HEEA fHRLERS HRRE 2004—SLDM—-113 (14)
IPSJ SIG Technical Report 2004.71./23

CEFEIERB LUT A A7 —RIC & 32 iR OEH
vy ¥t mR o oghtt M oA skl &Y R fozft
HO SR

T AN TEREER TETETFHETER T 820-8502 RRRIRGH AT 680-4
1 UM TR A LR AR 2 — T 820-8502 ERIRERFHAT)I1 680-4
1 B REE TR EHAIERL T 214-8571 FR) I [IRI T X R = 1-1-1
E-mail: + {qinhui,nagayama}@aries02.cse kyutech.ac.jp, ¥ {sasao,matsuura}@cse kyutech.ac.jp,
+1 nakamura@cms.kyutech.ac.jp, T11 iguchi@cs.meiji.ac.jp

H>EL FETIE, IEFEBE LUT(Look Up Table) 7 A7 — R IC & 3 2 HATARBEBMOERIC OV TS, LUT
KR —R i, HL T Y 5T « 7784 A (PLD: Programmable Logic Device) TH D, #HlEE BIEE & JHF =
B 2 EEHVEIES 5. SOCERE L IEFEREE R 2 FIEBKRER L, ISASEFICSL THRWZT ST ENTE
3. SHAREMEEERT 8E, IBFEEE LUT 7 A7 — i, & EEBRIC N, X0 RRCRITHETHS.
AT, EFERE LUT AR — R OF 0k 24 7% 0.35m CMOS 77 / OV TRAL , TOMRERFERT o .
MPU(Micro Processing Unit) £ zY 7 b ¥ x 7 B & O LLBER TR, IFEEE LUT A X7 —F &, SH-1(A—
FAESRE FTOY T TERICENR, 77 05 229 EEETHY, PentiumIII(Fl— B EBHRE) LTOV T F
v P EBICHA, 3580 5 S8 ISEETH - f=. Eie, BEFKEN TV 3 0.18um CMOS 77 / 1D FPGA(Field
Programmable Gate Array) TEIU fz& DIGEWEREN RIS N Te. :
£—g—F LUT HRY—F, SHAHREER, BEEAE 70F 5370« T4

Realization of Multiple-Output Functions by Sequential Look-Up Table
Cascade

Hui QIN', Tsutomu SASAO™ ', Munehiro MATSUURA!, Shinobu NAGAYAMA', Kazuyuki
NAKAMURA', and Yukihiro IGUCHI'

+ Department of Computer Science and Electronics, Kyushu Institute of Technology
680-4, Kawazu, lizuka, Fukuoka, 820-8502 Japan
+1 Center for Microelectronics Systems, Kyushu Institute of Technology
680-4, Kawazu, lizuka, Fukuoka, 820-8502 Japan
+11 Department of Computer Science, Meiji University
1-1-1, Higasimita, Tamaku, Kawasaki, Kanagawa, 214-8571 Japan
E-mail: t {qinhui,nagayama}@aries02.cse.kyutech.ac.jp, {sasao,matsuura}@cse kyutech.ac.jp,
+1 nakamura@cms.kyutech.ac.jp, T11 iguchi@cs.meiji.ac.jp

Abstract A look-up table (LUT) cascade is a new type of a programmable logic device (PLD), which provides an alternative
way to realize multiple-output functions. Two types of LUT cascades exist: A combinational LUT cascade, and a sequential
LUT cascade. Comparison with a combinational LUT cascade, the sequential LUT cascade is more flexible. A prototype
of a sequential LUT cascade has been custom-designed with 0.35zm CMOS technology. Simulation results show that the
sequential LUT cascade is 77 to 229 times faster than software programs on SH-1 with the same clock frequency, and 35 to 88
times faster than software programs on PentiumIII with the same clock frequency, but is a little bit slower than the commercial

FPGAs.
Key words LUT cascade, Multiple-output function, Reconfigurable logic, Programmable logic device.

X
W

Cell,

X, X,
WYY

: Cell, L—- Celly [~ 1|
} R vy

FI F2 F3 Fs

X
Wy
|

Cell,

Fig.] Combinational LUT cascade.

1. Introduction

Programmable logic devices (PLDs) are widely used for proto-
typing and final products to reduce turn-around time and financial
risk. In this paper, we consider a realization of multiple-output logic
functions by using PLDs. Various methods exist to realize multiple-
output logic functions. Among them, RAMs and programmable
logic arrays (PLAs) directly implement logic functions. However,
when the number of input variables n is large, the necessary amount
of the hardware becomes too large. Thus, field programmable gate
arrays (FPGAs) are often used. However, FPGAs require both phys-
ical and logic design. Also, without the complete physical design,
the prediction of the performance of FPGAs is hard because the
area and delay for the interconnections are often much larger than
that for logic cells.

A look-up table (LUT) [1] cascade is a new type of a PLD. Since
it has a memory-like structure and the interconnections are simple,
prediction of the circuit performance is easy. Two types of LUT cas-
cades exist: A combinational LUT cascade, and a sequential LUT
cascade.

A combinational LUT cascade shown in Fig. 1 consists of several
memories (cells) connected in series to realize a function. Although
the combinational LUT cascade is simple and fast, the logical ca-
pability is low. Once the number of inputs, outputs of cell, and the
number of cells are fixed, the number of realizable functions is lim-
ited. Thus, an efficient use of memory is hard.

A sequential LUT cascade shown in Fig. 2 simulates a combina-
tional LUT cascade sequentially using just one memory for logic.
Since the number of inputs, the number of outputs of the cell and
the number of cells can be changed by using programmable con-
nection network, the sequential LUT cascade can implement wider
range of functions. Also, memory-packing[1] technology can be
used to reduce total amount of memory.

In this paper, we show a prototype of a sequential LUT cascade
custom-designed with 0.35um CMOS technology, and compare its
performance with microprocessors and FPGAs. The rest of the pa-
per is organized as follows: Section 2 explains the architecture and
features of the sequential LUT cascade. Section 3 presents the cir-
cuit design of the prototype. The experimental results are shown in
Section 4, and Section 5 concludes the paper.

2. Sequential LUT Cascade

In this section, we explain the architecture and features of a se-
quential LUT cascade.

The sequential LUT cascade shown in Fig. 2 consists of five parts:
The Input Reg. stores the values of primary inputs; the Output

Control Part Memory
i| Control |: for Logic
E Memory for E
et | oo
; C8“2
Imput | 0 b
Reg.
& > Programmable .
Connmection M1 *
Network
Output 4] Cell,
Reg.

Fig.2 Architecture of sequential LUT cascade.

XN X2)2 X4 Ya

‘Y4

Celly = Celly F3 celty 3] celty 3

15, VS, I ¥5,

Fig.3 Structure of combinational LUT cascade for 4-bit adder.

X3)3

Reg. stores the values of primary outputs; the Memory for Logic
stores the LUT data for cells, where all of the LUT data are stored in
one memory. The Control Part consists of the Control block that
generates control signals and the Memory for Interconnections
that stores the information of the interconnections among cells; the
Programmable Connection Network implements the interconnec-
tions among cells.

A sequential LUT cascade simulates the combinational LUT cas-
cade sequentially. Although it is slower than the combinational one,
its logical ability is much higher. In the sequential LUT cascade, the
number of inputs, outputs of the cell, and the number of cells can be
changed by using programmable connection network.

Compared with the combinational LUT cascade, the sequential
LUT cascade has the following features:

e Requires only one memory for LUT data.
o Can implement wide range of functions.
e Canuse memory-packing [1] to reduce total amount of mem-
ory.
e 30 to 100 times faster than a microprocessor.
[Example 1] Consider a 4-bit adder.
x4 X3
) Y4 ¥z y2 N
Cout S¢ S3 S 5

The adder can be implemented by a combinational LUT cascade
with four independent cells as shown in Fig. 3. Note that the number
of cells is four. V

However, if we use a sequential LUT cascade, we need just one
memory for LUT data. Figs. 4 (a)-(d) show the operation of the 4-bit
adder by the sequential LUT cascade. Suppose that the memory for
logic with five address lines (44,43,42,41,40), and eight outputs
(D7,D¢,Ds,D4,D3,D2,D1, D). ‘ - ‘

The combinational cascade consists of four cells. In this case, the
sequential cascade requires four steps to compute the outputs of the

X3 X1

A
S e s
X 4, Mefmory *2 A}Cellz
yi 4o |22 M

4y Logic
D, D

v

s

(a) (b)
A4 Memory l A4
Page3 A3 for 43 Memory
x3 FE B o e
»3 41 celly| 4 A

Fig.4 Operation of 4-bit adder.

adder. We partition the memory into four pages, and assume that the
two most significant bits of the address denote the page. In the first
step, the top two most significant bits are set to (0,0), as shown in
Fig. 4(a). This corresponds to the page 1 in the sequential cascade,
and the first cell in the combinational cascade. We have to read the
memory to obtain C; and Sy. Since the first cell has only two in-
puts, the least significant bit of the address can be either O or 1. This
operation is symbolically denoted by:

(A4,A3‘A2,A|,Ao) «(0,0,x1,y1,%),

where x denotes either 0 or 1.

After reading the values of (Cy,5)), C is transferred to the least
significant bits of the address for the next lookup. At the same time,
S is set to the least significant bit of the output register. This wiring
is done by the programmable connection network in Fig. 2. The in-
formation for the connection for this step is stored in the memory
for interconnections. This operation is symbolically denoted by:

Read (D1,Dy), and let (Cy,81) + (D1,Dg).

Let OUT_REG [0] « Si.

In the second step, the 2nd page is used to obtain (C2,52) as
shown in Fig. 4(b). Symbolically, the operation is denoted by:

(A4,A3,A2,A1,A0) + (0,1,x2,y2,Cy).

Read (D1,Dyp), and let (C2,82) « (D1 ,Dy).

Let OUT-REG [1] « (S2).

In the third step, the 3rd page is used to obtain (C3,S3) as shown
in Fig. 4(c). Symbolically, the operation is denoted by:

(3,43, 42,41, Ag) + (1,0,x3,y3,C2).

Read (D, Dy), and let (C3,83) + (D1 ,Dp).

Let OUT_REG [2] - (S3).

In the last step, the 4th page is used to obtain (C ou,S4) as shown
in Fig. 4(d). Symbolically, the operation is denoted by:

(44,43, 42,41, 4o) + (1,1,x4,54,C3).

Read (D1, Do), and let (Cour,S4) + (D1,Do)-

Let OUT_REG [4:3] ¢ (Cour,S4)-

Note that it simulates the combinational LUT cascade in Fig. 3.
In this way, the 4-bit adder is evaluated by accessing the memory

four times. (End of Example)

3. Circuit Design

This section presents a transistor-level design using 0.35um 3.3V
CMOS technology, and evaluates the delay of the prototype using
circuit simulator SPICE.

3.1 Circuit Design of the Prototype

The specifications of the prototype sequential LUT cascade are as
follows:

e The number of external inputs is at most 32.

o The number of outputs is at most 24.

o The number of cells of LUT cascades, s is at most 8.

o The maximum number of inputs for each cell, k is 13. Each
cell may have different number of inputs.

o The maximum number of outputs for each cell is 8.

o It can use memory-packing to reduce total amount of mem-
ory.

Fig. 5 shows the architecture of the prototype. It consists of the
following components:

Input Reg.: 32-bit, stores the values of primary inputs.

Output Reg.: 24-bit, stores the values of primary outputs.

MAR: 13-bit memory address register, stores the values of interme-
diate address.

64K-bit SRAM: Stores the LUT data for cells. 13 inputs and 8
outputs.

Control Part: Includes two blocks. The RAM stores the informa-
tion of the interconnections among cells, and the control block con-
sists of one counter and several logic gates that generate the control
signals for the LUT cascade.

Shifter Network: Consists of several barrel shifters and a 32-bit
register that stores the values of intermediate outputs of cells. It
implements the programmable interconnections among cells.

The prototype has two important parts: The 64K-bit SRAM and
the shifter network. Since the SRAM should operate as a data path
in the cascade mode, we use an asynchronous SRAM. Because de-
sign methods of SRAMs are described in literature {2], we just show
the circuit design of the barrel shifter. The delay of an n-bit shifter is
proportional to logn, so combined with the fast transmission gates,
shift can be fast [2]. Furthermore, we reduced chip area by using a
single n-channel pass transistor instead of a full transmission gate.
Fig. 6 shows the detail design of a 4-by-4 barrel shifter.

3.2 Operation Modes in Cascades

The sequential LUT cascade has two modes: The configuration
mode and the cascade mode. In the configuration mode, all of the
address lines of two RAMs are directly connected to the inputs
through two multiplexers. 8-bit data input lines which connected
to DIN in Fig. 5 are used to store LUT data for cells into the 64K-
bit SRAM, while another 28-bit data input lines are used to store the
information of interconnection into the RAM in the control part. In
the cascade mode all the address lines of 64K-bit SRAM are con-
nected to the MAR, while the address lines of the RAM in the con-
trol part are connected to the control block, and both RAMs are in

3 64K-bit
Inputs 5 SRAM
1 2) . 13 13 y
Input+> Shifter | ;o | MAR ADDR DOUT
Reg. Network |7 7 | 13bit
LY (P J 326kt
¢« Control Part |
WE DIN
y TP b 3 [Ram (] 229 L ?
WE / > : ADDR | ! 8
H WE |4)
Mode : on E 2
i, -
S H
: : Output Reg. (24bit)
H H
28 Outputs
Fig.5 Architecture of the prototype.
shi[0] D— Delayl Delayd
shi{1] p—g ¥
-_S‘7 | 0-63ms | R k ¥ 1.64ns H
X —F:‘—-‘?-D"—DOH(D] 1™ i 2.80ns ol 0.80ns
o] — 1 Delay2 Delay3
m 1 -T
ry A Time to Transfer Outputs of Cell,
A JL?‘D"_D““'U] Time to Setup the MAR for Cell;_ ..,::, :‘,l:,t':,’,;r_ utputs o7E€
inf2) 1Ly | 2 :Dehy:z 4.5ns
1 iy gl i
_,__J"I_?_D_] r‘D"_Don![II Clock | | ceme l I
in[1] D— Al 1% - e — s
A L L?.D.,_Dm[o] Detayt A5 n e Delay3 Detayd
— A— Setup Setup
in[0] D——e—| ;j T the MAR | the MAR :
T for Celly } for Celly

Fig.6 Details of a 4-by-4 barrel shifter.

Shifter Network

64K-bit
SRAM

»{ S hifters

Shifters

Fig.7 Signal path of the prototype.

the READ operation.

To use the LUT cascade, first, the chip is set to the configuration
mode: We need to store LUT data into the 64K-bit SRAM and store
the interconnection information into the memory for interconnec-
tion. Then, the chip is set to the cascade mode. Finally, we can get
the desired result after the evaluation time.

3.3 Operation Speed of the Prototype

To obtain the operation speed of the sequential cascade, we parti-
tion the sequential LUT cascade into three parts as shown in Fig. 7.
The In Part consists of input pad (I Pad) and input register, the Out
Part consists of output pad (O Pad) and output register, and the oth-
ers are represented as the Sequential Part dotted line. Fig. 8 shows

64K-bit SRAM
Data Output < Celly - """ x Cell, >

Fig.8 Delay time in the signal path.

the delay time in the signal path, where the values are obtained by
SPICE simulation for a 0.35um, 3.3V CMOS process.

In Fig. 8, the delay for In Part is denoted by Delayl, and the de-
lay for Out Part is denoted by Delay4. The delay for the sequential
part depends on the number of clocks. In the prototype, during one
clock cycle we can access the 64K-bit SRAM once. Note that before
the memory access, we need to setup the MAR with the values of
cell address. The time to setup the MAR for the first cell is denoted
by Delay2, which is shorter than the time for the rest of the cells
because its path is C to D. The time to setup the MAR for the other
cells is equal to one clock cycle. Thus, when the combinational cas-
cade consists of s cells, the time to setup the MAR for cells is equal
to (Delay2 + (s-1) * CLK), where CLK is 4.5 ns. However, we also
need one clock cycle to transfer the outputs of the last cell to the
point E. And then after Delay3, the primary outputs are out of the
sequential part. Therefore, the delay time for the sequential part
is equal to (Delay2 + s * CLK + Delay3). And the total delay of
the sequential LUT cascade is obtained by the following:

Delay = Delay! + Delay2 + s * CLK + Delay3 + Delay4
0.63+2.8+4.5%+08+1.64
= 4.5*s+59 (ns)

6)]
[Example 2] Consider the 4-bit adder in Example 2.1, where s is

Time to Setup Time to Setup Time to Transfer
the MAR the MAR Cout a0d S,

for Cell,, for Celly, to the Point of E.
Delay2 4508 45ns

- P b :

Clock | i l .
- — ! i —
Delayl o 4Sas | Asm b i Delay4

Y i Timeto ! Time to Delay3 Delay
! Setup ! Setup
! the MAR: the MAR
 for Celly ! for Cell,,

64K-bIE SRAM |
Data Output —— Cyy $1 X Czy 82X €35 83 X Cawis 84

Fig.9 Delay time for the 4-bit adder.

4. The evaluation time is 4.5 x 4 + 5.9 (ns).

Fig. 9 shows the distribution of the evaluation time for the 4-bit
adder. First, after Delay1, the values of (x1,y1,%2,52,%3,73,%4,54)
are stored into the Input Reg. Second, before accessing the 64K-
bit SRAM, we need to spend Delay2 to setup the MAR with
the values of (0,0,0,x1,y1, X, X, %, X, X, X, x, x) for Cell;, where
x denotes either 0 or 1. Then, to obtain C; and S>, we need
to spend one clock cycle to setup the MAR with the values of
(0,0,1,x2,y2,C1, X, X, X, X, X, X,x) for Cell, meanwhile S| is
transferred to the point of E. During the next clock, the values of
(0,1,0,x3,53,C2, X, X, %, X, X, X, x) have to be sent to the MAR
for Celly to obtain C3 and S3, meanwhile S is stored in the 32-bit
register, and S, is transferred to the point of E. Similarly, to ob-
tain C,y and Sy, the values of (0, 1, 1,x4,94,C3, X, X, X, X, X, X, X}
have to be sent to the MAR for Cells, meanwhile S is stored in
the 32-bit register, and S3 is transferred to the point of E. Dur-
ing the next clock, S3 is stored in the 32-bit register, then Cout
and S5 are transferred to the point of E. During Delay3, both Coy
and S; are stored in the 32-bit register, and then the values of
(81,52,53,Cou,Sa) are transferred to the output register. Finally,
we can get the evaluated results after Delayd.

(End of Example)

4. Experimental Resuits

We evaluated the performance of the prototype, and compared
it with microprocessors and FPGAs. To make the argument sim-
ple, we selected functions from MCNC combinational benchmark
set[3].

Table 1 compares the performance of the prototype with two mi-
croprocessors and commercial FPGAs. In this table, “Name”, “In”,
and “Out” denote the function name, the number of inputs, and the
number of outputs, respectively. The column “s” denotes the num-
ber of cells in the LUT cascade. To obtain the number of cells, we
used the newly developed logic synthesis tool [4], where the number
of inputs for each cell & is set to 10. The column “Time” denotes
the evaluation time for the prototype estimated by the equation 1 in
Section 3. 3, in nano second.

4.1 Comparison with Microprocessors

At least two approaches exist to implement software for a com-
binational benchmark functions. The first approach is to simu-
late the multi-level combinational circuit by some logic simula-
tor. The second approach is to represent the function by a binary

decision diagram (BDD), and then traverse the BDD by a special
program [5], [6]. In this experiment, we used the second approach,
since it was faster than the first approach for the benchmark func-
tions. We represented benchmark functions using binary decision
diagrams (BDDs) for characteristic functions (CFs). The numbers
of nodes in BDDs for CFs were reduced by using sifting algo-
rithm [7]. Then, we generated a table that represents the BDD, and
we used a special program to traverse the BDD data.

To compare the performance of the prototype with the speed
for the software programs, we used RISC microprocessor SH-1
(SH7020) 20MHz [8] and PentiumlIIl 1GHz with 256KB cache[9].
SH-1 is an embedded MPU used in DVDs, navigation systems,
digital cameras, etc. On the other hand, PentiumlIl is a high-
performance CPU for desktop PCs. For SH-1, we compiled the
software program using SH C/C++-compiler [10] with the optimiza-
tion option for speed, and obtained the CPU time using SH simula-
tor[11]. For Pentiumlll, we compiled the software program using
GNU C-compiler gcc with -O2 option, and obtained the CPU time
by executing it on Linux with 4GB memory.

In Table 1, the column “SH-1" denotes the average CPU time
per test vector for the software program on SH-1, in micro second.
When the number of inputs for benchmark function is smaller than
17, we obtained the average CPU time for the benchmark function
using the exhaustive test (i.e., 2" test vectors, where 7 is the num-
ber of inputs). When the number of inputs for benchmark function is
larger than or equal to 17, we obtained the average CPU time for the
benchmark function using 1,000,000 random test vectors. Similarly,
the column “PenlII” denotes the average CPU time per test vector
for the software program on PentiumlIl, in micro second. Pentiu-
miII was too fast to obtain the average CPU time accurately using
small number of test vectors. Thus, for all benchmark functions, we
used 1,000,000 random test vectors. In the last three columns, the
column “SH-1” denotes the relative speed of LUT cascades to the
speed of SH-1, where the speed of SH-1 with 222MHz is set to 1.
Similarly, the column “PenlII” denotes the relative speed of LUT
cascades to the speed of PentiumIll, where the speed of PentiumlII
with 222MHz is set to 1. That is, they are calculated by

SH-1 time x 20MHz/222MHz

LUT/SH-1 = LUT cascade time

3

Penll! time x 1GHz/222MHz
LUT cascade time

Note that 222MHz is the clock frequency for the LUT cascades.

Table 1 shows that the sequential LUT cascades are 77 to 229
times faster than SH-1, and 35 to 88 times faster than PentiumIIl
when the clock frequencies for LUT cascade and MPUs are equal.

4.2 Comparison with FPGAs

The same MCNC benchmark functions were implemented by
FPGAs. Firstly, each benchmark function was optimized by SIS
tool [12] with script.algebraic and then it was converted to Ver-
ilog HDL source. Secondly, by Synplify Pro (version: 7.3.3)13]
it was optimized for Altera EP20K30EFC144-1 FPGA device (1.8-
V, 0.18um)[14]. Finally, Quartus (version 2000.09) [14] was used
to map it into the FPGA.

In Table 1, the column “LEs” denotes the number of logic el-
ements actually used in the FPGA. The column “Delay” denotes
the delay time for each benchmark function obtained by Quartus, in

LUT/Penlll =

Tablel Comparison of sequential LUT cascades with MPUs and FPGA.
LUT cascades | SH-1 | Penlll FPGA Relative speed of LUT
Name | In |Out | s | Time[ns] | [us] {us] | LEs | Delay [ns] | SH-1 | Penlll | FPGA
misex2 | 25| 18 |5 284 | 419 0.36 35 13.2 [133 57 0.46
misex3 [14 | 14 |4 239 | 386 030 | 263 234 | 146 57 0.98
mip6 12 12 |7 374 | 420 | 0.34 1074 29.0 | 101 41 0.78
ind4 32 2018 419 | 456 0.39 | 109 17.3 98 42 0.41
chkn 29 715 284 | 243 022 | 178 24.8 77 35 0.87
b3 321 2017 374 | 453 037 | 103 184 | 109 45 0.49
b2 16| 176 329 | 43.0 033 | 216 259 | 118 45 0.79
amd 14| 24 |7 374 | 54.6 043 | 107 16.5 132 52 0.44
apex4 91 1914 239 | 49.0 | 039 | 820 235 185 74 0.98
becl 26| 11 |5 284 | 31.9 | 025 417 240 | 101 40 0.85
intb 15 713 194 | 323 025 | 393 362 | 150 58 1.87
prom2 91 213 194 | 494 | 038 | 764 25.1 { 229 88 1.29
tial 14 813 194 | 340 027 | 357 209 | 158 63 1.08
pl 81 1816 329 | 46.2 0.38 91 140 | 127 52 0.43
mé 81 16(3 194 | 39.8 030 | 204 199 | 185 70 1.03
x9dn 27 715 284 | 28.2 0.26 31 15.9 89 41 0.56
gary 15 11 |4 239 | 29.8 024 | 181 204 | 112 45 0.85
exam 10| 102 149 | 343 026 | 148 18.8 | 207 79 1.26
12 17 165 284 | 423 0.33 67 144 | 134 52 0.51
nano second. In the last three columns, the column “FPGA” denotes [4] T. Sasao and M. Matsuura “A method to decompose multiple-output
the relative speed of LUT cascades to the speed of FPGA, where the logic functions,” (in Japanese). Technical report of IEICE, VLD2003-
speed of FPGA is set to 1. That s, it is calculated by 108, pp. 229-234, Nov. 28, 2903' .
[5] P. C. McGeer, K. L. McMillan, A. Saldanha, A. L. Sangiovanni-
Delay time of FPGA Vincentelli, and P. Scaglia, “Fast di function evaluation using
LUT/FPGA = o e e tme decision diagrams,” ICCAD’95, pp. 402-407, Nov. 1995,
R) 5 (6] S. Nagayama and T. Sasao, “Code generation for embedded sys-
Table | shows that the prototype is a little bit slower than the [tems ugsi:::“}‘wterogemous MDDs,” thge 12th workshop on Synthesis
FPGAs for many functions. Note that FPGA uses 0.18 zm CMOS And System Integration of Mixed Information technologies (SASIMI
technology, while the LUT cascade uses 0.35 um CMOS technol- 2003), pp. 258-264, Hirosima, Japan, April 3-4, 2003.
ogy. In spite of the advantages of process technology in FPGAs, [7] R. Rudell, “Dynamic variable ordering for ordered binary decision
the sequential LUT cascade gives a competitive performance to the diagrams,” ICCAD’93, pp. 42-41.
{8] Hitachi SuperH 32-bit RISC CPU SH-1 (8H7020), Renesas Technol-
FPGAs.
ogy Co.,
. http:/Awww. feng/products/mpumcw/32bit/sh/.
5. Conclusions 9] Intel Pentium III Processor, Intel Co.,
In this paper, we have shown a realization of multiple-output http://www.intel. com/products/desktop/processors/p nii/.
functions by a sequential LUT cascade. A prototype of a sequential (1] Hlmh.l Embedded Workshop (HEW), .SuPe.rH RISC Engine C/Ct+
) Compiler Package Ver. 6.0Ar2, Hitachi ULSI Systems Co.,
LUT cascade has been custom-designed by using 0.352¢m CMOS http://www.hitachi-ul.co jp/MYICE/XSOFT/.
technology. Our experiment results show that the sequential LUT [11] Hitachi Debugging Interface (HDI) for SH Series Simulator
cascades is 77 to 229 times faster than software programs on SH-1 Ver. 5.01, Hitachi ULSI Systems Co.,
with the same clock frequency as the LUT cascade, and 35 to 88 hutp://www hitachi-ul.co jp/MYICE/XSOFT/. o
times faster than software programs on PentiumlIIl with the same ti2] E. M Sentovich ct. alﬂ“ SIS: A Sy%tem for Sequential C.lmm Syr.‘-
thesis,” Dept. of Electrical Engineering and Computer Science, Uni-
clock frequency, but is a little bit slower than the commercial FP- versity of California, Berkeley,CA 94720, 1992.
GAs. [13] http://www.synplicity.com
[14] http://www.altera.com

Acknowledgments

This research is partly supported by JSPS, the Grant in Aid for
Scientific Research, and MEXT, the Kitakyushu area innovative
cluster project.

References

{1] T. Sasao, M. Matsuura, and Y. Iguchi, “A cascade realization of
multiple-output function for reconfigurable hardware,” International
Workshop on Logic and Synthesis(IWLS01), Lake Tahoe, CA, June
12-15, 2001, pp.225-230.

Neil H. E. Weste and K. Eshraghian, Principles of CMOS VLSI De-
sign: A Systems Perspective (second edition), , Addision-wesley pub-
lishing company 1994.

[3] MCNC-Benchmark set: http://www.cbl.ncsu.edu/www

2]

