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Abstract In many synthesis approaches, scheduling is completed before resource binding, and the lifetime of each of opera-
tions and data is firmly fixed when we start binding. So. the conflict-free resource sharing is easily guaranteed. Binding centric
approaches and simultaneous scheduling and binding approaches such as 3D scheduling are alternative approaches to the high
level synthesis regarding connectivity-related metrics. In those approaches, binding is often performed before completion of
scheduling. Since a thoughtless binding often results in an infeasible solution, to identify and characterize a valid binding
will be an important subtask. The objective of this paper is to identify and characterize the resource binding which guarantees
schedulability. We introduce the concept of “essential lifetime overlap™ which is an unaviodable lifetime overlap for a valid
schedule. We also introduce the concept of “minimal set” of essential lifetime overlapping pairs (MinELO), and show that
MinELO can be characterized by a single processor schedule. By only taking care of MinELO, a schedulable resource binding
is always guaranteed.
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: In many synthesis approaches [1]. scheduling is completed before
1. Introduction y sy pp 1 g p

resource binding. and the lifetime of each of operations and data
High level synthesis is the task to transform the behavioral de- is firmly fixed when we start binding. The possibility of resource

scription in algorithm level into the architectural and behavioral de- sharing among operations and data is easily tested, and conflict-free

scriptions in the register transfer level, and it includes scheduling
and resource binding as its major subtasks. The objective of this
article is to discuss interactions between scheduling and resource
binding, and to identify and characterize the resource binding which
guarantees schedulability

resource sharing is guaranteed. However. if we need to care about
the wire complexity, wire delay. power consumed at wires, etc. in
the high level synthesis. it would be hard to optimize schedule inde-
pendently of resource binding.

Binding centric approaches [2] and simultaneous scheduling and



binding approaches such as 3D scheduling [3] are alternative ap-
proaches to the high level synthesis regarding connectivity-related

metrics. In those approaches, bmdmg is often performed before

complenon of scheduling, and only pamal or no information on

lifetimes of operations and data is available, when we bind some-
one to some resource. Since a thoughtless binding often results in
an infeasible solution, to identify and characterize a valid binding
will be an important subtask.

In this paper, we will introduce the concept of “essential lifetime

overlap” which is an unaviodable lifetime overlap for a valid sched-
ule ;lt is interesting that some of essential lifetime overlapping pairs
are:drawn inherently, and the other are drawn by circumstances. We
\}ill .also introduce the concept of “minimal set” of essential life-
nme overlappmg pairs (MinELO), and show that MinELO can be
characterlzed by a single processor schedule. By only taking care
of MmELO a schedulable resource binding is always guaranteed.

ThlS paper is organized as follows. In section 2, we will briefly
summarize several different synthesis problems with mainly focus-
ing on lifetime models. Section 3 is devoted to the definitions of
essential lifetime overlap and several related definitions. Our main
theorem is described in section 4. Some additional comments on
the extentions of the main theorem and conclusions are shown in
section 5, and 6.

2. Synthesis Problems

The discussions. which we will have in this paper. will cover from
the high level (datapath) synthesis to system level synthesis includ-
ing reconfigurable system synthesis.

2.1 Fine grain synthesis

“*For-convenience’s sake, we will use a dependence graph G(O U
D?’A) for representing an application algorithm to be implemented,
where O is a set of operations, D is a set of data, and A is a set of
arcs: representing data generation by an operation and feeding data
to an operation. (For a compact representation, a data vertex. not
a;;-)_r.i'rparyiinput data vertex, may often be omitted and a generating
olp.e:ration and a consuming operation are directly connected by an
arc.)

“There are two major models of timing issue. One is based on exe-
cuftion time of each operation, and the schedule is considered as the
assignment of operations to control steps. The other is based on a
path delay from a source register to a destination register (or from a
multiplexer to a destination register). and the schedule is considered
as the assignment of control signals to control steps. We will adopt
‘the: former model in this paper, and it is assumed that the execution
‘tiles of operations e : O — Z. is given as a part of input instance.
Following the concept of the timing model. the operation schedule
is defined as the mapping o from O to N.

6:0-N
There may be also several different definitions on the lifetimes of

opcrations and data, here we will follow the simplest definition,

‘That is, for the lifetime 7 of an operation o; € O,

7(01) = [o(0i). 0(0)) + e(0i) = 1]

where [z, j] represents all integers from i to j. For a data d; which

is generated by o; and is used by 0 € S(d,), its lifetime 7(d;) is
given as..
d;) = i) + e(0:), e(0) — 1

r(d) = |0(0) + ¢(o). max {o(0) + (o) }]

where S(d;) is a set of all immediate successors of d; in G(O U
D. A).

efoi) =2

o H ; : H )

G(vi) | G(vi) +e(0i) I

S(0i) * efoi)-1 max [6(o)+e(o)-1}

Fig. 1

Time chart demonstrating lifetime model.

On the other hand, resource binding is the mapping p from OU D

to the power set of hardware components C.
p:OUD — 2

The above definition looks too periphrastic. It would be the con-
ventional case that the hardware resource is a set of isolated func-

tional units and registers, and the resource binding is reduced to
(po: 0= F)U(pp: D —R)

where F adn R are a set of functional units and a set of registers,
respectively. p : O U D — 2 will make sense. for instance. for
a reconfigurable LSI in which cell units can form into a functional
unit and a register from time to time.

Finally. the synthesis problem is to find o and p which satisfy (1)
dependency constraints specified by G(O U D. A). and (2) conflict
free constraint, i.e., for every pairx.y € OU D,

T(e)N7(y) =0
or
plr)Np(y) =0

2.2 Coarse grain synthesis
A coarse grain synthesis will be illustrated for the case of a recon-
figurable system. The design flow of a reconfigurable system will

include

(1) partitioning of input behavioral description of a system to
be implemented into behavioral descriptions of sub--systems,

which are considered as units of configured blocks,

(2) for each sub—-system, design a hardware module which imple-

ments the specified behavior of the sub—system. and

(3) design a reconfiguration and execution schedule of modules
in the three—-dimensional space (two dimensions for specitying
positions on a reconfigurable VLSI chip, and one dimension

for specifying timing of reconfiguration and execution).



Partitioning problems anse in vcanous des1gn strategles and have
been studied intensively [4] [5] [6] The typlcal ob)ecnves of pam-
tioning .problems would: be the size of each partition, the. number
of connections between partitions, the number of terminals of each

partition, etc, and most of the conventional partitioning problems do:

not consider the fitness of the contents of each partition as a subject:
of hardware (or software) implementation. Automatic partitioning
for a reconfigurable system remains as an open problem.

It is natural that partitioning is defined as the partitioning of O,
that is, O;. - -, Ok, where Uf=l O, = O, and a sub-system #k
is defined as the subgraph G = (O U Dy, Ax) of G induced by
the vertex set O. Furthermore, we will introduce a skeleton hyper:
graph Gs = (P U I, E), where each element of P corresponds to
one of partitions, and E is a set of global data dependencies. Fur-
thermore we will define the cost of each arc ¢ : £ — Z.

Once a partitioning is given, first we need to analyze data depen-
dency between sub-systems. enumerate hyper edges of the skeleton
graph Gs. and compute the cost of each hyper edges by collecting
global data having identical set of terminal partitions (which are ver-
tices in the skeleton graph) and summing up word-lengths for these
data. For convenience’s sake, the number of global data assigned to
a hyper edge is called multiplicity of the edge.

Fig. 2 shows a simple example of partitioning and its correspond-
ing skeleton graph. A circle vertex in the dependence graph rep-
resents an elementary operation. and a box vertex does a primary
input variable. Note that, according to the partitioning Pi. P». P,
primary input data have been also partitioned into three subsets by
the difference of patterns which partitions the input is fed to. In the
skeleton graph. a small oval on arcs indicates that those arcs forms
one hyper edge, and the number associated with such oval denotes
the multiplicity of the hyper edge. For example, the hyper edge
{P1. Ps} is the result of the original arcs g and j, and hence its mul-
tiplicity becomes 2. On the other hand, the hyper edge { P,. P2. Ps}
is the result of the original arc h alone, and hence its multiplicity is
1.

In an implementation of the input behavioral description on a re-
configurable system, each vertex P in P. which corresponds to the
subgraph G} . is associated with a computational module A/ which
is designed specialized for the behavior Gy. and each hyper edge
E( in E is associated with a register module R¢ which consists of a
number of registers (the number is the same with the multiplicity of
the edge).

So now the subjects to be configured and scheduled are set of
computational modules {Af;. M. - -
modules {R1.R2.---. R.}.

When we consider 3-D scheduling, our coarse grain model does

.Mk} and set of register

not identify individual lifetime of each data which is bound to the
same hyper edge (that is, bound to the same register module). If one
want to refine the implementation result by using aggressive register
sharing, one need to split one hyper edge in the skeleton graph into
several hyper edges and treat each of them separately.

When we have finished to implement each computational mod-

ule My. we can identify the timing when input data is used in the

Partitioning

Skeleton graph_
Fig. 2 Partitioning and skclcton graph.
module, and also the timing when output is generated in the mod-

ule, where each timing is measured (for example. but not limited to)
from the start of the execution of the sub—system.
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Fig. 3 Illustration of relative timing of data consumpt»ion and data gencra-
tion.

The register module lifetime 7(R,) for a register module R,
will be computed as follows (a fine-grain lifetime model). Now
let E'¢ be the corresponding hyper edge in the skeleton graph. and

{E(1.Eq2. - . E¢n } be data bound to the hyper edge E.
T(R() = milln{gencration timing of E¢, }.
J=

m . . .
u_na?c{latest consuming timing of E; }
=

Another model for register module lifetime (fully-overlapping
lifetime model) is:

T(R() = mil]n{stan of the subsystem which generates E; }.
1=
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Fig. 4 A coarse grain model | of register module lifetimes (a fine-grain

lifctime modcl).
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Fig. 5 A coarsc grain modcl 11 of register modulc lifctimes (fully overlap-

ping lifctime model), which can be applicd fully top-down design.

Comparing the fully—overlapping lifetime model with the fine—
grain lifetime model, the fine—grain model is more helpful for ag-
gressive register module sharing. However, the fine—grain model
requires detailed analysis (that is, fine grain description) of individ-
ual computation module in terms of the timing of data input and
data output.

-On the other hand. fully-overlapping lifetime model requires no
information about the behavior of individual computation module.
Hence. it can be easily applied to fully top--down design approach.

Fig.6 shows a small example of a complete design of a reconfig-
urable system based on the fully—overlapping lifetime model.

register module  reconfiguration time
1 computation module
12
13
Ei
Ez
REEE
A3 for P3
1
Skeleton graph Gant chart of an implementation with reconfiguration

Fig.6 A simple example of a complete design of a reconfigurable system

basc on fully-overlapping lifctime modcl.

Finally, our reconfigurable system synthesis problem is: given
a skeleton graph Gs(P U 1. E), computational modules A/ =
{My.M,. -, Mg} (correspond to P in Gs), and register mod-
ules R = {Ry.R2.---.RL} (correspond to E in Gs), find the
schedule
:2.;(.7 ‘M —-N
and the resource binding

p:]\[UR—-?C.

3. Essential Lifetime Overlaps

Ifr(z)N7(y)-+ O forz,y € OU D, x and y are called “lifetime

overlapping pair”, or we say “x andy have lifetime overlap”.
[Definition 1] (Essential lifetime overlap (ELO))

If we can not find any valid schedule satisfying T(x) N 7(y) = 0,
we call the lifetime overlap T(z) N 7(y) & O as “essential .

Two input.data of one operation is a simplest example of the es-
sential lifetime overlapping pair.:

If 2 and y have the essential lifetime overlap, we must bind so
that p(x) N p(y) = 0. The essential lifetime overlap is defined from
the view point of resource binding.

[Definition 2] (Essential resource disjoint-ness (ERD))
If p(x) N p(y) = O is mandatory for a valid schedule, we say “x
If « and y have

the essential resowrce disjoint-ness. r and y also have the essential

and y have the essential resource disjoint-ness .

lifetime overlap.
[Definition 3] (Minimal set of ELO (MinELO))

Let € be a set of essential lifetime overlapping pairs, i.e.,

&= {{J'-y}

& is called “minimal " if

1. G(OU D, A) is schedulable under p(x) N p(y) = O for all
pair {xv.y} € . and p(') (1 ply) % O for all {” .y} € E.

2. G(OUD. A) is fuil to be scheduled under p(x"' )N p(y") + 0
for anv one pair {x"'.y"} € € and p(z") N p(y’) + O for all
{¢'.y')eE

“p(2') N p(y') £ O for all {a'.y'} € &£ seems a literary de-

scription. In a practical situation, it can be interpreted as “‘we can

£,y € OU D, a pair x and y have }

the essential lifetime overlap

assign 7(«") N T(y") = B orrp(a’) N p(y’) = 0 arbitrary for each
{/.yYe€&)

The problem discussed in this paper is: how to identify MinELO
and how to characterize MinELO.

4. Main Theorem under Fully Overlapping
Model

Here we limit our discussion to the fully overlapping data lifetime
model (Fig. 5). that is, the lifetime of a data begins at the beginning
of the operation which generates the data. and ends at the end of the

operation which uses the data as an input.
d)= i). max {o(o) +e(o) -1
7(d)) = |o(0:) “E;(d’){ (0) +e(0) — 1}

[Theorem 1]
Under the fully overlupping data lifetime model. a MinELO is given
by the set of lifetime overlapping pairs in a single processor sched-
ule.

If G(O N D. A) is a directed acyclic graph. a single processor
schedule is considered as a topological order of operations.

Sketch of proof:
Let (60 : O — N.p: O U D — 2°) be an arbitrary valid pair of



Fig. 7 Examlc of a singlc processor schedule and MinELO cxtraction.
MinELO given by this single processor schedule is {{d;.dx}.
{d7.d1}, {dx.di}. {dx,d2}. {d1.d2}. {di,d3}. {d2.d3}.
{d2.ds}. {d2.d5}. {d2.ds}. {ds.ds}. {ds.ds}. {di.ds}.
{ds.ds}}

schedule and resource binding. Let DJy be the set of all resource
disjoint pairs, and let OLy be the set of all lifetime overlapping
pairs, both on (oy, p). Clearly,

DJy20La.

because p(x) N p(y) = @ must hold for all pair {z.y} € OLy.

Now we choose one operation A € O whose lifetime is not prop-
erly included by other operation’s lifetime. We then split the sched-
ule oy into three parts, the first is the schedule of operations which
begins earlier than the operation A. the second is the operation A
alone, and the third is the schedule of operations which begins no
earlier than A. Generate the schedule o, in the following way; the
schedule of the first part remains the same. the start of A is shifted
after ends of all operations in the first part. and the schedule of the
third part is further shifted after the end of A.

o1 is again a valid schedule under the initial resource binding p.
We let OL; be the set of all lifetime overlapping pairs in ;. Then
we have

OLo20L,

We can repeat the above transformation until all operations are

arranged in a line. and we finally have

DJy20Ly20L,2 - 20L,,

where OL,, is the set of all lifetime overlapping pairs of a single
processor schedule.

Finally, we can easily verify that OL,, satisfies the condition of
MinELO. =]
[Corollary 1]

The number of different MinELO is no larger than the number of

different topological order of operations.

5. Comments on MinELO under Different Life-
time Models

There are several different data lifetime (resource occupation
time) models, and the characterization of MinELO would depend

on a data lifetime model.

A. Partly overlapping model

(b) Schedule is expanded

Fig. 8 lllustration of schedule splitting and cxpansion.

When we adopt the fine—grain lifetime model with overlapping
input/output data: lifetimes of an input data and an output data of an
operation overlap partly, a single processor schedule is again used to
extract a minimal set of essential lifetime overlapping pairs (Fig.9).

B. No overlapping model

When we adopt the fine-grain lifetime model with no-
overlapping input/output data: lifetimes of an input data and an out-
put data of an operation do not overlap (see Fig.1). a simple single
processor schedule is no longer valid. since there is a feasible im-
plementation which can not be represented by a single processor
schedule (Fig.10).

One possible modification for characterizing MinELO under such
no-overlapping model would be the split of an operation into two
operations, one of which works for designating the end of an input
data, and the other works for the start of an output data. Then a
single processor schedule can be used again for MinELO (Fig.11).

Detailed discussions will be reported in future.

6. Conclusions

In this paper. we haveintroduced the concept of “essential lifetime
overlap™ which is an unaviodable lifetime overlap for a valid sched-
ule. It is interesting that some of essential lifetime overlapping pairs
are drawn inherently, and the other are drawn by circumstances. We
have also introduced the concept of “minimal set™ of essential life-

time overlapping pairs (MinELO). and show that MinELO can be
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(a) Original schedule is splited into three parts

(b) Schedule is expanded

Fig. 9 “Illustration of schedulc splitting and cxpansion for partial overlap-
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‘ping input/output data lifctime modcl.

S | I ovtput of A

: output of B

o input for A g
input for B : ;
| AL

W G It can not represent the following situation

input for A
7777777, J
; output of A

input for B :

777777777

77777777777
output of B

A input -> B output B input -> A output

®) @/

Flg 10 Feasiblc implementation which can not be represented by a single

processor schedule.

‘characterized by a single processor schedule. By only taking care
©of'MinELO, a schedulable resource binding is guaranteed.

-t Comments for the case of the partly overlapping input/output data
lifetime model and for the case of no overlapping input/output data

| B output of A
722 ovtput of B
input for A g7 -

input for B 7z

Fig. Il -Split an o.pcratio;n iﬁto its start and cnd vertices for adaptiﬁg no-
. overlapping. input/output data lifctime modcl. By doing thié. nei-

ther pair of input of A and output B nor the pair-input B and output

A is an csscntial lifctime overlapping pair. and the input of A and

the output of B can sharc a register while the iput of B and the

output of A sharc anothcr registcr.

lifetime model have been shown. However they are still future

works. Discussions on an input algorithm including conditional
branches and a datapath allowing data duplicate remain as future
works. lme'ra‘qtioh between min/max path delay based control signal
schedule and resource binding is alo an interesting problem needed
to be tackled in future.
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