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Abstract Recently, reconfigurable computing comes under the spotlight as the new computing paradigm. The
machine employing this paradigm has the combination of the flexibility of the general purpose processor and the
performance of the dedicated system. In most cases, compute-intensive tasks of application program are loaded to
reconfigurable logics to increase the performance of the system. However, in this paper, we propose a new area for
reconfigurable computing, which is ezception detection. In our method, reconfigurable computing is exploited not
for compute-intensive tasks but for highly frequently invoked (but relatively light) tasks.
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We investigate another potential area for reconfigurable

1. Introduction o o )
computing in this paper, in which reconfigurable computing

During the past decade, reconfigurable computing [1], [2],
[3],4], 5], [6], has been researched extensively as a new
method to improve processor performance. In particular, re-
configurable hardware coexisting with a core processor can
be considered as a good candidate for speeding up processor
performance. Such a hybrid processor demonstrates its effec-
tiveness in multimedia applications, data encryption, signal
processing, communications, and so on. The main idea in im-
proving performance of such a solution is that reconfigurable
logics process compute-intensive tasks of target application

in lieu of general-purpose processor.

is exploited not for compute-intensive tasks but for highly
frequently invoked (but relatively light) tasks. Namely, we
propose to use a reconfigurable hardware for exception de-
tection that has two main features: (1) We need to perform
relatively light tasks (e.g., just check whether some variables
are zero or not.), and (2) the same kind of tasks are invoked
in highly parallel at the same time. In other words, our
study might reveal a new application area for reconfigurable
computing.

Exception handling is the essential mechanism to construct

a robust and reliable software in the continuously expanding



computer system at the present day. As the system becomes
enlarged, the scale and complexity of software is also increas-
ing. Therefore, the software that performs continuously and
stably has been desired. One of the promising ways to design
such software with high availability is considered to handle
all the possible exception errors by user program. This can
be done by explicit use of a try and catch statement in JAVA
or C++ language. By using a programming paradigm called
Active Software [7], we can write exception handlings even in
rather implicit way. In either way, a robust program should
have a lot of exception handling routines in it, which essen-
tially means that many error detections should always be
performed throughout the program. As programs become
larger and larger, this need of exception handling becomes
larger and larger, and the overhead of the error detections
will be surely a big problem in the near future. Therefore, it
becomes important for the microprocessor to have the hard-
ware to handle this operation without disturbing the normal
operation.

To focus attention on operations of exception detection,
we exploit the following three features of exception detection.
(1) Since the required process of exception detection changes
according to the situation, dynamic reconfigurable hardware
is well-suited to meet the demands. (2) The hardware needs
the capability to read register file of the main processor in
parallel, to monitor the internal state of the main processor.
(3) Highly parallel processing mechanism for exception de-
tection is indispensable since the process must be carried out
to all values of register file simultaneously.

In existing researches[8],[9], many dynamically recon-
figurable architectures that have the capability to im-
plement above-mentioned mechanism are proposed such
as Chameleon [10], Chimaera[11], [12], [13], DISC[14],[15],
DPGA [16], [17]), Garp[18],[19], OneChip [20], PRISC[21],
REMARK [22], [23], and Nano Processor [24]. As mentioned
earlier, these reconfigurable architectures assume that some
compute-intensive tasks are loaded to reconfigurable parts;
data transfer from the main processor to reconfigurable parts
should not be highly paralleled, and the reconfigurable parts
should not return the response in very short time, i.e., few
clock cycles. However, for our application, the following fea-
tures are desired: highly parallel inputs of data and outputs
of results. For example, although Chimaera has the capabil-
ity to read its shadow registers in nine parallel, it is not well
suited with respect to the feature mentioned above. Garp
shares data cache with host processor and can read data
through five 32bit buses, but, in terms of parallelism of data
read, its capability is not sufficient. REMARK’s reconfig-
urable blocks consist of 8 x 8 array of nano processors and

a global control unit. However, its global control unit can

transfer data to only 8 nano processors, so it is insufficient.
The other architectures also do not have the enough capa-
bility to read register file of its main processor.

Therefore, any of them are not considered as suitable for
exception detection hardware. For that reason, we propose
well-suited reconfigurable architecture for exception detec-
tion.

The rest of this paper is organized as follows. In Section
2, we explain our exception handling model. Section 3 de-
scribes the architecture we propose. In Section 4, we show

the evaluation of our architecture. Section 5 concludes the

paper.

2. Exception Handling Model

Exception handling means the operation that is performed
when unpredictable events such as arithmetic overflow, zero
divide, use of undefined instructions, and requests from in-
put or output devices take place during execution of pro-
gram. Although the term ’exception’ is used almost inter-
changeably with interrupt in general, we differentiate excep-
tion from interrupt. Exception means unpredictable events
caused by internal factors and interrupt means unpredictable
events caused by external factors.

In most cases, if some sorts of exception occur in a system,
proper handling is executed in compliance with the type of
exception. In our scheme, we associate exceptions with con-
ditional expressions that include values of the processor’s
registers. Then we assume that an exception occurs when
the corresponding conditional expression becomes true. We
also assume that we know possible exceptions and their cor-
responding conditional expressions in advance. Given condi-
tional expressions, the coprocessor evaluates them, and an-
swers which are true. As stated in Section 1, to increase the
availability and safety of software, many of the exception
detections always must be done with the above method.

Possible computational exceptions vary according to ap-
plication program. Therefore, implementation of conditional
expressions should be changed depending on the situation.
For that purpose, it is preferable that the system is able to
reconfigure implementation of conditional expressions.

The operation of exception detection is considered rela-
tively simple in a lot of cases. Hence, we consider the follow-
ing three types of operations as conditional expressions. Of
course, other types of operations can be easily implemented
in our processor.

Rl opPcyp C1

This is the most basic type of operation, the comparison of

Type 1:

a value of register with the pre-established constant number.
(Rl oPsry R2) oPomp C1

This type is the comparison of sum or difference of two values

Type 2:



with the pre-established constant number.
((R1 oPaLy R2) oPoump X) &&

((R3 0PoLy R4) oPorp C2)
This is the logical multiplication or logical addition of the

Type 3:

Type 2.

Here, R1, R2, R3, and R4 are the values of some of the reg-
isters and C1 and C2 are the constant numbers. OPcpp is
a comparison operator which is >, <, >=, <=, ==, o0r
| =. OP4.y is an arithmetic operator which is + or —. The
function of 0Pcpyp and OP4Ly is reconfigured per exception
detection.

Considering all the above factors, our exception handling
model is as follows.

(1) The exception detection hardware monitors register
file of the main processor.

(2) At agiven point in time, the main processor recon-
figure the function of the coprocessor and it evaluates the
conditional expressions for exception detection.

(3) If some sort of exception is detected, according to
the detected exception, ID that corresponds to the detected
exception is transferred to the main processor.

(4) When the main processor receives the ID, it inter-
rupts the active program and processes exception handling.
Through the above-mentioned process, exception detection
is performed.

In the following section, we describe the architecture to

process exception detection in detail.

3. Hardware Exception Detection with a
Dynamically Reconfigurable Coproces-
sor

3.1 Overview of Exception Detection

Figure 1 shows a block diagram of a processor into
which reconfigurable exception detection coprocessor
(REDC) is integrated. This hardware consists of the main
processor, the conditional expression evaluation mod-
ule (CEEM), and the ID handling module (IDHM).
The main processor is a central processing element that per-
forms application programs. The REDC is an exception de-

tection unit. It evaluates conditional expressions and if the
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Fig. 2 Conditional Expression Evaluation Module

condition becomes true, it issues corresponding ID. IDHM is
a controller. It transfers IDs to the main processor.

3.2 Reconfigurable Exception Detection copro-

cessor

The REDC consists of the following components: the
CEEM for evaluation of conditional expressions and the
IDHM for handling IDs issued by the CEEM.

The CEEM includes basic components (BC), intercon-
nect, and constant register file as shown in Figure 2. BCis a
fundamental computational unit of the module. It evaluates
conditional expressions in reference to main processor’s reg-
ister file. If a conditional expression is true, the BC sets 1 to
the corresponding flag register. A constant register contains
a constant number used in evaluation of conditional expres-
sions. A BC can reconfigure its components’ functions and
inputs’ values. Configuration data is stored in multicontext
registers and one of them is selected with processor’s context
switching to decide the configuration of a BC.

The BC must execute three types of operations efficiently.
Some types of the BCs are shown in Figure 3. In Figure 3,
ALUs execute OP4.y;, comparators execute OPcpp, and a
zero or one comparator can judge whether an input value
is zero or one. Although component 1.a can only evalu-
ate a part of Type 1 operations, it is cost and area effec-
tive. Component 1.b can evaluate all of Type 1 operations.
Component 2 can evaluate all of Type 1 and 2 operations.
Component 3 can evaluate all of Type 1, 2, and 3 opera-
tions. For example, the component 1_a is sufficient in order
to detect zero divide and we need the component 1_b to de-
tect array index error. If we use the component 3 to detect
such exceptions, the utilization of the hardware might be-
come low. In practical exception detection, all types of the
operations might exist at an irregular rate. Therefore, we
need to consider the appropriate configuration of the BCs to
detect various type exception detections efficiently. In the
next paragraph, we show an example of the BC as a proto-
type for evaluation.

The example of the BC mainly consists of two arithmetic

logical units, two comparators, and multiple inputs from reg-
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ister file and constant register file. It can evaluate two condi-
tional expressions of Type 1 or Type 2 simultaneously. Com-
bining the two Type 2 expressions, it can evaluate a Type 3
expression. RO through R5 are inputs of register file’s val-
ues and CO through C3 are inputs of constant register file’s
value. The flexibility of inputs of the BC is as follows.
BC: can access to R;—2 to Ri+3 and Ci_; to Cit2
Here, i is the index of BCs. This BC can access to six reg-
isters and four constant registers. If a BC can access to all
of register file’s values and constant register file’s values, in-
terconnection routing and multiplexers to select data occupy
much of the chip area. Therefore, if the data linking with
each other are put together closely, we think the above flex-
ibility is sufficient.

In the following example, we explain the flow of excep-

tion detection process. Suppose that at a certain point of

the program, we need to examine whether variables exist in
a certain range. Also suppose that at another point of the
program, we need to examine whether variables are equal to

zero. These conditions are described as follows.

Conditionl
Exception ID  Conditional Expression = Operation Type
1 X1 +X2 > 70 Type 2
2 X3 < 20 Type 1
3 X4 < -5&& X4 > 5 Type 3
Condition2
Exception ID  Conditional Expression ~ Operation Type
1 X1 ==0 Type 1
2 X2 == 0&& X3 == Type 3
3 X4 == 0 Type 1

Here, X1, X2, X3, X4 are the values of register R1, R2,
R3, R4, respectively. Let Condition] be assigned to contextl
and Condition2 be assigned to context2. At the time to eval-
nate Conditionl, the main processor switches the context
number to 1 and makes the coprocessor to evaluate Con-
ditionl. If X3 is 10, BC; sets 1 to the corresponding flag
register, and then, the IDHM transfer ’2’ as the detected ex-
ception ID to the main processor. In a similar manner, the
coprocessor evaluates Condition2 and if any of the condition
expressions is true, the corresponding ID is issued.

The IDHM fetches issued IDs to a queue, and then transfer
them to the main processor one by one. To fetch issued IDs,
the IDHM propagates the IDs on tree-formed data path, re-
ducing the number of steps needed to fetch IDs to log#BC
rather than #BC, where #BC is the number of BCs. Fig-
ure 5 shows the architecture of the IDHM. It consists of flag
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registers, ID registers, ID buffer registers and the control
logic block. Flag registers store the flag bit to which a BC
outputs. ID registers are constant registers that provide IDs
for exception handling. ID buffer registers are buffers for
ID and flag bit. The control logic block consists of queue
registers and simple control circuit. The queue registers are
also buffers for ID and flag bit, and the control circuit con-
trols the transfer of IDs from the queue registers to the main
Processor.

The structure of IDHM is the form of binary tree. Data
are propagated from leaves to the root. It transfers IDs to
the main processor according to the following step. (1) BCs
set the results to the corresponding flag registers in parallel.
(2) ID buffer registers of the bottom level in the binary tree
fetch the value of the flag register and the ID register if the
value of the flag register is 1. We consider a pair of an ID
and the corresponding flag as a data unit. A buffer register
fetches a pair of an ID and the value of flag register from one
of the two leaves. If both of the flag register values are 1, the
pair that has a smaller ID is given priority. (3) The pairs in
ID buffer registers of each level are transferred to the next
level ID buffer registers one after another. (4) Finally, the
values go into the queue registers in the control logic block.
(5) The main processor receives IDs from the queue registers
and executes exception handling. This specific architecture
of IDHM enables fast ID transfer.

4. Performance Evaluation

In this section, we present the performance evaluation of
the REDC.

To evaluate the performance, we compare the execution
time of conditional expression evaluation between the REDC
and software implementation. The program used consists of
the code that evaluates the 64 Type 2 expressions and, if

the conditional expressions are true, it sets 1 to the corre-

Table 1 Performance Evaluation of the REDC

50MHz | 100MHz | 150MHz | 200MHz
16 parallel | 80nsec | 40nsec | 26.8nsec | 20nsec
32 parallel | 40nsec | 20nsec | 13.4nsec | 1Onsec

sponding flag. The environment of software implementation
consists of intel Xeon processor running at 2.4 GHz and Red-
Hat Linux 9 OS.

The time taken by the software implementation to exe-
cute the evaluation program is about 90nsec. On the other
hand, considering the BCs can evaluate two Type 2 opera-
tions simultaneously in two clock cycles, the execution time
of the REDC is shown in Table 1 at various parallelism and
frequency.

From Table 1, the REDC which consists of 16 BCs at
50MHz can execute the program in almost the same time
as 2.4 GHz Xeon processor. The REDC that consists of 32
BCs is 9 times faster than the software implementation if
its clock frequency is 200MHz. The clock frequency of the
REDC (200MHz) would be a reasonable assumption since it
is less than one-tenth of the clock frequency of the processor.
Therefore, the REDC can reduce the overhead of exception
detection to a large degree.

To estimate this hardware, we have designed the REDC
chip using verilog-HDL and implemented via VDEC Rohm
LSI with 3.6mm X 3.6mm size, 0.35um process, 2 PolySi lay-
ers and 3 metal layers. According to the result of post-layout
simulation, the chip works at 50MHz. We expect that this
performance becomes better if we use a dedicated library and

manual layout.
5. Future Works

Future works include the following issues.

® A practical method for applying exception handling
model to application software
To utilize this hardware in practical use, we need a frame-
work to find potential exceptions, an automatic application
code analyzer to do it, and a compiler to produce the corre-
sponding code to the REDC and a main processor.

e Configuration of the BC
Although the prototype BC consists of two ALUs and two
comparators, not all conditional expressions use these func-
tional units and, in practical use, this configuration is con-
sidered to be redundant. Therefore, we do research on ap-
propriate congifuration of the BC by combining some types
of the BCs we proposed in Section 3.2.

® Flexibility of the interconnect
The flexibility of the interconnect decides the accessibility of
data between the register file and BCs. The excessive flexi-

bility leads to hardware overhead. Hence, we make a study



of suitable interconnect to feed data to BCs sufficiently.
6. Conclusions

In this paper, we have proposed a new reconfigurable co-
processor architecture that is specialized in exception de-

tection. Through the use of the dynamic reconfiguration

mechanism, it can detect exception depending on the chang-
ing situation. Therefore, this reconfigurable coprocessor can
support the continuous and stable operations of software. As
this architecture demonstrated, in the days to come, appli-
cation of reconfigurable hardware might become interesting

and important matters.
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