LEEA HTROEESES IR
IPSI SIG Technical Reports

2006— S LDM—125 (10)
20067512

Power-Conscious Microprocessor-Based Testing of System-on-Chip

Fawnizu Azmadi Hussin', Tomokazu Yoneda', Alex Orailogluz, and Hideo Fujiwara

i

'Grad. School of Information Science, Nara Institute of Science and Technology, Kansai Science City, 630-0192, Japan
fawnizu@ieee.org, {yoneda, fujiwara} @is.naist.jp
*Computer Science and Engineering Department, University of California San Diego, La Jolla, CA 92093
alex@cs.ucsd.edu

Abstract In this paper, we are proposing a core-based test methodology that utilizes the functional bus for test stimuli and
response transportation. An efficient algorithm for the generation of a complete test schedule that efficiently utilizes the
functional bus under a power constraint is described. The test schedule is composed of a set of test vector delivery sequences
in small chunks, denoted as packets. The utilization of small packet sizes minimizes required buffer sizes while optimizing the
functional bus utilization. The experimental results show that the methodology is highly effective compared to previous
approaches that do not use the functional bus. The strong results of the proposed approach are particularly highlighted when
small bus widths are considered, an important consideration in current SOC designs where increasingly larger bus widths pose

routing and reliability challenges.

Keyword Functional bus, Microprocessor-based, Power-Constrained, Test Packet, Test Scheduling

1. Introduction

The System-on-Chip (SOC) design methodology offers
considerable benefits, which can be identified in the two
distinct perspectives of shortening the design cycle, and
delivering reusability of pre-designed cores and their
associated test set. The IEEE 1500 standard supports test
reuse methodology by standardizing a test wrapper [1].

A lot of work has been already performed to address
relevant issues on SOC testing. Broadly, prior work in the
area can be categorized as belonging to either of the two
classes of (1) the delivery mechanism for the test data and
(2) the scheduling of the core tests with various objectives
and constraints. In regards to the test delivery mechanism,
several types of test access mechanism (TAM) have been
proposed such as TestRail [2), TestBus [3], and Virtual
TAM [4]. All these techniques propose the addition of TAM
architectures to the SOC in order to support the test
application strategies they have developed.

The test scheduling approaches hitherto proposed in [5,6)
can be classified as TAM-based. In all of these cases, the
test scheduling schemes utilize a TAM similar to [2,3,4] to
deliver test data to the cores under test. An extraneous TAM
is consistently added to the SCC for the sole purpose of
delivering the test vectors from external automatic test
equipment (ATE) to the module under test.

In all SOCs, a functional communication network is readily
available, and presents an alternative to the extraneous TAM
for testing purposes. In addition, in most SOCs, embedded
processors exist which could potentially be used to replace
or complement the ATE. For simplicity, we will refer to the
communication network as a functional bus; the
communication network may not necessarily be in the form
of a straightforward bus topology.

While there exists plentiful work in the literature on TAM-
based testing, only two research groups [7,8] have
previously addressed functional bus-based test scheme. In
[7], the authors propose an interface between the PCI bus
and the modules under test. In [8], a buffer interface between

the bus and the modules under test is proposed, while the
control of test application is performed by a Finite State
Machine based controller.

In this paper, we illustrate our approach which utilizes the
functional bus to test all modules in the SOC. In the process,
we show how our approach greatly simplifies the test
program, one of the primary strengths and differentiators of
our proposed methodology. Such simplification is attained
through the support of an efficient test architecture, which
includes appropriate timing control circuitry.

We begin with some motivation in section 2. In section 3,
the support architecture design for the efficient utilization of
the functional bus during testing is explained. Section 4
elaborates the methodology to develop an efficient test
schedule using the functional bus. In section 5, we
thoroughly evaluate our methodology experimentally.
Finally, a brief set of conclusions is offered in section 6.

2. Motivation

Let us look at some of the possible scenarios regarding
packet based test delivery utilizing the functional bus. To
ease description, let us denote each of the small test data
units as a test packet.

Round-robin ordering would be a reasonable first attempt at
scheduling the test delivery because of its fair allocation of
the bus as shown in Figure 1a, where the x-axis represents
time. Each packet will go through two separate stages of
transfer (illustrated by Figure 2). First, it is delivered from
pracessor to the buffer through the functional bus. On the
second stage, it is transferred from the buffer into the scan
chains.

Figure 1 represents the time a packet takes in stage |

" (labeled bus) and stage 2 (labeled #1;) by rectangles with the

same shading. Stage 1 of the subsequent test packet for a
module can only begin, to avoid buffer overflow, after stage
2 of the previous test packet for that module has been
completed. Furthermore, since stage 1 uses a common bus,
only one test packet can be in stage | at any given time.

Stage | and stage 2 are also referred to as test delivery and
test application, respectively, for the test packet.

Figure 1a shows m; idle, waiting for test data because the
test packet for m; cannot be delivered until the test packet
for m; has been delivered. However, the test packet for m,
cannot be delivered until test application of the previous
packet of m, has been completed. Consequently, m; is
starved for test data and at the same time the bus remains
idle while waiting for m. to complete test application even
though m; needs test data. An analogous situation holds for
my. ma, on the other hand, always receives its test data in a
timely manner at the expense of starving m, and n;.

[N [

m; is waiting for test data to be delivered
Figure 1a: Round-rebin scheduling

larger buffer required for m; and m;

A SN NV

Figure 1b: Packet size and buffer size variations

The problem can be remedied by increasing the packet size
for m, and m;, as in Figure 1b. However, this quick fix
implies that larger buffer spaces are required for m, and m;
to store the larger packet sizes. We can reduce packet size
for all modules, but the minimum buffer size is constrained
by the smallest packet size of m,. Further reduction in packet
sizes for m; and m; would reintroduce the problem
illustrated in Figure la.

An additional challenge stems from the fact that packet sizes
cannot be arbitrary, because data delivery is conducted
through a discrete number of bus wires. Figure 2 shows one
possible buffer interface between the bus and the module.
There are several different variables that can affect the test
scheduling: bus frequency, f;, scan frequencies, f.1, and f;.2,
bus width, number of scan chains, and volume of test data
for each module.

Even though a functional bus and a TAM may be similar in
many ways, the underlying issues that need to be considered
are completely different. We can broadly categorize them
into support architecture for test data delivery and
algorithmic framework for efficient test scheduling.

Functional bus
Buffer
f

. f}«-z ¢

uffer

€ —————
Stage 2

Figure 2: Bus-buffer-module interface

3. Architecture Design Framework

The buffer consists of four main components as shown in
Figure 3. The input register latches data from the bus. Upon
registering a full status bit for the input register, the top of
the stack copies the data from the input register if its status
bit indicates that it is empty. After copying, the input
register status bit is cleared, preparing it for the next cycle of
data from the bus. The stack will subsequently go through
fall-through stages which will bring the data to the lowest
empty slat.
Bus

v

[N

Frsmaraest] Input register

%% Fall-through stack

" FIFO Controller |

Figure 3: Buffer architecture

The output register is composed of s, bits, where s, is the
number of wrapper scan chains for module m, possibly
differing from the bus width. The output register is
interfaced directly to the scan chain inputs. The output
register is designed to support this mismatch in bus width
and wrapper scan chains. Therefore, it can be easily adapted
to any number of scan chains regardless of the bus width.

The test data is serially shifted out from the bottom of the
stack, and shifted into the output register. The First-In-First-
Out (FIFO) buffer controller keeps track of the number of
bits being serially shifted into the output buffer, ng, and the
number of bits being serially shifted out of the bottom stack,
ny. When ng=s,, the FIFO controller generates a scan clock
to scan in the contents of the output buffer into the scan
chain, whereupon new data is shifted into the output buffer.
When ng=wp, the FIFO controller generates a signal to
initiate a fall-through action to fill in the bottom of the stack
with new data.

The FIFO controller also keeps track of the number of scan
clocks already generated. When this number is equal to the
longest scan chain in. the module, max(ly;), a capture clock
is generated. The FIFO controller can be implemented using
three modulo counters, i.e., MOD s,, MOD w, and MOD
max(ly;) as illustrated in Figure 4. The required input for
this circuit is clk;,, which is the product of s, and the scan
frequency, fin.

The proposed buffer architecture offers two distinct
advantages. First, the test application at the module operates
asynchronously with respect to the availability of test data in
the buffer. Because of the asynchronous scan and capture
clock generation by the FIFO controller, the buffer can
accommodate unpredictable delivery time of the test
vectors, thus handling the synchronization issue. As a result,
the scan clock and the bus clock can be decoupled. Such
decoupling enables the proposed test mechanism to utilize a
bus frequency higher than the scan frequency. Such a
capability is lacking in a TAM-based approach because
TAM wires are connected directly to the scan chains.

clkq MOD 5. Scan clock, f,
MOD Capture
max(ly;) clock
MODw, |—»

Fall-through stack output
Figure 4: FIFO controller

The second advantage is that the buffer allows the test data
to be delivered in chunks of any arbitrary muitiple of bus
width. This flexibility proves to be quite useful in
optimizing the test schedule, in addition to minimizing the
buffer area overhead.

4. Algorithmic Framework

The development of the algorithmic framework addresses
two main objectives: minimization of the total required
buffer size and maximization of bus utilization while
ensuring that all modules receive the test data in a timely
manner. In order to satisfy these twin objectives, the buffer
size and the test delivery sequence need to be optimal.

The framework consists of two hierarchical steps. First step
(described in Sections 4.2 and 4.3) is the grouping of
modules which can be tested simultaneously under a
maximum power constraint, In the second step (defined in
Sections 4.4 and 4.5), for each group of modules, the
optimum number of packets for every module is determined.
Each of these packets is then scheduled for delivery through
the functional bus.

In this section, the algorithmic framework is discussed in
terms of the two hierarchical steps above. We start by
defining a set of nomenclature useful in describing the
methodology.

4.1 Terminology

Definition 1: A test packet is composed of a number of bits
of test data delivered to a module by the processor, in one
burst transfer through the functional bus.

Definition 2: Packet size (p,,) denotes the number of bits of
test data in a test packet. Packet size is typically an integer
multiple of the bus width.

Definition 3: A packet set is composed of a series of
packets delivered to all modules n1;e M¢, where Mg is the set
of all modules in the SOC that are tested simultaneously.
Several identical packet sets can be cascaded to form a
packet schedule, which includes all packets for all modules
m; to complete the test for M.

Definition 4: A module m; is said to have a split ratio of k,
if k packets are scheduled for module m; in one packet set. In
other words, it means that module m; will have k times the
number of packets of the smallest modules with a split ratio
of one. The module is also called a split-k module.

Definition 5: The scan rate (R,,) is the speed at which the
test vectors are loaded into the scan chains and the test
responses are shifted out of the scan chains in bits per
second (bps). For a module which has s,, scan chains and
scan frequency f,,, its scan rate is R,, = s,, X fi.

Definition 6: A test group consists of a subset of modules in
an SOC that are tested simultaneously.

i”"
o [m | -o: 7l
gl m | m |] m
8
Time Time
(@) (b)

Figure 5: Power-constrained testing

4.2 Effect of Test Frequency on Power Dissipation
and Test Application Time

In typical SOC testing, due to the design characteristics such
as heat dissipation and current carrying capacity of wires, a
limit is imposed on power dissipation that a circuit can
tolerate without causing permanent damage to the chip. An
illustrative example in Figure 5a shows that module m;
cannot be tested together with m; and m;, without exceeding
P,.ox.. However, as shown in Figure 5b, if the rectangles for
m5 and mi; can be reshaped while keeping the area inside the
rectangles constant, all modules can be tested concurrently
resulting in shorter total test application time (TAT). The
validity for this shape transformation has been discussed in
[9].

43 Algorithm for Forming Test Groups

The ability to greatly simplify the test program when using
the systematic packet scheduling methodology (Section 4.5)
is one of the primary differentiators of our test methodology.
Therefore, when grouping the modules, we utilize a method
that supports this novel aspect to ensure that it can be fully
exploited.

A test group is formed by scheduling the module with the
longest test time first. When scheduling the next module into
the same group, its frequency is reassigned to one of the
discrete frequencies, smaller than the maximum test
frequency. The smallest frequency that will not cause the
module test time to exceed the test time of the first module
in the group is selected as it meets the twin goals of not
exceeding the maximum frequency while approaching it
maximally within the preset flip-flop quantity constraint for
the clock divider circuit. When the largest unscheduled
module cannot fit the current group within the power
constraint, a module that brings total power dissipation for
the group closest to the power limit is chosen. This is
repeated until no module can fit in, upon which, the same
procedure is repeated to create a new group.

44 Minimizing Buffer Size

As illustrated in Section 2, splitting test data into smaller
test packets reduces the buffer requirement. In principle,
there are two ways a packet delivery schedule can be
developed. We can specify the complete list of start times
for every packet in order to maximize bus utilization and to
minimize the time that a module is waiting for test data.

Alternatively, we can specify the start time for a properly
chosen subset of packets and then iteratively repeat the same
sequence of delivery until all packets are scheduled. The
second approach, which we adopt, has the advantage of a
shorter test program. In the next section, we take a look at
this second approach which we call packet set scheduling.

Assuming each packet size is p,. the buffer size
requirement can be specified as [(packet size in bits) —

(number of bits scanned in during the delivery period of the
packet)], or
P
B,, =(p,, Xw,) = (—=xR,) m
B
where, R, = sy X f,.: . the scan rate (bps)

J»= bus frequency (Hz)
Pai = packet size in multiples of w, (bits)

Equation (1) holds under the assumption that the next packet
is delivered only when the previous packet has already been
scanned in completely and the scan in operation can
commence once the first bit of data arrives in the buffer. The
total buffer size, B, for all modules meM, where M
represents all modules in the SOC, is

8 Y m,EM B’"! (2)

4.5 Algorithm for Packet Set Scheduling

The packet scheduling algorithm consists of three steps. The
first step consists of determining how to split the test packet
for each module so that the individual packet sizes are
roughly equal. In the second step, once the split ratio has
been identified, packet size is determined by solving a set of
linear equations. In the third step, a sequence of packet
delivery schedules is systematically formed.

Step 1: Let us consider an SOC which has n modules to be
tested simultaneously. In the first step of the algorithm, all
modules with scan rates smaller than the average scan rate
for all modules are considered to have a split ratio of one.
Let k < n be the number of split-l modules. Before
proceeding, let us define a terminology.

Definition 7: Assuming that the bus delivery rate is
sufficiently high, a packet set is considered to be in perfect-
fit if (i) it does not have modules that are waiting for test
data, (ii) there are no two consecutive packets delivered that
belong to the same module and (iii) the number of packets
between adjacent split-1 packets are equal. Furthermore, all
three conditions need still hold when two adjacent perfect-fit
packet sets are cascaded, except possibly for the initial or
final legs of test application.

Lemmal: Let # = number of modules to be tested
simultaneously, & = number of split-1 modules and r > | be
a divisor of k. If is to be the next larger split ratio, then the
number of split-r modules must equal dxk/r, for some
positive integer d, in order to form a perfect-fit packet set.

Proof: In order to ensure satisfaction of condition (ii) of
Definition 7, a minimum of k packets from the remaining
a-k modules need to exist for scheduling in between & split-1
packets. Therefore, n-k 2 k/r. In order to have an even
utilization of bus time, as outlined in condition (iii), we need
to schedule the same number of packets in between the
delivery of split-1 packets. Therefore, the number of packets
needs to be dxk. If each candidate module contributes r
packets, then the number of modules required is (dxk)/r.
This forms d subgroups of (k/r) split-r medules which make
up the split-r group m

To determine the split-r modules, we iteratively check for
all possible values of r, starting with the smallest. Let R,,,
be the average scan rate of split-1l modules. For the

remaining modules with split ratio value unassigned, if there
exist &/r modules m; that fulfill R,; < 7.5rxR,,,, then all the
kir modules are assigned split ratio values of r. This process
is repeated when identifying the next k/r subgroups of split-r
modules. As a result, d subgroups of k/r modules are
assigned the split ratio of .

If no subgroup could be found for the current value of r, this
process is repeated for the next larger value of r until r = £.
Otherwise, the remaining (n-k-dxk/r) modules are assigned a
split ratio of 2k to form the split-2k group. The complete
packet set schedule can be represented by equation (5),
assuming k& and g modules for split-1 and split-2k groups,
respectively.

Step 2: Once the split ratios are determined, the next step is
to determine the packet size for each module. Equation (3)
describes the scan in time of a test packet, where wj, is the
bus width, p,,; and f,,; are the packet size and scan frequency,
respectively, for module m;.

7;"1"/’ = Wy Py, /fm, 3)

In Figure 6, each pf ; Tepresents a test packet where,

£ = module number from split-i group
i = split ratio for module g
J = packet number for module g, and j < i

To preclude introduction of gaps between the test
applications of two consecutive packets of a module as
illustrated by Figure la, the packet TATs multiplied by the
corresponding split ratio must be identical as illustrated by
Figure 6. Equation (4) describes the packet TAT as
illustrated by Figure 6, where r and 2k are the corresponding
split ratios for each module. Packet size, p,,, and buffer size,
B... for each module m; can be calculated by solving
equations (1), (2) and (4) simultaneously. A unique solution
can be obtained for every value of B,

Step 3: Equation (5) shows the sequence of packet delivery
for one packet set that fulfils the perfect-fit condition in
Definition 7. In equation (5), the odd lines show the
schedule delivery for g split-2k packets followed by d split-r
packets. The even lines show the schedule delivery for the
subsequent g split-2k packets followed by a single split-1
packet from one of the k¥ modules.

To retrieve the test response, our methodology simply
continues with a burst read every time a burst write is
performed when a test packet is delivered. This approach
requires minimal overhead on the control algorithm
specified by the packet set in equation (5). This differs from
the TAM approaches, where test data delivery and response
retrieval are performed simultaneously at the expense
though of doubling the number of physical pins on the chip.

Lssuni[& Lend
my: split-1 Pi
my: split-1 172.
. T 3
my: split-2 P2 P
. a] 4 4
my: split-4 Py | Par | Paz | Paa

Figure 6: Packet TAT and split ratio

Yo Pmy o Wb* Pmy, = Yo Pmy ez Yo Py ik ir
f'"l f'"k f'"k+| fmkulk/r
1 2 q 1
Paca Para Paxa P
1 2 q]
P Pai.2 P2 Pia
| 2 q 2
P P P Pia
} 2 q 2
Py Paks Para P
1 2 9 kitr
Prcar-t Parar- Picak-r Pis
| 2 q k
P Pag.2e 12 TRY P

S. Experimental Results

In order to evaluate our methodology, we have conducted
experiments on several ITC’02 benchmark [10] circuits.
Power dissipation information only for h953 is available in
the benchmark suite definition. We have additionally
obtained power information for p93791 and p22810 from
[11} and d69S from [5].

Figure 7 illustrates the effect of the frequency divider
resolution (x-axis) on the test application time (y-axis). In
each plot, the bottom curve is the test time after the test
group has been formed under a power constraint. The higher
frequency divider resolution allows us to achieve a shorter
test application time. A significant reduction in test time can
be achieved within the first four bits of clock divider
resolution. The packet scheduling test time (top curve) is
always higher as it incurs an additional overhead when
splitting the test data into smaller packets.

In order to evaluate the performance of our test scheme, we
need to compare with TAM-based test scheduling
approaches. No direct comparison can be offered with
previous functional test schemes as the experimental results
in [8] used four benchmark circuits which do not have the
required information such as information on test data and
scan chain configurations that are needed.

Table 1 shows the frequency information for TAM
approaches and two variations of our approaches, PS[a) and
PS[b], with distinct bus frequencies’.

Table 1: Scan and bus frequency settings

Scan frequency | Bus frequency
TAM-based fi=F, fo=f<Fy
PS[a] fi=F, So=fi<Fn
PS[b] fi=F, fo=2xf. < F,

Figure 8 shows plots of the TAT for different bus widths.
For 64- to 128-bit bus, the TAT is constrained by the largest
module; therefore, adding bus widths has no significant
effect on test application time. However, for bus widths
between 12 and 48 bits, PS[a] delivers improvements of

' The scan frequency, f, is set to the assumed maximum,
F, = 1.0 MHz; therefore all the TAM-based TATs are
divided by 10° to convert from the number of clock cycles to
time (second).

. wp
o Pmyakien _ k- "D " Py rakireq

=2% @
f'"k+dklr+l fmk+dklr+q
I+k/r 14 (d=-0)ki!r
P Pra)
2+kir 24(d-Nktr
pr,l A pr.l
> s)
kirskir kir+(d-)k/ir
pr.r b pl.r
J

4.8% and 18.2% over [11] for both maximum power, Py
values of 3,000 and 10,000 for p22810. PS[b] is improved
by 25.9% to 47.8% when test data delivery time is the
limiting factor. Similar trends can be observed for p93791 in
Figures 8c and 8d. In fact, our test methodology delivers
marked improvements in reducing test application time for
smaller bus widths.

In table 2, the TATs for [5,6,12] are all equal at three P,,,
values for h953 circuit. In our approach, relatively similar
results were obtained. These steady results were due to a
single dominant module, m,, that constrains the TAT for this
circuit.

For d695 (Table 3), our approach proves to be highly
effective, even for the same bus frequency as [5.11], at all
power levels for bus widths ranging from 32 to 80 bits. For
96-bit and wider buses, our methodology though fails to
perform as well. It is interesting to note, however, that the
TAM-based approach requires quite elevated levels of TAM
overhead in order to outperform our packet scheduling
approach using the functional bus.

Figure 9 shows the trend in TAT (y-axis) under different
buffer size utilization (x-axis) for the two circuits with the
same power constraints as in Figure 8 and bus width, w;, =
32 bits. The buffer size represents the total size, in multiples
of bus width, allocated to all modules in the circuit. 1t is
interesting to note that increasing buffer size only reduces
TAT marginally. Therefore, buffer size can be minimized
with a small penalty on TAT. For all the experiments
reported, the maximum total buffer size constraint is 100xw;,
bits.

With the flexibility of bus frequency selections, unique to
our proposed approach as a TAM-based approach is unable
to utilize such flexibility, we can further improve the TAT
while ensuring that nothing more than minimal bus widths
are utilized.

16 o1
p93791 d635

1 o1

1"
01

13
01

12
" [
1 00

1 2 3 a4 5 6 1 8 35 W t 2 3 45 6 7T 8 510

Figure 7: Frequency divider resolution

w p22810 @ Pmax = 3000 : p22810 @ Pmax = 10000
“ ——[11] o ——1]
[T —w—PSlal (1] —+—PS[e]
s —»— PS[b} o8 —»—PS[b}
N o4
1 (a) 21 (b)
00 ool

2 16 20 24 32 40 64 60 % iz 18 1% 20 94 32 &8 64 00 S 2 10
; 1 ,\ps3791 @ Pmax = 10,000 ; « P93791 @ Pmax = 20,000
514 % —+[1] | s %, ——[11]
44) ——PS[s|| 4 ——PSl[a)
31 —a— PS|b] 'Z —e—PS{b)
2 E
1 1
0 0

” 6 20 24 32 & 64 €O 0 2 W 2 1B 20 24 32 45 &4 80 N W2 0D

Figure 8: Power-constrained testing for different
bus widths for p22810 (a,b) and p93791 (c,d)

6. Conclusions

The utilization of the functional bus for power-constrained
core-based SOC testing entails a number of challenges.
These include frequency and bit-width mismatch between
the bus and the modules under test, allocation of bus time
slots for an efficient test data delivery schedule that
maximizes bus utilization and that ensures that all modules
always have the test data that they need to continue testing
simultaneously without exceeding the power constraint.

We have herein proposed an efficient methodology that
overcomes all of these challenges through a test support
architecture design framework and algorithmic design
framework. The proposed methodology offers a solution
that also minimizes the size of the test program.

The experimental data clearly showcases the benefits of the
proposed methodology in reducing test application time
especially for smaller bus widths, while also eliminating the
need to add extraneous TAMs to the SOC solely for testing
purposes.

Table 2: Power-constrained testing for h953

Test Time (h953)

Pmax 5] [6] [13]) PS[a] | PS[b]
6.0E+09 | 0.12264 | 0.12264 | 0.12264 | 0.12163 | 0.12194
7.0E+09 | 0.11936 | 0.11936 - 0.12163 | 0.12231
8.0E+09 | 0.11936 - 0.11936 | 0.12316] 0.12138

Table 3: Power-constrained testing for d695
Bus =32 Bus = 64
Pmax| [S] | [11] | PS[a]|PS[b] [S] | [11] | PS{a]|PS[b]
1500| 45.56 | 43.54 | 40.53 | 24,60 | 27.57 | 26,97 | 24.4623.81
1800| 44.34 | 42.45|37.00|18.90{ | 24.45| 23.86 | 18.80]17.05
2000| 43.22 | 42.4537.13[19.27| | 24.17| 21.94 | 19.32|19.08
2500| 43.22 | 41.85 3734|1883 | | 23.72] 21.93 | 18.83]13.45
Bus =80 Bus =96
1500] 20.91| 24.37 | 23.69 | 23.79 | | 20.91] 2343 | 23.33 | 23.22
1800 2047 | 18.77|17.23|16.92| | 18.08| 18.77 | 16.98|16.89
2000(19.21] 18.69|18.01|18.52| | 17.83|17.47| 1806 | 17.84
2500] 19.21] 18.69 1530|1334 | 15.85] 17.26 | 13.77]|13.66
Bus =112 Bus = 128
1500| 16.84] 19.40{ 23.96| 23.75 | | 16.84] 19.40| 23.33 | 23.10
1800/ 14.97| 18.77| 1693 | 1695 | | 14.90| 16.80 | 16.91 | 16.83
2000/ 14.131 14.56 | 17.97 | 18.68 | | 14.13] 1447 | 17.86] 17.92
2500] 14.131 13.96 | 13.63|13.64| | 12.99] 13.39] 13.53 | 13.50

30 40 S0 70 80 80 100
Figure 9: Buffer size vs. TAT

7. Acknowledgments

This work was supported in part by JSPS (Japan Society for
the Promotion of Science) under Grants-in-Aid for Scientific
Research B (No. 15300018) and in part by 21st Century
COE (Center of Excellence) Program (Ubiquitous
Networked Media Computing).

8. References

(13 E. J. Marinissen, R. Kapur, M. Lousberg, T. McLaurin, M.
Ricchetti and Y. Zorian, “On IEEE P1500 Standard for Embedded
Core Test”, Journal of Electronic Testing: Theory and
Applications, pp. 365-383, Aug. 2002.

{2) E.). Marinissen, R. Arendsen, G. Bos, H. Dingemanse, M.
Lousberg, and C. Wouters, “A Structured and Scalable
Mechanism for Test Access to Embedded Reusable Cores”, ITC
1998, pp. 284-293.

[3] T. Oro, K. Wakui, H. Hikima, Y. Nakamura and M. Yoshida,
“Integrated and Automated Design-for-Testability
Implementation for Cell-based ICs,” ATS 1997, pp. 122-125.

(4] A. Sehgal, V. Iyengar, M. D. Krasniewski, and K. Chakrabarty,
“Test Cost Reduction for SOCs Using Virtual TAMs and
Lagrange Multipliers,” In DAC 2003, pp. 738-743.

[5] Y. Huang, S. M. Reddy, W-T. Cheng, P. Reuter, N. Mukherjee,
C-C. Tsai, O. Samman, and Y. Zaidan, “Optimal Core Wrapper
Width Selection and SOC Test Scheduling Based on 3-D Bin
Packing Algorithm”, ITC 2002, pp. 74-82.

[6] Y. Xia, M. Chrzanowska-Jeske, B. Wang, and M. Jeske, “Using a
Distributed Rectangle Bin-Packing Approach for Core-based SOC
Test Scheduling with Power Constraints”, ICCAD 2003, pp. 100-
105.

[7]1 J-R. Huang, M. K. lyer, and K-T. Cheng, “A Self-Test
Methodology for IP Cores in Bus-Based Programmable SOCs™,
VTS 2001, pp. 198-203.

[8] A. Larsson, E. Larsson, P. Eles and Z. Peng, “Optimization of a
Bus-based Test Data Transportation Mechanism in System-on-
Chip”, 8" Euromicro Conference on Digital Systems Design,
Aug. 2005, pp. 403-411.

[9] T. Yoneda, K. Masuda, and H. Fujiwara, “Power-Constrained
Test Scheduling for Mulii-Clock Domain SOCs”, Design,
Automation and Test in Europe (DATE 2006), To Appear.

{10] E. J. Marinissen, V. lyengar and K. Chakrabarty, “A Set of
Benchmarks for Modular Testing of SOCs”, ITC 2002, pp. 519-
528.

[11] J. Pouget, E. Larsson, and Z. Peng. “Multiple-Constraint Driven
System-on-Chip Test Time Optimization”, Journal of Electronic
Testing, Vol. 21, 2005, pp. 599-611.

112} C-P. Su, and C-W. Wu, “A Graph-Based Approach to Power-
Constrained SOC Test Scheduling”, Journal of Electronic Testing,
Vol. 20, 2004, pp. 45-60.

