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Abstract In this paper we describe the design of Producer-order Parallel Queue Processor architecture. It is

based on Producer-order Queue Computational Model, which uses Queue (FIFO memory) instead of registers as

an intermediate storage of operands. Short program length, ILP orientation, and simple instruction issue mecha-

nism are its main advantages, especially if the target is embedded system. Our processor successfully deals with

complexity of superscalar machines.
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1. Introduction

Besides traditional demand for high performance, recent
efforts in microprocessor design are concentrated on archi-
tectures that offer short program size, simple hardware, and
low power consumption — features that are especially criti-
cal for embedded systems.

Superscalar processors, that support out-of-order instruc-
tion execution, need extra hardware (for example, Register
Renaming) that solves problem of false dependencies. This
is what makes them quite complex.

A wish to have simple, but still fast machine pushed us
to look for alternatives. Our research was inspired by sev-
eral original ideas: [1] proposed to use Queue (FIFO memory)
instead of registers (Random Access Memory) as intermedi-
ate storage of operands. Queue-based processor that exe-
cuted instructions in parallel was presented in (2], {3]. Queue
Processors have short program size, simple architecture, and

are parallelism oriented. [4] elaborated further the theory of

Queue Computational Model, Parallel Queue Processor, ILP, code size

Queue computation, and derived 3 modifications of Queue
Computational Model (QCM).

1 Producer-Consumer-order QCM (QCMpc) .

2 Consumer-order QCM (QCMc)

3 Producer-order QCM (QCMp)

It is proved in [4] that QCMp is the most flexible among
these 3 models: it effectively uses data in Queue, makes it
easy to build Queue programs, and gives the shortest code
size.

QCMpc- and QCMc-based processors have been already
designed. In this paper we present the first design of QCMp-
based processor architecture, which is called Producer-order
Parallel Queue Processor (PQPpf). Letter ‘p’ in PQPpf
acronym comes from QCMp, and ‘f’ means fixed-length in-
struction set.

This paper is organized as follows: Producer-order Queue
Computational Model is explained in Section 2. Section 3.
gives main points about PQPpf architecture, and Section 4.

comes with conclusions.



2. Producer-order Queue Computational
Model

In this section we explain Producer-order Queue Compu-
tational Model (QCMp) that underlies our processor.

At first we construct graph for a simple expression
z = (a+b) * (c — a) (see Fig. 1). Nodes of the graph repre-
sent operators. 1d &a, 1d &b, and 1d &c load data a, b and
c from memory. &a, &b, and &c specify memory addresses
of corresponding data. add, sub and mul correspond to ‘ad-
dition’, ‘subtraction’, and ‘multiplication’ operators. st &x
stores the result back into memory.

Arcs specify data dependency among nodes. Node that is
located at the beginning of arc ‘produces’ datum. We call
such node ‘producer’. Node that is located at the end of
the same arc ‘consumes’ this datum. We call it ‘consumer’.
Therefore, consumer is data-dependent on producer. For ex-
ample, mul is data-dependent on add and sub.

To make program for QCMp we perform Level-order
Traversal of graph starting from the top level. This is de-
noted with dashed lines of Fig.1. Obtained QCMp program
is:
1d &a;

14 &b;
1d &c;
add;

sub -2;

S Gt b W N =

mul;
7 st &x;

-2 in sub -2 is operand which shows one of words in Queue.

Level 4

Fig.1 Graph of expression z = (a + b) * (¢ — a).
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Fig.2 Content of Queue during execution of program
z = (a+b)*(c—a).

Fig. 2 shows the content of Queue during execution of this
sequence of instructions (on the left side). Registers between
QH (Queue Head pointer) and QT (Queue Tail pointer)
make Queue. Operands are implicitly found at QH, and
results are written according to QT.

At the beginning Queue is empty (Fig. 2(a)). Fig. 2(b)
shows the Queue after execution of 1d&a instruction. It loads
datum @ from memory and enqueues it at QT. QT advances
by 1 position to reflect writing 1 datum. 1d &b and 1d &c
are executed in the same way (Fig. 2(c) and Fig. 2(d)).

On Fig. 2(e) the execution of add dequeues its operands a
and b (QH advances by 2 positions), performs-addition and
writes the result back into Queue at QT.

Next instruction is sub -2. It corresponds to expression
c—a. cis at QH. a is not at QH because preceding add
instruction already consumed it. We can access:a by spec-
ifying its relative position from QH. Thus -2 points to the
second word to the left from QH, which is a (Fig. 2(e)).
This technique allows to access previously consumed data.
QH advances by 1 position because only 1 operand {c) was
consumed from QH (Fig. 2(f)). i

As this figure shows, producers always put data at QT.
Hence the order data appears in the Queue corresponds to
the execution order of producers. This is contrasted with
data consumption where we have certain freedom to access
operands (for example, sub-2). It is principle of QCMp.

Important thing to notice is that nodes that are located
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Fig.3 Content of Queue during parallel execution of
program z = (a + b) * (¢ — a).

on the same level (Fig. 1) represent data-independent oper-
ators. Therefore we can execute them simultaneously. For
example, 3 1d instructions from Level 1 can be executed in
parallel as shown below.

1 1d &a; 1d &b; 14 &c;

2 add; sub -2;

3 mul; st &x;

Now it takes only 4 steps (height of graph) to execute the
program versus 7 steps in case of serial implementation. Cor-
responding Queue content is shown on Fig. 3.

Now we list prominent édvantages of QCMp.

1 QCMp instructions are shorter than RISC-type in-
structions: zero-operand (add) and l-operand (sub -2) ver-
sus traditional 3-operand format (add R1,R2,R3). QCMp
effectively uses data in Queue — operands can be easily ac-
cessed after they were consumed. Short instructions and
flexibility of QCMp promises reduction of total program size
when compared with RISC code. »

2 Another feature of paramount importance is ab-
sence of false (name) dependencies in QCMp. Instructions
of register-based machines explicitly specify names of reg-
isters. To make length of instructions reasonable, number
of registers is limited. Program lacks registers and assigns
the same registers for different instructions. This introduces
false (néme) dependencies and limits the ability to execute
these instructions in parallel. To remove false dependencies
and boost performance superscalar processors use Register
Renaming or Reorder Buffer. This makes them complex. In
contrast, QCMp instructions do no specify register names.
Instead, Queue of infinite length is implied to be used. Pro-
ducer instructions write data into Queue according single-
assignment rule, i.e. Queue word may be written only once.
Therefore, false dependencies do not exist among QCMp in-
structions. Thus, primary parallelism of program is not re-

duced. Register Renaming / Reorder Buffer are unnecessary,

and processor becomes simpler.

3 One more virtue of QCM is its parallelism orienta-
tion. Level-order Traversal of program graph makes Queue
programs to look like a sequence of block of independent
instructions. Each block corresponds to a particular level
of program graph. Instructions inside a block are data-
independent and may be executed in parallel. Such
localization of Instruction-Level Parallelism makes utiliza-
tion of Instruction Window more efficient when compared
with superscalar processors. This is another source of hard-

ware simplicity of PQPpf.
3. PQPpf architecture

3.1 Instruction Set

PQPpf is general-purpose load-store processor. We use 2-
byte fixed-length instruction set. Format of main instruction
classes [4] is given on Fig. 4. )

e. Memory access type instructions (load/store) use
displacement addressing mode. 6 most significant bits (15—
10) specify opcode. PQPpf architecture specifies 4 special-
purpose registers that store Base Address. They are called
Base Address Registers (BAR). Bits 9-8 denote which par-
ticular BAR is used. Least significant byte (7-0) is displace-
ment from Base Address. Effective Address (EA) is com-
puted as follows: EA = BAR + displacement.

® ALU Most significant byte (15-8) is opcode. Bit 7
is called Zero-Operand (ZOP) bit. If ZOP is cleared, the
instruction finds both operands at QH. Bits 6-0 are left un-
used. When ZOP is set, only 1 operand is consumed from
QH, the second one is located by adding 7-bit offset (6-0) to
QH.

¢ Branch instructions are PC-relative. Most significant
byte (15-8) specifies opcode. Least significant byte is offset.
Branch target (targets) is computed by adding PC of branch
and offset: targetp = PC + of fset.

. 715 IOV 8" OV
load/store opcode BAR displacement .
_ W § O
ALU opcode ZOP offset
v % ‘ Oy
branch opcode offset
4

Fig.4 Format of main instruction classes.



I

Instruction
Issve Unit

issue logic

Data Memory

LInstruction Memory ]

Fig.5 PQPpf block diagram.

3.2 PQPpf block diagram

PQPpf block diagram is given on Fig. 5. PQPpf con-
sists of the following units: Instruction Fetch Unit (IFU)
fetches 4 instructions from Instruction Memory according
PC, and places them into Fetch Buffer (FB). Decode and
Queue Mapping Unit (DQMU) reads instructions from FB,
decodes them, maps onto Queue by assigning QH and QT
values, and writes into Instruction Window (IW). Instruction
Issue Unit (IIU) performs multiple out-of-order instruction
issue from IW. Functional Units (FU)execute instructions
and write the result back into Queue.

PQPpf has the following specification:

¢  32-bit memory address space.

¢ 32-bit word size.

® 256-word Queue.

® 4-instruction fetch width.

e following Functional Units:

- 2 ALU’s,

— 1 integer multiplier,
— 1 shifter,

— 2 load/store units,
— 1 branch unit.

® T7-instruction issue width.

3.3 Decode and Queue Mapping Unit

Decode and Queue Mapping Unit (DQMU) is the most dis-
tinguishing part of PQPpf. DQMU assigns for an instruction
its operand and result addresses that are used later during
execution. DQMU is shown on Fig. 6.

DQMU consists of cascaded Decode and Queue Mapping
Circuits (DQMC). Each DQMC operates on one instruction.
Width of DQMU is equal to fetch width (4 instructions), thus
there are 4 DQMC circuits. Inputs to DQMC are current HQ
and QT values, and an instruction from Fetch Buffer (FB).
The instruction is decoded, and then mapped onto Queue,
ie. assigned QH and QT values that will be used to read
operands and write result during instruction issue and exe-
cution. DQMC updates QH and QT and passes them to the
next DQMC circuit. New QH and QT are computed accord-
ing to the number of words consumed (C) and produced (P)
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Fig.6 Decode and Queue Mapping Unit.
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by the instruction:

s QH\W=QH;+C

* Qi =QTi+ P

Decoder at the beginning of each DQMC provides all in-
formation, particularly consume-produce values, necessary
to map an instruction and update QH and QT. Consume-
produce (C-P) values of major instruction classes are given
in Table 1.

At the end of cycle all mapped instructions are written
into Instruction Window (IW). Entry of IW consists of sev-
eral 1-byte fields:

®  opcoderw specifies the type of Functional Unit used
by instruction and opcode for that FU.

®  QHw field specifies the location of the first operand.

* (QH + n)rw points to the second operand.

® QT;w specifies where the result of operation will be
written.

e disprw specifies displacement from Base Address for
load/store instructions.

Subscript ‘IW’ used for field naming means ‘Instruction
Window’.

Instruction Classes | Consume | Produce
ALU 2/1 1
Store 1 0
Load 0 1
Branch 0 0
1

Table 1 Consume-Produce characteristics

of major instruction classes.



Decode and Queue
Fetch Mapping Unit Instruction
Buffer Window
opeode n 0 0 op |QHloHa| QT disp
1 Decode and -
0
1BAR) | disp, émm,\w - 1 | disp,
1d(BAR ) dispﬂ ﬁldm:ﬂy - 2 | disp,
- - Decode and
%; add N Queue Mapping Circuit 4 —1{> ad jOJL}3
9)
~
©
S - Decode and
St -2 E A Quene Mapping Cirenit 1 ::> wh 12]04
mul ::> mal |3]4}S
, 6
1Bk | disp, [:;:;:‘:'?m“a Dm:mm 5 - | disp,

Fig.7 Operation of Decode and Queue Mapping Unit.

Fig. 7 exemplifies operation of DQMU using program from
Fig. 2.

At the beginning (Cycle 1) Fetch Buffer contains the first
4 instructions of our sample program: [d(BAR,) dispa,
ld(BAR,) disps, l[d(BAR.) disp., and add.

Queue is empty: QH = QT = 0. We start from in-
struction ld(BAR,) disp.. Mapping occurs as follows. Be-
cause this instruction does not consume data from Queue,
QH;w and (QH + n);w fields are left unused. The re-
sult will be written at QT: QTiw = QT = 0. disp
field contains displacement from BAR,: dispiw = dispa.
QH and QT are updated as follows. Zero words are con-
sumed: QH = QH + 0 = 0, and 1 result will be produced:
QT = QT + 1 = 1. lId(BAR,) disp, and ld(BAR.) disp. are
processed in the same way.

Next instruction is add. It takes both operands from QH:
QHiw = QH =0,and (QH+n)iw =QH+1=1 QH
advances by 2 positions: QH =QH +2=0+2=2.

Cycle 1 is finished. At positive clock edge mapped instruc-
tions are written into Instruction Window. QH and QT are
stored in corresponding registers. Content of Fetch Buffer is
replaced with newly fetched instructions: sub — 2, mul, and
ld(BAR.) disp.. Cycle 2 begins.

We start mapping from sub — 2. This is QH-relative in-
struction. First operand is found at QH: QH;w = QH = 2.

The position of the second operand is obtained by adding
offset to QH: (QH +n)rw = QH +offset =2-2=0. QH
advances by 1 position: QH =QH +1=2+1=3.

3.4 Instruction Issue Unit

Instruction Issue Unit (IIU) provides multiple out-of-order
issue in order to exploit available ILP most efficiently.

The main beauty about PQPpf’ IIU is its simplicity. In
previous section we explained that due to single-assignment
nature of QCMp there are no false dependencies among in-
structions. This eliminates the necessity for Register Renam-
ing / Reorder Buffer — traditional techniques that remove
false dependencies in superscalar processors and make them
quite complex.

Another nice point about PQPpf is that can utilize In-
struction Window (IW) and Functional Units (FU) more ef-
ficiently than superscalar machines do. Because Queue pro-
gram looks like a sequence of blocks of independent instruc-
tions, ILP is very localized. This improves look-ahead ability
of processor. Although compiler for superscalar processors
makes certain efforts to group independent instructions; it
is still very far from ILP localization of Queue programs.
Therefore, we expect that for the same configuration (fetch
width, size of IW, issue width, and number of Functional
Units) PQPpf can issue and execute more instructions per
cycle, and outperform superscalar processor.

Now we are ready to describe issue algorithm of PQPpf.
Handling load/store instructions that refer special-purpose
BAR registers differs from ALU class. Hence, we consider
them separately.

Issue of ALU instructions. It is very easy to issue ALU
instructions because only true and resource dependency ex-
ist for them. Thus, if a) instruction’ operands are ready,
and b) corresponding FU is vacant, the instruction is issued
— operands are read from Queue and passed to FU, FU
is marked as busy, IW entry becomes empty. ALU instruc-
tions are issued out-of-order. Older instructions have priority
when competing for FU.

Each Queue-word has a corresponding Operand-Ready
(OpR) bit. Issue logic checks OpR to determine whether
operand is ready (OpR is asserted)} or not. OpR is set by FU
when it writes the result into Queue.

Because Queue is implemented as circular register file, a
mechanism to reset OpR is necessary. The problem is fol-
lowing. Assume empty Queue (all OpR are also deasserted).
QMU starts mapping instructions. After last word is as-
signed Queue warps around — mapping again starts from
the first word. By this time part instructions from the first
pass have completed execution — results were written into
Queue and corresponding OpR were set. This make a trou-

ble for the instructions of the second pass — they see their
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Fig.8 Sample program execution on PQPpf pipeline.

operands as ready, while actually Queue contains obsolete
data. The solution is simple. In order to preserve OpR con-
sistency instructions must reset OpR that correspond to their
result destination (QT field). Reset occurs when instructions
are written into IW. OpR. will be set again when new result
is produced.

Issue of load/store instructions. Load/store instruc-
tions are executed in 2 steps. At first, Effective Address (EA)
is computed by adding base-address (stored in BAR) and
displacement, and is written into Load/Store Buffer (LSB).
Then Load/Store Unit (LSU) uses effective address to per-
form actual memory access. To boost performance LSU
implements well-known technique called load bypassing with
forwarding: a load may bypass preceding store instructions
if they do not refer the same memory address; forwarding
means that load takes data directly from preceding store in-
struction that refers the same memory address.

To preserve memory consistency load/store instructions in
LSB must be in program order. To satisfy this requirement
they must be issued for EA calculation also in-order. There-
fore, although use of registers makes a risk for false depen-
dencies, this does. not happen — BAR registers are accessed
in-order.

Fig. 8 shows symbolic execution of our sample program on
PQPpf pipeline. Pipeline stages are abbreviated:

IF: Instruction Fetch

DQM: Decode and Queue Mapping
IIS: Instruction Issue

E: Execution

M: Memory access

We assume that there-is no contention for Functional
Units. For example, we are able to execute 3 loads simul-
taneously. All ALU instructions are executed in 1 cycle.
Load/store instructions are executed in 2 cycles: effective
address is computed during Execution stage, and memory is
accessed during Memory stage.

Important thing to notice here is out-of-order execution of

ld(BAR,) disp.instruction. Its effective address is calculated
4 cycles earlier then program result is stored into memory. It
reduces execution time to 10 cycles vs. 12 cycles for in-order
execution.

3.5 PQPpf Verilog HDL simulator

We wrote behavioral PQPpf simulator in Verilog HDL and
proved functional correctness of proposed architecture. At
this moment we are creating a set of benchmarks that will
be used to compare code size and ILP of PQPpf vs. RISC

machine.
4. Conclusions

In this paper we presented the first design of novel
processor called Producer-Order Parallel Queue Processor
(PQPpf). In our work we made clear PQPpf architecture.
We also wrote behavioral PQPpf simulator in Verilog HDL
and proved functional correctness of proposed architecture.

PQPpf instructions are short because register names are
not specified.  Flexibility of underlying Producer-order
Queue Computational Model promises that total program
size will be also reduced when compared with RISC code.

Queue Mapping Unit (QMU), the central part of PQPpf,
assigns to instructions operand and result addresses that are
used in instruction issue and execution stages.

Localized ILP of Queue programs improves look-ahead
ability of processor. It is expected that for the same con-
figuration PQPpf may show higher performance than corre-
sponding superscalar processor.

Because of single-assignment nature of Producer-order
Queue Computational Model false dependencies (WAR and
WAW) among instructions do not exist. This eliminates Reg-
ister Renaming / Reorder Buffer and makes Instruction Issue
Unit, usually one of the most complex and power consuming

parts of processor, simpler.
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