults.

redundant faults at logic level without toy. In synthesizing
a given STG, some new states and transitions are generally
added to the synthesized controller. This implies that some
detectable faults in the complement of class (3) become un-
detectable if we only consider the original behavior of the
given STG. We classify these faults into class (5). These
faults are called sequentially redundant faults at functional
level without toyut. If we append tout to the synthesized con-
troller, some undetectable faults in classes (3) and (5) are
detectable. Thus, classes (3) and (5) change into classes (2)
and (4) respectively if tout is added. In the following discus-
sion, we use the above classification.

In Step 1 of the previous subsection, for the combinational
test generation model of a given controller, we use a combi-
national ATPG. In order to generate valid two-pattern tests,
we give some information (constraints) to the ATPG. A con-
straint is a tuple, (Ci1, C2), including the values of PIs and
PPIs. We extract constraints from a given STG. The values
of PIs and PPIs corresponding to a transition in the STG
are used as the value of a constraint. Some parts of a con-
straint have unspecified values. In generating a two-pattern
test, the values of C; and C are set as the values of the first
vector and the second vector, respectively. Then, the ATPG
only generates vectors for the unspecified parts of the first
vector and the second vector. If the value corresponding to
a transition in a given STG is used as a constraint, gener-
ated two-pattern tests under the constraint can be always
applied by the original behavior of the controller. In Step 1,
we use the constraints corresponding to all the transitions in
the STG. Therefore, we can identify all the redundant faults
in class (4). If the designer of a given controller judges that
it is sufficient to test only the faults in the complement of
class (4), Steps 2-4 are skipped, i.e., only tou is appended
to the controller as a DFT element. However, the remaining
faults that are not detected by Step 1 may affect the opera-
tion in a manufactured chip if at least one of them exists in
the chip. This is because that the remaining faults may be
activated due to new states and transitions appended to the
original controller in the logic synthesis. Steps 2-4 should be
performed if the designer is concerned with these faults.

In Step 2, for the remaining faults in Step 1, we try to

___57*,

Table 1 Truth table of an ISTG.
Inputs | Outputs
11&S} s}
138 S? S2

mesy | Sp

identify the redundant faults in class (2), and generate a test
sequence for the faults in class (4) except (2) by using a se-
quential ATPG. However, this task is very time-consuming.
Therefore, we consider to use a sequential ATPG under a
limited processing time per fault. This implies that we take
the faults that are easy to be identified as redundant and
those that are easy to be detected into account in this step.
Note that the limited processing time is decided depending
on the demand of the circuit designer.

In Step 3, we generate two-pattern tests, which are invalid,
including X values for the remaining faults in Step 2 under
no constraint. In Step 4, for each X in invalid two-pattern
tests, we contrive to assign 0 or 1 in order to reduce the hard-
ware (area and pin) overhead and test application time. This
step tries to identify all the redundant faults in class (1).

In Step 4, we construct an ISTG. An ISTG realizes the
functions of invalid two-pattern tests for the faults in class (4)
except (1). For example, given n invalid two-pattern tests
t1 = (I1&SHI3&SY), ta = (I3&SE I3&S3), ..., tn =
(I1&ST, I3&S5), an ISTG must realize the functions shown
in the truth table (Table 1). Note that if there exist m
invalid two-pattern tests which satisfy I1&S} = I2&S? =
coo = IT'&ST" and S5 + S (Vi,§, 1 £ 4,5 £ m, i % j),
we need ts.; whose bit width is [logm] to distinguish among
them.

The area overhead of an ISTG depends on the number of
varieties of transitions in invalid two-pattern tests. By using
a technique, e.g.,[10], which can identify some sequentially
redundant faults in advance, and removing those faults from
the fault list in Step 3, we can reduce the area overhead be-
cause the number of invalid two-pattern tests, i.e., the num-
ber of varieties of transitions, is reduced. Moreover, for each
X in invalid two-pattern tests, if we contrive ways to assign 0
or 1, the hardware overhead and test application time can be
reduced. We have investigated several techniques to assign
the suitable value to X. However, in the following discussion,
we pick up only one technique to reduce the area overhead
due to the limitation of space.

The problem to obtain an ISTG whose area is minimum is
formalized as follows:

Given: A set of invalid two-pattern tests including X val-

ues.

Table 2 Intersection operator.

nio 1 X
0lo o o
1/ 1 1
X101 X

Solution: An ISTG whose area is minimum.

As mentioned previously, the area of an ISTG depends on
the number of varieties of transitions in invalid two-pattern
tests. Therefore, if we reduce the number of rows in the
truth table of an ISTG, the area of the ISTG can be re-
duced. We introduce a terminology here. For two vectors
V; = (vi,0},...,vi) and V; = (v],],...,v3) (v € {0,1,X}),
they are said to be compatible if vi Nv] % @ (Yo, v]), where
N is the intersection operator defined by Table 2.

We consider to minimize the number of rows in the
truth table of an ISTG. Given two invalid two-pattern tests
t; = (I1&S}, I3&SE) and t; = (F &S], I3&S3), if I1&Si &S}
and I78S87&S) are compatible, we can merge them into
one function by assigning the suitable value. For exam-
ple, given invalid two-pattern tests t1 = (0X&01, 1X&0X)
and t; = (X1&X1,00&01), “0X010X” and “X1X101” are
compatible. Therefore, if we assign the value as follows:
t; = (01&01,1X&01), t> = (01&01,00&01), we can merge
them into the function of “0101j01” (inputsjoutputs). From
this observation, we solve this problem as a clique parti-
tioning problem (CPP)[5] on a compatibility graph, where
a vertex t represent a vector and an edge (ti,t;) indicate
that two vertices ¢; and t; are compatible. Note that, in the
above discussion, although we only consider the area over-
head, we have also developed several techniques to reduce
the bit width of ts; and the test application time. However,
we also omit to describe them due to the limitation of space.

In Step 5, in order to construct a test sequence for the
original circuit, we defermine an order of applying all the
two-pattern tests. Note that the test sequence generated in
Step 2 is applied to the circuit before/after applying the test
sequence obtained in this step. Here, we consider a prob-
lem to construct a test sequence whose length is minimum
as an asymmetric traveling salesperson problem (ATSP) on
a graph with a distance matrix, where a vertex t corresponds
to a two-pattern test, and an arc (i:,t;) corresponds to the
path between ¢; and t;. The distance d(t;, t;) means the min-
imum clock cycles that are needed to apply the first vector
of t; after applying t;. Note that if the values of the second
vector of t; and the first vector of t; are the same, the value
of d(t;,t;) is —1. Thus, we can construct a test sequence by

solving the corresponding ATSP.

4. Advantages of our method

4.1 Conventional methods and our method

In this subsection, we compare the proposed method to
conventional methods (standard scan and enhanced scan
methods).
Standard scan method: Test generation for a controller
designed by this method requires a combinational ATPG
which supports the skewed-load [7],[8] mode and/or the
broad-side [9] one. Generated two-pattern tests are applied
to the controller through a scan chain in the skewed-load
fashion and/or the broad-side one. The test application time
is estimated as n(nssrr + 2) + nssrr, where n and nssrr
are the number of two-pattern tests and standard scan FFs
(SSFFs), respectively. In this method, each SSFF in the con-
troller has an additional MUX. Therefore, the area overhead
is AMux X nssrr, where Amux is the area of the additional
MUX. Due to the additional MUXs, the circuit delay in-
creases. The increasing delay is equal to the delay of an
MUX. This method needs three additional pins. Note that
we assume that this method has a single scan chain.
Enhanced scan method: We can generate tests for a
controller designed by this method by using a combina-
tional ATPG. The test application time is estimated as
2n(ngsrr + 1) + nesrr, where nesrr is the number of en-
hanced scan FFs (ESFFs). Each ESFF in the controller has
an additional MUX and a hold latch (HL) [3]. The area over-
head is, therefore, (Amux + AuL) X nEsFr, where Ay is the
area of an HL. The delay penalty is higher than that of the
standard scan method because of the delay of the HL. The
increasing circuit delay is equal to the sum of the delays of
an MUX and an HL. Furthermore, the pin overhead of this
method is high compared with that of the standard scan
method because the HL have to be controlled by an addi-
tional pin. The total number of additional pins is four. Note
that it is also assumed that this method has a single scan
chain.
Our method: In our method, we first generate tests for the
combinational test generation model of a controller by using
a combinational ATPG under the constraints extracted from
the STG. The test generation is repeated n. times, where n.
is the number of constraints. Next, we generate a test se-
quence for the remaining faults under a limited processing
time by using a sequential ATPG. Then, we try to generate
two-pattern tests for the aborted faults in the previous step
under no constraints, and we construct an ISTG for the gen-
erated invalid two-pattern tests. The test application time is
determined by an order of applying all the two-pattern tests
to the controller. The area overhead is Amux X nrr + Aistc,

where npr is the number of FFs and Aistc is the area of

Table 3 Circuit characteristics.

L #FFs Area
Circuit |#PlIs|#POs|#Statesf— -
Binary |One-hot|Binary |One-hot
dk15 3 5 2 4 127 168
dk17 2 3 3 8 134 173
kirkman| 12 6 16 4 16 360 500
sand 11 9 32 5 32 866| 1,020

the ISTG. The proposed method has the same delay penalty
compared to that of the standard scan method. The extra
pins (tsel, tout and tmode) are needed in our method. The
sum of the bit width of these pins is |tsel| + [tout] + 1. In a
controller-datapath circuit, which is composed of a controller
and a datapath, we can use the primary inputs and outputs
of the datapath as tse1 and tout, respectively. It allows the
pin overhead to be reduced to two.

Here, we mention some essential differences among these
methods. Since the scan-shift operation is needed in scan-
based methods, we cannot perform at-speed test. However,
our method allows it. Furthermore, in our method, we can
reduce the area overhead by using a technique, e.g.,[10],
which can identify some sequentially redundant faults in ad-
vance, and removing those faults from a fault list. In con-
trast with our method, the hardware overheads of scan-based
methods cannot be reduced even if the technique is used. In
other words, ISTGs can be designed flexibly in response to
the test qualities demanded by circuit designers.

4.2 Experimental results

In this subsection, we evaluate the test generation time,
the fault efficiency, the test application time and the hard-
ware overhead of the proposed method.

We used the four MCNC 91 benchmark circuits shown in
Table 3. Columns “#PlIs”, “#POs”, “#States” and “#FFs”
denote the numbers of primary inputs, primary outputs,
states and FFs, respectively. Column “Area” is the area es-
timated by the Design Compiler (Synopsys). In synthesizing
benchmark circuits, binary encodings and one-hot encodings
were used. In this experiment, we compared our method
(NS) to a standard scan technique (SS) and an enhanced
scan technique (ES). The TestGen (Synopsys) was used as
a delay test generation tool, and the transition fault model
was targeted. Note that, in SS and ES, we assumed that
the both methods have a single scan chain. For SS, we com-
pared only the hardware overhead because the TestGen does
not support the skewed-load mode and the broad-side one.
Note that, in this experiment, Step 2 in the procedure of our
method is skipped, and we randomly assigned 0 or 1 to X in
invalid two-pattern tests in Step 4 for simplicity.

Table 4 shows the test generation results and the hard-

ware overheads in binary encodings and one-hot encodings.

Table 4 Test generation results and hardware overheads in binary and one-hot encodings.

L . TGT [s] FE (%] TAT [CC]| Area OH [%] Pin OH Ratio of area OH
Circuit | Encoding

ES | NS ES NS ES |NS| SS | ES | NS |SS|ES| NS SS: ES: NS
k15 Binary |0.16] 0.77|100.00{100.00| 170|138|11.0/22.0|11.8 3| 4 4(2)] 1:1.10:1.01
One-hot |0.11| 0.92{100.00|100.00] 294|153|16.7(33.3|17.9| 3| 4| 6 2) 1:1.14:1.01
k17 Binary |0.13| 1.27|100.00(100.00{ 211 144|15.7 31.3|18.7 3| 4| 4(2) 1:1.14:1.03
One-hot 10.11] 1.03|100.00{100.00{ 494|153|32.4|64.7]41.0] 3| 4|11 (2) 1:1.24:1.07
\irkman Binary |0.50|14.20(100.00|100.00| 934|429} 7.8|15.6 19.2| 3| 4| 8(2) 1:1.07:1.11
One-hot |0.57]15.88 | 100.00|100.00|2,974 |645{23.0|45.9|31.6| 3| 4|18 (2) 1:1.19:1.07
cand Binary |1.52(30.09|100.00|100.00|1,973|979| 4.0| 8.1 17.8| 3| 4|10 (2) 1:1.04:1.13
One-hot |1.32|21.88|100.00|100.00|9,470{977|22.0|43.929.5| 3| 4{36(2)| 1:1.18:1.06

Columns “TGT [s)”, “FE [%]” and “TAT [CC (clock cy-
cles)]” denote the test generation time, the fault efficiency
under the non-robust criterion and the test application time,
respectively. Columns “Area OH [%]” and “Pin OH” denote
the area overhead and the pin overhead, respectively. Col-
umn “Ratio of Area OH” denotes the ratio among the area
overheads in the respective methods.

In the test generation results, the test generation time of
our method was longer than that of ES because we performed
test generation for all the constraints of a given circuit. How-
ever, the test application time of our method was signif-
icantly short compared with that of ES, especially in the
one-hot encodings. Furthermore, unlike ES, we can perform
at-speed test in our method. This implies that the actual
test application time of our method becomes much shorter
than that of ES.

In the results of hardware overheads, the area overhead of
SS was the smallest of all. The area overhead of our method
was smaller than that of ES, except two cases. As mentioned
previously, we randomly assigned 0 or 1 to X in invalid two-
pattern tests. Therefore, the area overhead of our method
can be improved if we use the techniques described in Sec-
tion 3.3. Moreover, by using a technique, e.g., [10], the area
overhead can be reduced. Note that if we do not take into
account the redundant faults in class (4) (Fig. 5), ISTGs will
not be necessary. In other words, only tout is appended to
the original controller as a DFT element. The pin overhead
of our method was the largest of all. However, if we consider
a controller-datapath circuit, we can use the primary inputs
and outputs of the datapath as tsei and tout, respectively. As
a result of the sharing, the pin overhead can be reduced to

2, which is shown in parentheses of Table 4.
5. Conclusions and future works

This paper proposed a non-scan testing scheme to enhance
delay fault testability of controllers. Our scheme allows the

following: achieving (1) short test generation time, (2) short

test application time and (3) at-speed testing. In the pro-
posed method, for only the faults needed to be tested, we try
to design an invalid test state/transition glenerator (ISTG).
That is, in response to the test qualities demanded by cir-
cuit designers, we can design ISTGs flexibly. We showed the
effectiveness of our method by the experiment. Our future
works are to develop ways to reduce the pin overhead and
make the test generation under constraints more efficient.
Acknowledgment We would like to thank Prof. Michiko
Inoue of Nara Institute of Science and Technology for her
valuable comments. This work was supported in part by 21st
Century COE (Center of Excellence) Program and in part
by JSPS (Japan Society for the Promotion of Science) under
Grants-in-Aid for Scientific Research B(2) (No. 15300018).

References

1] T.J. Chakraborty, V. D. Agrawal and M. L. Bushnell, “De-
sign for testability for path delay faults in sequential cir-
cuits,” Proc. 30th ACM/IEEE Design Automation Conf.,
pp. 4563-457, 1993.

K.-T. Cheng, S. Devadas and K. Keutzer, “Delay-fault test
generation and synthesis for testability under a standard
scan design methodology,” IEEE Trans. on CAD, Vol. 12,
No. 8, pp. 1217-1231, Aug. 1993.

B. L Dervisoglu and G. E. Stong, “Design for testability:
using scanpath techniques for path-delay test and measure-
ment,” Proc. Int. Test Conf., pp. 365-374, 1991.

A. Krsti¢ and K.-T. Cheng, Delay fault testing for VLSI
circuits, Boston: Kluwer Academic Publishers, 1998.

M. T.-C. Lee, High-level test synthesis of digital VLSI cir-
cuits, Boston: Artech House, 1997.

S. Ohtake, T. Masuzawa and H. Fujiwara, “A non-scan
approach to DFT for controllers achieving 100% fault ef-
ficiency,” Journal of Electronic Testing: Theory and Appli-
cations (JETTA), Vol. 16, No. 5, pp. 553-566, Oct. 2000.
S. Patil and J. Savir, “Skewed-load transition test: part II,
coverage,” Proc. Int. Test Conf., pp. 714-722, 1992.

J. Savir, “Skewed-load transition test: part I, calculus,”
Proc. Int. Test Conf., pp. 705-713, 1992.

J. Savir and S. Patil, “On broad-side delay test,” Proc. VLSI
Test Symp., pp. 284-290, 1994.

R. C. Tekumalla and P. R. Menon, “On redundant path de-
lay faults in synchronous sequential circuits,” JEEE Trans.
on Computers, Vol. 49, No. 3, Mar. 2000.

2]

@l

(8]
9

10]

