2004—SLDM-113 (12)
2004123

HEEA HRUEZE HRARE
IPSJ SIG Technical Report

L7 9 7 2 e FE 7 7 7 itk oOR R
AT #ATH EE KAt R BOE
b IEBRFERER TEHER BRIFER
T 739-8527 ML BH#IL—T H 4-1
(E3E) 0824-24-7666 (FiHE), -7662 (J£:2)

(777 3))0824-22-7028
E-mail: {lord,daisuke,watanabe}@infonets.hiroshima-u.ac.jp

Ho% L RKEZLRSY T 74ETAIVEY T 7 METAREOBEIREL TV (OPRESN T B2,
MBS L) EREMO F 9 7 7 MK L CRsHERER - E/ A £) BOW CERICHRT 2 FEIRRETH 5.
AT, COLIREBOY S 7EFVIG L CLEMES ERNEFERANTE Z LA TE 2 LIIREE 3D
BEL, 2hb LBAEO4OOBEFIREOERLSHERERIC L) HBFFHEYT 5.

*—7—F FEY T 7, RELLE, BTV T) XA, GHERH

Efficient Extraction of a Planar Graph with Subgraphs whose Turning
Over is Forbidden ‘

Toshiyuki KINOSHITA®, Daisuke TAKAFUJI', and Toshimasa WATANABE!

t Graduate School of Engineering, Hiroshima University
1-4-1, Kagamiyama, Higashi-Hiroshima, 739-8527 Japan
Phone : +81-824-24-7666(Takafuji), -7662 (Watanabe)

Facsimile : +81-824-22-7028
E-mail: ${lord,daisuke,watanabe}@infonets.hiroshima-u.ac.jp

Abstract Although several algorithms for extraction of a planar graph with subgraphs whose turning over is
forbidden has been proposed, it does not seem that there exists any algorithm that can be used for large graphs ap-
pearing in practical situation. In this paper we propose three parallel algorithms that extract such planar subgraphs
in realistic computation time. Performance of these three algorithms as well as four existing sequential algorithms
is evaluated through experimental results.

Key words Planar graph extraction, turn-forbiddance, parallel algorithms, computation time

. (that is, each cycle C; is forbidden to be turned over). Since
1 Introduction .
if Gp has no such directed cycles then the problem has been

1.1 Definitions conventionally considered. Hence we assume k 2 1 in the

The problem of extracting a maximum spanning planar
subgraph is defined as follows: “Given a graph G = (V, E),
find an edge set E'CE with the maximum cardinality among
all edge sets E” CF such that G’ = (V, E”) is a spanning pla-
nar subgraph of G”.

We call an algorithm for extracting such a spanning pla-
nar subgraph G’ = (V, E') a planarization algorithm. Con-
sider any planar graph G, = (V, Ep) with directed cycles
Ci(t =0, -,k; k = 0) which must be embedded as specified

following. Let 5; denote a plane embedding of Gp. If all C;
are embedded as specified in ET,,, E,: is called a plane em-
bedding (of Gp) under “forbiddance of turning over”. Given
a graph G = (V,E), a turn-forbidden planarization algo-
rithm is an algorithm to extract a spanning planar subgraph
Gp = (V, Ep), with E,CE, such that Ei,’, is a plane embed-
ding under forbiddance of turning over. In order to realize
a turn-forbidden planarization algorithm, we represent each

specified cycle as a clockwise directed cycle, and any oper-

ation during the algorithm maintains clockwise directedness
of these cycles.

For aset S C V of agraph G = (V, E), let G[S] denote the
graph (S, Es), where Es = {e = (u,v) € E | u,v € S}. G[5]
is called the subgraph induced by S of G. V or E is some-
times represented as V(G) or E(G), respectively. For any
two vertex sets S;iCV (i = 1,2), K(51,52;G) = {(u1,u2) €
E|u1 [T andu2€52}.

1.2 Motivation

For designing printed-wiring-boards or VLSI, we often rep-
resent a given circuit as a graph model: for example, a graph
model in which a path or a directed cycle represents how
pins of a given element are located, and a spanning tree does
a connection requirement among pins. Generally speaking,
most elements and some modules have a side to be faced to a
board in actual mounting, and they cannot be placed upside
down. We call such an element as a one-sided element. De-
signing layout of each layer of single- or multi-layered boards
requires extracting a spanning planar subgraph of a given
graph model, where one-sided elements have to be handled.

If we represent each one-sided element as a clockwise di-
rected cycle and apply a turn-forbidden planarization algo-
rithm, then we can find planar layout in which all one-sided
elements are placed as specified. Turn-forbidden planariza-
tion algorithms have great importance practically.

1.3 Known Results

The problem of extracting a maximum spanning planar
subgraph problem is NP-hard[1] in general. It has been
well investigated and many algorithms have ever been pro-
posed [2]~[12].
[2]~[6], [10] is unlikely to be useful in such practical situ-

Unfortunately however, any algorithm in

ations, while those in{7]~[9],[11],[{12] can extract a span-
ning planar subgraph under the forbiddance of turning over.
Turn-forbidden planarization algorithms are useful not only
in the field of designing layout of printed-wiring-boards hav-
ing one-sided elements but in extracting a spanning planar
subgraph from a given graph that is too huge to be han-
dled without reduction of its size. Algorithms for design-
ing printed-wiring-boards or a VLSI have been proposed
in[7], (9], [11},{13].

maximum-weight face: a linear time algorithm for finding

The one in[13] is based on a finding

a maximum-weight face of a given planar graph G has been
proposed in [14] which also gives a linear time algorithm for
finding a planar embedding EZ, of G such that the infinite
face of 67,, is a maximum-weight face of G,. An algorithm
for finding a maximum-weight face is also proposed in [15].
Table 1 summarizes conventional planarization algorithms.
The value PR in Tables 1 and 2 is defined by PR =
min{C’(G)/C(G) | any graph G}, where C(G) or C'(G) de-

notes the number of edges in any maximum spanning planar

subgraph of G or of those in a spanning one extracted from

G by each algorithm, respectively.

Table 1 Summary of conventional planarization algorithms
(without forbiddance of turning over of subgraphs),
where “—” denotes that PR is not known.

algorithms computation time PR
Edge_ Embedding 2] O(|E|log |V]) 1/3
Traiangulation [3) o(V|®) 7/18
Traiangulation[3] | O(E|Z|V]log® [V} | 2/ 5
Path_Embedding [4] O(|VIIE]) 1/3

Cycle_Packing [6] O(|VI||E|?) —
Incremental [5) o(|lV|+|E]) 1/3

Vertex_Addition [16] o(|V|?) —

1.4 Purpose and Main Results

First, in this paper,
turn-forbidden planarization algorithms PDD, PDR and
PDMC, all of which are heuristic ones.
tally compare performance of the three proposed algorithms
and four known sequential algorithms PLAN-PWB2, PLAN-
MWW2, PLAN-DIVIDE and PLAN-DIVIDEZ2 .

Table 2 summarizes the three proposed algorithms and

we propose efficient parallel

We experimen-

other known ones, all of which are turn-forbidden planariza-

tion ones.

Table 2 Summary of the three proposed algorithms and other

known ones, all of which are turn-forbidden planariza-

tion ones, where “—” denotes that the value is not
known.
algorithms computation time | PR
PDD — —
PDR — —
PDMC — —

PLAN-DIVIDE12] | O(IVI([VI+|E|)) | —
PLAN-DIVIDE2(17) — —
PLAN-PWB2[17] | O(IVI(IV]| +|E)) | —
PLAN-MWW2[17] — —
PLAN-PAA (8] O(|V||E]) —
PLAN-MNCI[9] —
PLAN-MIS[11] — —

Experimental results for 130 randomly generated graphs
having directed circuits show that PDD and PDR have ex-
tracted a spanning planar subgraph quickly, while the oth-
ers have failed. This shows their usefulness in extracting a
spanning planar subgraph of a given huge graph under for-

biddance of turning over.
2 An Algorithm PLAN-DIVIDE[12]

In this section, we explain a heuristic turn-forbidden pla-
narization algorithm PLAN-DIVIDE[12]. It is outlined in
the following. Let maz_edge be the maximum cardinality

of an edge set that can be handled simultaneously by any

existing planarization algorithm. The purpose of PLAN-
DIVIDE{12] is to find hierarchically a spanning planar sub-
graph of a given huge graph G = (V, E) containing a family
of directed cycles K = {C1,...,Cx} (k 2 1). First, by uti-
lizing a breath-first search BFS, PLAN-DIVIDE divides G
with | E| > maz_edge into some smallen graphs G; = Vi, Ex)
with |E;| £ maz_edge, i = 1, -, d for some d 2 1, such that
the vertex set V(C;)CK is contained in some G; and such
that V(C:) N V(C;) = 8(i # j). Then, forany i =1,...,d,
each spanning planar subgraph H; and its plane embedding
H; of G;, in which every directed cycles are drawn clockwise,
is obtained by applying PLAN-PWB2[17].

Let E, (1 £ i £ d) be a plane embedding such that the
maximum weighted face of each H; is an outer face. Sec-
ond, represent the contour of the outer face of each E’
as a clockwise directed cycle Ci. Let Ei;CE be the set
of edges connecting vertices of V(Cj) and those of V(Cj)
for any pair 4,7 € {1,...,d}. Let E. = Uij=1(i#j) Eyj,
let Viea = U?:x V(C;), Erea = Ec U (Uf:l E(C;)) and
Gred = (Vred, Ered). If |Ered| S maz_edge, then we extract
a set Fo of planar edges from Ec by applying PLAN-PWB2
to Grea. If |Ered| > maz-edge, put G — Gred, and re-
peat above hierarchical planarization steps recursively. Af-
ter some iteration, we find Greq with | Ered| £ maz_edge and
can extract planar edges from Ec, and we obtain a planar
graph H = (Vu,En) Vu = V and Ep that corresponds to
those edges appeared in E(H;) or in Fc in any hierarchically
repeated step.

The details of PLAN-DIVIDE are omitted: see[12].

3 The proposed algorithms

In this section, we propose three turn-forbidden planariza-
tion algorithms PDD, PDR and PDMC, all of which are
parallel and heuristic ones. PDR is a parallelized version
of the known sequential algorithm PLAN-DIVIDE[12]. If
Grea > maz_edge at the end of the first repetition then PDD
finds a spanning tree Tyeq of Grea by means of a depth-first
search(DFS), Fc « E(Trea), and halts. Partitioning into
subgraphs in PDD and PDR is done by means of BFS,
while PDMC utilizes a minimum cut algorithm.

3.1 Algorithm PDD

Suppose that an integer Ib < maz_edge is given and that a
class of processors PE = {PE1,---,PEm}(M 2 1) are avail-
able, where PE) is called the root. PDD partitions a given
, Hs, by using BFS
with Ib < |E(Hs,)| £ maz_edge. PDD assigns each Hs, to
some processor PE;. For simplicity, let us assume that Hs;
is assigned to PE;, 1 £i £ d, where PE; is the root. Then
PLAN-PWB2is executed in all PE;, i =1,---,d, in parallel.
PDD replaces each Hs, with a directed cycle Cs, of G.

graph G into disjoint subgraphs Hs,,- -

PDD

(Input) A graph G = (V,E) with K = {C1,---,Ck}H(k 2
1), an integer b, and a class of processors PE =
{PE:,---,PEum} where PE; is called the root.

(Output) An edge set E'CE such that G’ = (V,E') is
planar under forbiddance of turning over.

Stepl. Ky« 0 E « 0, H+ G; i+ 0;

Step 2. If [E(H)| 2 Ib then repeat the following in PEy;

Find a vertex set S;CV(H) by applying procedure
Find_Vertex_Set2to H, H — H — H[S;],and i — ¢+ 1.
Step 3. If i = 0 then goto Step 4. Let G; « H{Si],
i=1,---,d, be the subgraphs found in Step 2 and let Ks, CK
be the class of cycles C; contained in each G;. Then, dis-
tribute G; and Ks, to PE;, i = 1,---,d, where we assume
d £ M. For each i, 1 £ 1 < d, execute the following (1)-(6)
in PE,,---, PEpy in parallel or in PEh;

(1) Hs, — H[Si];

(2) Extract a spanning planar subgraph Hg, =
(S:, ES,) of Hs, by means of PLAN-PWBZ, FE' — E'UEs,;
K «— K —Ks,; in PEy;

(3) Calculate a vertex weight w(v) (v € Si) defined by
w(v) = K ({v}, V(H) = Si; H)|;

(4) Find a maximum weight face fmaz of H,f;', with re-
spect to the weight w(v), vCS;, and let E; be a plane em-
bedding such that fmaz is the infinite face;

(5) Replace the outer face fmaz of Hs, with a cycle C,
by executing Replace_Cycles and Ky — Kv U {Cg, };

(6) (In PE:) E(H) « (E(H) — E(Hs;,) — K(S:
-V(Cs,), V(H) - Si; H)) U E(Cs,), V(H) — (V(H) - Si)U
V(Ch,), K = KU{Cs)

Step 4. If |E(H)| £ maz_edge then extract a spanning
planar subgraph H' of H by using PLAN-PWB2 else find a
DFS tree H by apply PLAN-DFS to H in PE;.

Step 5. E' — E'UEW') — |J E(C)(in PE).

C'eky
Procedure PLAN-DFS

(Input) A graph G = (V,E) with K = {C1,---,Cx Hk 2
1).
(Output) An edge set E'CE such that G’ = (V, E') i

planar.

w

Step 1. Reduce each C; to an individual vertex for i =
1,---,k and let Gx denote the resulting graph;

Step 2. Find a DFS tree Tk of Gx by means of a depth-first
search and E' — E(Tx);

Procedure Find.Vertez.Set2

Given a graph G = (V,E) and a set of directed cycles K
if |[E] < Ib then return else Find.Vertez.Set2 finds a ver-
tex set SCV satisfied the following (i) and (ii): () b £
|Es| £ maz_edge, where G[S] = (S, Es); (ii) For any C' ek,
V(CHES or V(C)NS=0.

Procedure Replace_Cycles

Procedure Replace.Cycles replaces each I"—I\s’, with a di-
rected cycle Cg, consisting of those vertices in the contour
of the infinite face fmaz of G[S]".

Step 1. For any vCV (fmaz), vst(v) « 0; Let V(fmaz) be
the vertex set of the contour of the infinite face fmaz of G[S]”.
Step 2.
Step 3. Let wo be an arbitrary vertex of V(fmaz). For

3 1.

any v € V(fmaz) appearing in clockwise order from vo, if
w(v) > 0 then vst(v) —iand ¢ —i+ 1.
Step 4. Let Vi = {v € V(fmaz) | w(v) > 0} and n = |V}].
E(Cs) = {{vi,v2) | vst(v1) +1 = vst(v2) = j, 2 < j £ n}U
{{u1,u2) | vst(u1) = n, vst{uz) = 1}, where (v;,v;) is a
directed edge from v; to vj.

(The details of these procedures are omitted: see[12].)

3.2 Algorithm PDR

PDR executes the following Step 4’ instead of Step 4 of
PDD.
Step 4’. If |E(H)| £ maz_edge then extract a spanning
planar subgraph H’ of H by applying PLAN-PWB2 to H
else apply PDR to H recursively in PE,.

3.3 Algorithm PDMC

PDMUC repeatably partitions a graph to k subgraphs by.
means of a minimum cut to minimize the number of edges
connecting these subgraph.

Instead of Step 4’ of PDR, PDMC executes the following
steps Step4’-1 and Step 4'-2.
Step 4’-1 shrink each C; into individual and let G be the
resulting graph. For each vertex v of Gy, if v corresponds
to some cycle C then we assign v a weight equal to [V(C)|
else v has a weight equal to 1. If multiple edges are seated
for any pair u, v of vertices of Gx then we replace them by
a single edge (u,v) with a weight equal to the multiplicity.
Step 4’-2 by applying any minimum cut algorithm to Gk,
partition G into k subgraphs G;;

4 Experimental Results

4.1 Implementation

We have impleménted all the algorithms on a personal
computer (CPU: Pentium IV/1.7GHz, OS: Free BSD 4.5-R)
with the C programming code.

4.2 Input data

5 input graphs are provided for each pair of |V| and |P|,
where |P| is the number of parts that can be represented as
directed cycles or paths. Graphs and circuits are generated
by means of random numbers. We has set maz_edge = 20000
for PLAN-DIVIDE and PLAN-DIVIDEZ in Tables 4 and 6
and maz_edge = 5000 and Ib = 3000 in other tables.

4.3 Results and Observation

PLAN-DIVIDEZ2 and PLAN-MW W2 failed to extract pla-

Table 3 Summary of input data

Data | Type Size
Datal | General | [V|C{2000,5000, 10000} |V (k)| < ¥l (x1)
Data2 | Circuit | |P|C{2000, 5000, 10000}; (*2)
A=40,B=30,C=20,D=10
5804 £ |V] £ 20137; (+3) 14620 < | E| < 73266
Data3 | Circuit |Plg{2000, 5000, 10000}
A=B=C=D=25
8925 < |V| < 44800; 23234 £ |E| < 116392
Data4 | Circuit | |P|C{2000,5000, 10000}
A=10,B=20, C=30,D=40
12046 < |V} £ 60517; 31840 £ |E| £ 159502

k
(1) V(I = U IV(Gil-
i=1
(*2) | P} : the number of parts(the number of cycles).
(*3) (|P|/100) x A(B,C, D, respectively) = No. of 1- (2-, 3-, 10-)

terminal parts.

Table 4 Comparison of average | Ep| when known algorithms are
applied to Datal

V] |E| (1v) | (Mww2) | (DIV2) | (PWB2)
2000 | 6000 2176 3075 | 2724 2176
2000 | 10000 | 2285.2 2301 | 2752 2285.2
2000 | 20000 | 2548.8 — | 2717| 25488
2000 | 60000 | 3102.4 — | srss.2| 32272
2000 | 100000 | 3316.4 — | 3920.2 3536
2000 | 200000 | 3856 — | 4130 3983
5000 | 15000 | 5281.2 — — | s231.2
5000 | 25000 | 5390.4 — — | s421.2
5000 | 50000 | 5623.6 — — | s766.8
5000 | 150000 | 6586 —| 9307 7114
5000 | 250000 | 7203 — | 9429 —
5000 | 500000 | 7971 —| o518 —
10000 | 30000 | 10284.5 — — | 10303.4
10000 | 50000 | 10432.5 — — | 10487
10000 | 100000 — — — [11088.2
10000 | 300000 | 11986 — — —
10000 | 500000 | 12636 — —_ —_

nar graphs in Data2 , Data3 and Datad. In Tables 4 through
13, figures in bold face denote the best solution. Observa-
tions on these results are summarized as follows.

(i) PLAN-PWB2failed to extract spanning planar subgraphs
from graphs having more than 200,000 edges because of
memory overflow, while PLAN-DIVIDE succeeded. The
CPU time of PLAN-DIVIDE seems to be independent of
increase in |E|, while this is not the case when both |V| and
|E| become large. On the other hand, PDD and PDR do
not depend on increase in |V| or |E|.

(i) Since solutions by PDMC are worse than those by
PDR, our experimental results do not show usefulness of
minimum cuts in partitioning into subgraphs.

(iii) Experimental results on Datal show that dividing an
input graph into many small graphs may decrease the CPU
time of PDR. It is shown that |E,| by PDR is 95.04% of that

Table 5 Comparison of average |Ep| when the proposed algo-
rithms are applied to Datal

V) \E| (PDD) | (PDR) | (PDMC)
2000 6000 2102.00 | 2102.00 2004.60
2000 | 10000 2225.60 | 2225.60 2006.20
2000 | 20000 2207.20 | 2418.40 2006.60
2000 | 60000 2006.00 | 2955.20 2006.00
2000 | 100000 | 2006.00 { 3170.00 2006.00
2000 | 200000 | 2004.80 | 3605.60 2004.80
5000 [15000 5152.40 | 5165.60 4926.60
5000 | 25000 5299.40 | 5299.40 5033.60
5000 | 50000 5467.00 | 5523.20 5292.40
5000 | 150000 [5152.40 | 5165.60 4926.60
5000 | 250000 | 5006.60 | 6850.40 5346.60
5000 | 500000 | 5006.80 | 7459.20 7071.40
10000 | 30000 | 10102.40 | 10102.40 9698.20
10000 | 50000 | 10329.40 | 10336.60 9784.20
10000 | 100000 | 10630.00 | 10667.40 | 10200.00
10000 | 300000 | 11232.00 | 11572.20 | 10819.00
10000 | 500000 | 10241.67 | 12053.40 | 12544.50
Table 6 Comparison of average CPU time (s) when the known
algorithms are applied to Datal
1% |E| (DIV) | (MWW2) | (DIV2) | (PWB2)
2000 6000 | 44.6266 31365.1 | 29600.7 | 43.3312
2000 10000 | 88.3891 19132.2 | 26648.8 | 81.6547
2000 | 20000 | 217.564 —_ 27164 | 197.867
2000 | 60000 | 242.495 — | 21245.4 } 941.112
2000 | 100000 | 301.914 — 18934 | 1995.02
2000 | 200000 | 320.144 — 11987 | 6047.73
5000 | 15000 | 275.639 — — | 242.598
5000 | 25000 | 1333.11 — — | 567.895
5000 { 50000 | 696.833 —_ —_ 1467
5000 | 150000 | 1015.36 — | 109750 | 7272.91
5000 | 250000 | 741.52 — 72579 _—
5000 | 500000 | 940.547 — | 51927.9 —
10000 | 30000 8031.6 — — | 1116.07
10000 | 50000 3604.4 — — | 2746.01
10000 | 100000 — e — | 7576.21
10000 | 300000 | 1201.94 — — —
10000 | 500000 | 1212.19 — — —

by PLAN-DIVIDE in average, and its CPU time is 6.26% of
that by PLAN-DIVIDE in average.

(vi) Concerning experimental results on about Data2, Data3
and Datad, PLAN-DIVIDE gives the best solutions for large
graphs and PDR runs fastest of all algorithms in this exper-
iment. PDR is more quickly than other algorithms. |Ep| of
PDR is 95.10% of that by PLAN-DIVIDE in average and
the CPU time of PDR is 7.94% of that by PLAN-DIVIDE
in average.

(v) It is concluded from our experimental results that PDR
is the most useful in extracting a spanning planar subgraphs

of large graphs that may appear in practical situation.
5 Concluding remarks

In this paper, we have proposed three efficient parallel

Table 7 Comparison of average CPU time (s) when the proposed
algorithms are applied to Datal

vt | (| |®DD)][(PDR) [(PDMC)

2000 6000 49.78 49.74 0.34

2000 | 10000 53.55 53.43 0.45

2000 | 20000 34.94 36.94 0.75

2000 | 60000 2.02 40.85 2.04

2000 | 100000 3.52 47.29 3.50

2000 | 200000 7.90 41.67 7.91

5000 | 15000 95.69 | 112.11 26.70

5000 | 25000 94.10 93.74 31.02

5000 | 50000 54.70 73.47 175.99

5000 | 150000 95.61 | 112.29 26.76

5000 | 250000 9.09 93.42 318.43

5000 | 500000 20.20 90.21 2598.82

10000 | 30000 T4.87 75.16 280.80

10000 | 50000 74.17 91.56 745.78

10000 | 100000 92.36 | 115.39 1585.95

10000 | 300000 | 102.07 | 130.08 3218.06

10000 | 500000 52.84 | 126.97 | 10271.85

Table 8 Comparison of average |Ep| for Data2
1P| (o1v) | (PDD)| (PDR) | (PDMC)| (PWB2)
2000 6406.60 | 6366.00 | 6285.60 6241.40 | 6511.00
5000 | 16860.00 | 15586.60 | 15371.20 | 13664.40 [16176.40
10000 | 32048.40 | 31085.40 | 30264.20 | 25905.80 | 32238.20

Table 9 Comparison of average |Ep| for Data3

P (DIV) | (PDD)| (PDR) | (PDMC)| (PWB2)
2000 | 9943.60 | 9944.00 | 9918.80 | 9517.60 | 10061.50
5000 | 24867.40 | 24643.00 | 24367.20 | 22059.80 | 25024.60
10000 | 49836.00 | 49142.00 | 48040.60 | 43284.40 | 49901.40

Table 10 Comparison of average |Ep| for Datad

\P| (o1iv)| (PDD)| (PDR) | (PDMC)| (PWB2)
2000 | 13474.40 | 13481.80 | 13514.00 | 12895.00 | 13600.60
5000 | 39279.40 | 33514.20 | 33235.20 | 30424.00 | 33831.80
10000 | 67300.00 | 66893.40 | 66293.80 — —

Table 11 Comparison of average CPU time (s) for Data2

|P| | (01v) | (PDD) | (PDR) | (PDMC) | (PWB2)
2000 | 9.51| 50.96| 29.29 93.26 | 152.45
5000 | 116.25| 57.15| 101.83 744.82 | 959.19
10000 | 869.08 | 73.14| 54.76 | 8886.42 | 3889.27

Table 12 Comparison of average CPU time (s) for Data3

|P| (DIV) | (PDD) | (PDR) | (PDMC) | (PWB2)
2000 | 26.05| 51.45| 45.62 212.39 | 478.94
5000 | 327.97| 52.33| 81.52| 3341.43(3160.57
10000 | 2505.98 | 102.90 | ©9.28 | 27560.57 | 13434.93

heuristic planarization algorithms PDD , PDR and PDMC
under forbiddance of turning over. We have evaluated per-
formance of these three proposed algorithms and four known
sequential algorithms experimentally. It is concluded that
PDR can efficiently extract a spanning planar subgraph un-
der forbiddance of turning over, showing usefulness for given

graphs that are too large to be handled without reduction of

Table 13 Comparison of average CPU time (s) for Data4
1Pl | (o1v) | (PDD) | (PDR) | (PDMC) | (PWB2)
2000 38.15 57.87 51.88 541.24 | 1006.99
5000 387.93 61.08 93.14 9404.67 | 6798.23
10000 | 4107.49 | 139.71 | 159.10 — —_

their sizes.

Incorporating proposed algorithms in a PCB layout design
tool MULTI-PRIDE (18] is left for future research.

1

12

(3]

(5]

(6]

o

[10}

(11]

(12]

(13]

(4]

References

M. R. Garey and D. S. Johnson: “Computers and In-
tractability: A Guide to NP-Completeness”, W.H. Freeman
and Co., New York (1979).

J. Cai, X. Han and R. E. Tarjan: “An O{m logn)-time al-
gorithm for the maximal planar subgraph problem”, SIAM
J. on Computing, 22, 6, pp. 1142-1162 (1993).

G. Calinescu, C. G. Fernandes, U. Finkler and H. Karloff:
“A better approximation algorithm for finding pla-
nar subgraphs”, Proceedings of the Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, New
York/Philadelphia, ACM/SIAM, pp. 16-25 (1996).

T. Chiba, 1. Nishioka and I. Shirakawa: “An algorythm of
maximal planarization of graphs”, Proc. IEEE Symp. on
Circuits & Sys., pp. 649-652 (1979).

H. Djidjev: “A linear algorithm for the maximal planar sub-
graph problem”, Algorithms and Data Structures, 4th Inter-
national Workshop (Eds. by S. G. Akl, F. K. H. A. Dehne,
J.-R. Sack and N. Santoro), Vol. 955 of Lecture Notes in
Computer Science, Kingston, Ontario, Canada, Springer,
pp. 369-380 (1995).

O. Goldschmidt and A. Takvorian: “An efficient graph
planarization two-phase heuristic”, Networks: An Interna-
tional Journal, 24, pp. 69-73 (1994).

K. Iwamoto, T. Watanabe, T. Araki and K. Onaga: “Find-
ing jumpers in printed wiring board design for analog cir-
cuits”, Proc. of the 1991 IEEE International Symposium on
Circuits and Systems, pp. 2854-2857 (1991).

Y. Mizuguchi and T. Watanabe: “Application of the path-
addition planarity testing algorithm to layout design of
printed wiring boards”, Technical Report COMP94-87, IE-
ICE of Japan (1995 (in Japanese)).

K. Mizuno, T. Kobayashi and T. Watanabe: “Extracting
nonplanar connections in a terminal-vertex graph”, Proc.
of the 1999 IEEE International Symposium on Circuits and
Systems, pp. VI-121-V1124 (1999).

T. Ozawa and H. Takahashi: “A graph-planarization al-
gorithm and its application to random graphs”, Proc. of
the 17th Symposium of Research Institute of Electrical
Communication on Graph Theory and Algorithms (Eds. by
N. Saito and T. Nishizeki), Vol. 108 of LNCS, Sendai, Japan,
Springer, pp. 95-107 (1980).

T. Yamaoki, S. Taoka and T. Watanabe: “Extracting a pla-
nar spanning subgraph of a terminal-vertex graph by solv-
ing the independent set problem”, Proc. of the 2001 IEEE
International Symposium on Circuits and Systems, pp. V-
153-V-156 (2001).

S. Anegayama, D. Takafuji, S. Taoka and T. Watanabe:
“Hierarchical extraction of a spanning planar subgraph un-
der fixed embedding of specified subgraphs”, IPSJ SIG
Notes AL80-1, IPSJ (2001). (Japanese).

A. Matsumoto, K. Yamaguchi, T. Kashiwabara, S. Masuda
and M. Taki: “A planarizdtion algorithm in the layout de-
sign of single layer printed circuit board”, Technical Report
COMP91-21, IEICE of Japan (1991 (in Japanese)).

K. Kotani, S. Masuda and T. Kashiwabara: “An alogrithm

(18]

(16]

(17]

(18]

for embedding a biconnected planar graph to to maximize
the total sum of vertex-and edge-weights on the exterior
window”, Trans. IEICE, J74-A, 7, pp. 1041-1052 (1991 (in
Japanese)).

T. Ozawa: “Efficient algorithms for planar embedding of
graphs with constraints in placing specified vertices on face
boundaries”, Proc. of the 2002 IEEE International Sympo-
sium on Circuits and Systems, pp. V-749-V-752 (2002).
T. Ozawa and H. Takahashi: “A graph planarization al-
gorithm and its application to random graphs”, In Graph
Theory and Algorithms, Lecture Notes in Computer Sci-
ence, 108, pp. 95-107 (1981).

D. Takafuji, S. Anegayama, T. Kinoshita and T. Watan-
abe: “Heuristic algorithms for extracting a planar graph
with subgraphs forbidding their turning over”, IPSJ SIG
Technical Report 2003-AL-91 (1), IPSJ (2003).

T. Watanabe: “MULTI-PRIDE: A system for supporting
multi-layered printed wiring board design”, Proc. of ASP-
DAC ’97, pp. 221-226 (1997).

