A A fTHALEES DI

IPSJ SIG Technical Reports 2006./5./11

1/ON—F 4 v 7 EREAVEA L TA LV FPGAT LA AA b

e o hm TAt LT % R oAt MR BT
T &R PR PR F
HAYV—=F U FRE, ALy Ur—I
E-mail: t{mitsu-to,m-naka,ger,watanabe}@is.naist.jp, {fnakajima@umd.edu

HoEL HMYBHRTRFPCA T, 2Yy 2 Y Y—RELVF—IXY ¥ a VAOERORS 2B ICFHERY
B LMAEL D, T, FPGA LIz TRMBICESHOS R 7 232715 Z L Riksd. MONIZFPGA Y /—
AEFFWNTHEGICY R 7 2 EFTB7-0I21E, FPGA Y Y —ROFHEMEH THEL RS, EFE, W 2hDFtr
S A4V FPGA 7L A ARV PFEMBERBENEN, TOLXRALRI R 70 1/0dEEEED Z Lok, FR7
O 1O BEFFFMCHD Z LT, BABFLVALTA VT UL RAY FFREERETS. Br OFEREEIMH
HICHBT 3 1/0 =L Ay NETORRITREAVD I LT, £ A7 0 LTHYRBURERRT 5.

X—J—F FUITALUTULALRAL}, BAEMRTREFPGA, VYar7 Xy 77 vava—T 407

Online FPGA Placement Using I/O Routing Information

Mitsuru TOMONO!, Masaki NAKANISHI', Shigeru YAMASHITA!, Kazuo NAKAJIMA™, and

Katsumasa WATANABE!

t Nara Institute of Science and Technology
tt University of Maryland, College Park
E-mail: {{mitsu-to,m-naka,ger,watanabe}@is.naist.jp, f{nakajima@umd.edu

Abstract In a partially reconfigurable FPGA, arbitrary portions of its logic resources and intcrconnection net-
works can be reconfigzured without affecting the other parts. Thus, scveral tasks can be mapped and executed
concurrently in the FPGA. In order to exccute the tasks efficiently using the limited resources of the FPGA, re-
source management becomes very important. Although some online FPGA placement methods have, recently, been
proposed, they cannot handle I/Q communications of the tasks. Taking such I/Q communications into considera-
tion, we introduce a new approach to online FPGA placcment. We present a task placement algorithm which uscs
I/0 routing information of cach cmpty area to sclect a suitable arca for cach task. The algorithm uscs a combination
of two new fitting strategics and modificd versions of two existing stralegics.

Key words Online Placement, Partially Reconfigurable FPGAs, Reconfigurable Computing

The partial reconfigurability may increase the FPGA re-

2006—SLDM—125 (1)

1. Imntroduction

The rapid technologica! advancement of FPGAs (Field
Programmable Gate Arrays) has recently resulted in the pro-
duction of partially reconfigurable FPGAs on the market. In
such devices, arbitrary portions of their logic resources and
interconnection networks can dynamically be reconfigured
without affecting the other parts of Lhe system to be imple-
mented. This allows multiple tasks to be executed in parallel
by hardware. For such systems an application is first divided
into a set of small tasks, called hardware tasks. Each ol them
is then placed in an area of a sufficient size when Lhe system
requests its execution. When the task is completed, the sys-
tem deletes it and its assigned area is reformed and reused
by other tasks.

source utilization. On the other hand, the FPGA surface
would be fragmented [3], unless proper management of the
device resources is provided. As a result, the area utilization
of the FPGA may decrease and a newly arrived task may
nat be placed although many empty areas exist. This neces-
sitates the development of an efficient FPGA resource man-
agement method. Such placement management is provided
by a so-called reconfigurable operating system (ROS) [3]. In
particular, a special module, called task placement module,
of the ROS provides a set of system services such as task
scheduling, task loading, and task addition and deletion.
The task placement on FPGAs may be classified into two
categories: offline and online. In the offline placement, the
flow of tasks is known in advance. Various optimization al-
gorithms such as simulated annealing and genetic algorithms

have been applied to obtain good quality placements [2].

On the other hand, in the online placement, the sequence
of task requests is known only at run time. Thus the sys-
tem needs to handle each task on a case-by-case basis. If the
time needed for the placement increases, it becomes over-
head to the system. Therefore, it becomes more important
to balance the time for and the quality of placement.

To our best knowledge, Bazargan, et al.[1] was the first
to introduce an approach to online task placement. They
proposed a rectangular task model, developed several online
placement algorithms, and did simulations with a few fitting
strategies. Their empty area partitioning algorithm was a
heuristic and did not produce optimal solutions. Walder, et
al. [5] presented an improved version of this partitioning al-
gorithm and a method of locating feasible empty areas for a
task. They introduced an array called Hash Matriz to store
pointers to lists of empty areas of different sizes.

Handa and Vemuri (4] developed several algorithms for on-
line placement and task scheduling. They tock a compu-
tational geometry based approach and used algorithms for
finding and maintaining empty areas on an FPGA surface in
the development of their online placement algorithm. Their
method maintains such empty areas as so-called mazimal
empty rectangles (MER) (1], which may overlap with each
other [4].

All of the algorithms mentioned above are besed on the
rectangular task placement model {1]. However, their place-
ment model ignored communications between the tasks and
the I/O elements located on the periphery of the FPGA.
In this paper, we introduce a new madel for online task
placement on partially reconfigurable FPGAs. Although it
is based on the rectangular task madel, our model considers
1/0 communications of the tasks. We present an online task
placement algorithm which uses a combination of four fitting
strategies to find a most preferable empty area for each task.
Two of the strategies are new and explicitly reflect on 1/O
routing information of each empty area.

In the next section, we present our model for a reconfig-
urable computing system. In Section 3., we explain the two
new fitting strategies and our online task placement algo-
rithm. We then present a set of evaluation criteria and show
our simulation results in Section 4.. Section 5. summerizes
the paper and describes some future work.

2. Model of a Reconfigurable Computing
System

We describe our model for a reconfigurable computing sys-
tem in detail. Each aspect of the model is presented in a
separate subsection.

2.1 System Model

Figure 1 depicts our system model consisting mainly of a
host CPU, a shared memory, a ROS, and a partially recon-
figurable FPGA. The ROS runs on the host CPU and has
the placement module that manages the FPGA resources.
It is composed of a scheduler, a loader, and a placer, which
provide a system service of task scheduling, task loading, and
task addition and deletion, respectively. The shared memory
is used to provide configuration data of each task and stores
the results of task execution.

We show the flow of processing of the online FPGA place-
ment in Figure 2. The ROS requests a task execution to
its placement module when a new task arrives. The sched-
uler receives the request and places it in its queue. It then
finds a task in its queue to be placed. In the online place-
ment, scheduling is done basically in the order of arrivals of
the tasks, or, at best, by exploiting their priarities in some
measures. After that, the placer searches the list of empty

(Lasi (Placo

Lont Task J | PuoocTask J

Figure 2 Flow of Processing

rectangular areas for the task to be placed next. If an area
large enough for the task is found, the loader loads its con-
figuration data into the FPGA. Then, the loaded task starts
its execution. At its completion, the loader writes the results
into the shared memeory.

2.2 FPGA Model

Our FPGA consists of CLBs uniformly arranged in the
form of a two dimensional array. Note that FPGA prod-
ucts from Xilinx such as its Vertex series [6] use CLBs as
basic logic units. In our FPGA model, we assume that each
CLB can be reconfigured independently. In ather words,
each CLB can change its configuration at run time without
affecting the other CLBs. This ability of the FPGA is called
Partial Reconfigurability.

Communication channels are provided along every side of
each CLB. Each CLB can freely access to its neighboring
communication channels. So any pair of tasks can commu-
nicate with each other in theory. However, in our model,
we assume thal communications take place between a task
and an I/O element located on the periphery of the FPGA.
The I/O elements then manage communications to external
components such as the host CPU and the shared memory.
Our FPGA madel further assumes the existence of unlimited
numbers of communication channels so that communications
between any pair of a task and an 1/0 element may be real-
ized.

In our model, we consider communication costs. A unit
time delay of communication is associated with the single
step traversal of a signal, where a single step is measured
as the length of a channel along a single side of each square
CLB.

2.3 Task Model

We now describe our assumptions on some features of a
task in our model. The shape of a task is rectangular.

We also assume that different clocks may propagate to each
CLB. Thus, each task may operate at a different clock fre-
quency, and may also require multiple cycles to execute the
function of the task. Therefore, the actual execution time of
each task is obtained by (its required number of cycles) x

Figure 3 Task Boundary = Route

(its clock frequency).

Each task communicates its data through an 1/0 element
asynchronously. Thus, it has the amount of input and output
data communication bits.

The I/O port of each task is placed at a corner of its rect-
angle. Empty areas of the FPGA are also managed in a rect-
angular shape. Each empty area has routing information to
an 1/O element. Such information includes the number of
steps and channel information to the I/O element. A port to
the I/O element of each empty area is placed at one of the
four corners of the rectangle. Therefore, to fit the I/O port
of the task into that of an empty area, four types of hardware
macros are prepared for each task. Each type of the macros
has the I/O port at a different corner of a rectangle.

The parameters of each task are summarized as follows.

e Task Width
Task Height
The Number of CLBs
Required Cycles
Clock Frequency

o Data Communication Bits

2.4 Problem Modeling

In the online FPGA placement, the most important issue
is the way in which the placer of the placement module han-
dles newly arrived tasks. The placer receives a sequence of
tasks from the scheduler as inputs. Qutpuis of the placer are
feasible empty areas for those upcoming tasks. Thus, the ob-
jective of our placer is to place tasks online in the FPGA in
such a way that the total execution time becomes shorter.

2.5 Constraints on I/0 Communications

In order to make an I/O communication path from an
empty area of the FPGA to an 1/0O element, we use the
boundaries of the tasks as much as possible. In Figure 3,
dark and light gray rectangles represent, respectively, tasks
and empty areas. For illustrative purposes, only the intended
empty areas are shown in this and the following figures. Fig-
ure 3 depicts a case in which task boundaries constitute a
communication path. In this figure, the empty area desig-
nated by Z has a path from vertex A to the I/O element
through the boundary of Task T. The communication path
of the empty area Z does not affect other empty areas since
it passes through task boundaries only.

On the other hands, Figure 4 shows a case in which no task
boundary is part of a communication path. The figure illus-
trates the task placement right after Task T finishes and is
deleted from the FPGA. There are three overlapping empty
areas, X, Y and Z in the area where Task T was placed and
the empty area Z has a straight path from vertex A to the
upper edge of the FPGA through the empty area X. As a
result, the empty area X is split into two empty areas . and
M, and the empty area L is then merged with the empty area
Y. In this way we have lost the empty area X due to the path
of the empty area Z through the empty area X. Therelore,
our model uses task boundaries for a communication path of
each empty area as much as possible.

2.6 Evaluation Methods

We present two methods of evaluation of an FPGA task
placement, depending on whether the tasks are independent
or dependent. An execution process of a task is depicted in

Time

bt y
s .

3 %]

H__/
Independent of Each Other FPGA

Figure 6 Independent Tasks

Figure 5, where the parameters denote the following.
ta :arrival time
t, : start time
ty : finish time
tw : wailting time
t. :execulion time
t. : communication time
tant :te + tc
Independent Task Environment
‘When the tasks come from different applications, their ex-
ecutions do not depend on each other. Figure 6 shows an
example. We define the term average waiting timne for n in-
dependent tasks as

n
T=13 b,)
n i=1

The value of ., measures how quickly the tasks are accepted
by the placement algorithm. In order to measure the effi-
ciency of task communications including waiting time, we
define the term average overhead lime as

n

m=1y (faiis))

i=1 ‘

For n independent tasks, if f,, is small, it means that each
task can start its execution without waiting for a long time.
If o1, is small, the processing of tasks is done efficiently in
terms of task communications.

Dependent Task Environment

When the tasks come from the same application, some
tasks may not be able to start their execution until other
tasks finish. For n such dependent tasks in the same appli-
cation, maz(ty,) represents the finish time at which the last
task finishes, and min(is,) the arrival time at which the first
task arrives. The total execution time of the application is
given by

teotat = maz(ty,) — min(ta‘) (3)
j L]

Figure 7 shows an example of the data flow of an application.
In the figure, tasks T\ and Ty are the first and the last task,
respectively, in the application. The difference between the
arrival time of task 7} and the finish time of Ty is the to-
tal execution time of the application. Therefore, the smaller
Liotal i8, the faster the system could execute an application.

Figure 8 Overlapping Maximal Empty Rectangles

3. Task Placement Algorithm

We start with an overview of our task placement method
that handles I/O communications of the tasks. The main
modules of our placement engine are a scheduler, a loader,
and a placer. Among them, the placer plays a major role.
Thus we focus on the four components of the placer: an
FPGA surface manager, an I/O routing engine, an empty
area manager, and a fitter. The surface manager provides
a way to obtain empty areas on the FPGA surface and is
described in Section 3.1. The routing engine provides an
algorithm for creation of routing information for the empty
areas obtained and is presented in Section 3.2. The empty
area manager gives a method of management of the empty
areas and is explained in Section 3.3. The fitter selects a
suitable area from a group of empty areas by use of fitting
strategies that are given in Section 3. 4.

We briefly describe the relationship among these compo-
nents. At the time of task addition and deletion, the FPGA
surface manager updates a data structure that represents a
state of the FPGA surface. When it extracts an empty arca
from the data structure, the surface manager sends the ex-
tracted empty areas to the empty area manager for storage.
The routing engine creates a communication path for each
stored empty area. When a new task arrives, the fitter ex-
amines the empty areas and finds a suitable area for the task
based on the fitting strategies.

3.1 Management of FPGA Surface

We present the first component of our task placer. We
need an efficient management of the FPGA surface for full
utilization of partially reconfigurable FPGAs. For this, we
use a modified version of the method proposed by Handa, et
al. [4].

\EVc]: start with the following definition [4].

[Definition 1] A mazimal empty reclangle (MER) is the
empty rectangle that can not be fully covered by any other
empty rectangle.]

We use MERs to manage the empty areas on an FPGA
surface. Examples of MERs are depicted in Figure 8, where
dark and light gray rectangles represent tasks and MERs,
respectively, and some of the MERs overlap with each other.

Figure 10 Partitioning of Staircases

We also need the following definitions.

[Definition 2] A staircase (z,y) is defined as a collection of
all empty rectangles with point (x,y) as their lowest right
vertex. The point (z,y) is called the origin of the staircase.

a

We use a data structure, called area matrix, to construct
MERs. We scan rows of the area matrix and make a stair-
case as shown in Figure 9. Since each cell P of the area
matrix keeps the number of empty cells at and above P in
its column, we can construct a staircase by scanning rows.
For example, in Figure 9, we can obtain staircase S with the
origin O by scanning the row just above the top horizontal
boundary of task T. In this way, MERs OB, OC,and OD
are obtained. It has been proven that each staircase always
rests on the top horizental boundary of an already placed
task [4]. Therefore, to update the state of the FPGA, it is
sufficient for the placer to scan only the rows just above the
top horizontal boundaries of the tasks already placed.

In our model, the existence of an I/O communication path
for a task may necessitate the partitioning of a staircase into
iwo as depicted in the right half of Figure 10. In this case,
we need to construct a new staircase from the I/O commu-
nication path.

3.2 I/0 Routing Algorithm

The second component of our task placer is an I/0 rout-
ing engine. We use a greedy algorithm of construction of a
communication path from a task to an I/O element located
on the periphery of an FPGA. By using this component, the
length of the path is also determined.

3.3 Management of MERs

We now turn our attention to the third component, an
empty area manager, which also plays an important role in
the delivery of good task placement. We start with the fol-
lowing definition of the data structure introduced by Walder,
et al. (3]

[Definition 31 A Hash Matriz is an array of h x w, where
the parameters h and w denote the numbers of rows and
columns, respectively, of the CLBs in an FPGA. Entrylal(b]
of a Hash Matriz is associated with MERs of size a x b. It
has two pointers. One is a pointer to a list of all the MERs
of size a x b. The other is a pointer to a list of MERs of size
a’xV suchthat o’ 2 a,b' 2ba'xb" >axbanda’ xb is
closest in value to a X b. [m]

When it attempts to place a task of size a x b, the system
may need to examine all rectangles of size greater than or
equal to a X b, depending on the strategies used in the fitter
that is to be explained in the next section. In this case, the
MER manager checks out only at the entries Entryla’][t')
with a’ 2 a and b’ 2 b in the Hash Matriz.

3.4 Fitting Strategies and Cost Functions

We finally describe the fourth component, the fitter, of our

task placer. When multiple MER candidates for a newly ar-
rived task are available, the selection of a particular MER is
determined by a combination of four strategies: (1) Best Fit,
(2) 1/0 Oriented, (3) Route Duration, and (4) Fragmenta-
tion Aware. The first strategy, Best Fit has been used as the
main strategy in the conventional mocdel, while the fourth
one, Fragmenlation Aware was proposed by Handa et al. [3].
We introduce strategies (2) I/0 Orienied and (3) Path Dura-
tion to deal with I/O communications of tasks in our model.
For each strategy we define its associated cost function.
Strategy 1: Best Fit

Under this strategy we select, from the pool of MERs, a
smallest MER that can accommodate the arrived task. Let
Sarer and Siaax denote the numbers of CLBs that an MER
contains and the task needs, respectively. The cost function
for Best Fit is given as follows.

SMER (@)

Costpr = S
tos.

The smaller Costpr is, the smaller number of CLBs of the
MER is wasted.
Strategy 2: 1/0 Oriented

Under this strategy, we select an MER that can provide faster
communication of data for the arrived task. Each task has
a parameter Cp; that indicates the amount of its commu-
nication bits. Bach MER holds a parameter D,,,:. which
denotes the number of steps of its communication path to an
1/0 element. Let Uiime be the delay time for a task to route
its data through a 1 step communication channel. Let Byia:h
denote the number of communication channels available per
task. The cost function for the I/O Oriented strategy is now
defined.

Costio = Droute X Uh'mc% (5)

Strategy 3: Path Duration
Suppose that some of the communication channels between
two ueighboring tasks are used as the I/O communication
path for data of a third task. When the two neighbor-
ing tasks are completed, two fragmented MERs may reside,
rather than a combined one, if the channels are still used for
the third task. In order to avoid this type of fragmentation
caused by communication paths as much as possible, we need
a new fitting strategy in our model. We define the duration
of path of an MER as the average over the durations of all
tasks that are border on the path of the MER. Under the
new strategy, we select an MER whose duration of path is
as close to the duration of the arrived task as possible.

An I/O communication path of an MER passes along task
boundaries. So we define a parameter tain as the average
over the finish times of the tasks that are border on the path.
Let tcurrcne denote the system time when the task arrived.
Note that ¢ is the finish time of the arrived task. We define
the cost function for Path Duration as follaws.

(tr £ tparn)

> tpan) O

0
Costpp = { 4 — tewrrent

tpase — tcurrent

If t; £ tpaen, the newly arrived task and its communi-
cation path disappear before all of the tasks border on the
path are completed and hence Costpp is set to 0. If ¢y >
tpath, however, some of the tasks that are border on the path
of an MER finish earlier than the arrived task. As a result,
this path still remains on the FPGA surface and may create
fragmentation of the surface. Thus, it is preferable to select
an MER whose t,qs5 i8 closest to ¢ of the arrived task.

Strategy 4: Fragmentation Aware

Under this strategy we try to select an MER from areas with
more tasks allocated so as to prevent other less crowded ar-
eas from being fragmented. Handa, et al. [3] introduced a
parameter to quantify the fragmentation of an FPGA surface
and provided detailed discussions on this strategy. For com-
pleteness, we simply give their definition of the cost function
for Fragmentation Aware. Let TFCC and T'F, respectively,
denote what they call Total Fragmentation Contribution of
a Cell or a CLB and Total Fragmentation for an MER. A
larger TF means that its MER is more fragmented.

TF = .Z_Cﬂ x 100 (7N
SMER
1
Costra = TF 8

In order to reduce the fragmentation of the FPGA surface,
the placer selects an MER with a smaller Costra.

We now define the total cost function as a weighted sum
of the above four cost functions. Let a, 8, y, and & be user-
defined parameters. By proper selections of values for these
parameters, the placer will be able to place different levels
of emphasis on the strategies.

CostarL = a-Costpr+f - Costjo+v - Costpp+6 - Costra

(G
‘When a task arrives, the placer calculates this value for all
MERs of feasible sizes. It then selects an MER with mini-
mum Costary for the task.

4. Evaluation of Our Placement Engine

In order to evaluate the effectiveness of the four ftting
strategies described above and their combinations, we con-
ducted simulations for the case of an FPGA with 96 x 64
CLBs. Ten sets of 500 tasks each are randomly generated for
each experimental environment and the results to be shown
below are the average over these 10 sets. By setting appro-
priate parameter values, three different task sets, called a
small, medium, and large task set, are created. Communica-
tion bits for the tasks are randomly produced between 1 and
128. The execution time of each task and intervals between
two consecutive task arrivals are also randomly generated.
The values of wyand and tuni: are set to 8 and 1, respec-
tively.

Most of the previously proposed algorithms in the conven-
tional model mainly used Strategy 1, Best Fit. Thus, we
assume the case in which only Strategy 1 is used, namely,
a=1and 8 =49 =4d = 0 corresponds to the conventional
method. We designate this case as Case 1. Likewise, the
case in which a single strategy i is used, is called Case i for
t = 2,3,4. More precisely, the parameter values for each case
are set as follows:

Case 2:a=0, =1, y=0=0
Case a=0=0,v=1,46=0
Case dia=f0=v=0,6=1

In each experiment with 10 sets of tasks, we ran our online
placement algorithm with certain strategies emphasized over
the others. We measured the total execution time. In order
to observe the performance of our new fitting strategies pro-
posed for our model with I/O communications, we divided
the values obtained in these three measures by their corre-
sponding values for Cese 1 (i.e., the conventional method).
In each figure to follow, we show these fractional values for
these four cases. Note that those values for Case 1 are always
100%.

After having observed the results for each of Cases 2, 3,
and 4 as compared with those for Case 1 for the task sets of
three different sizes, we carefully selected the values for pa-
rameters a, 3, 7, and 4. In particular, the simulation results

‘QFracien o Towd Exsouton TmelinaD)!

E
N l‘l' 4 B

‘OFracton of Toka Exve.tion Tenskadhom)]

Cassl Cane2 Cered Cased Casa$ &

2 Fraction of Toty Exvetion Trmellarge)]

Small;
Helght: 1 to 16 Width: 11024

Medium;
Helght: 1 to 21 Width: 1 t0 32

Learge:
ll&ﬁl: 1032 Width: 1 to48

Figure 11 Performance Summary for Three Task Sets

indicated a good performance improvement by Strategy 2 of
1/0 Oriented for each of the task set categories. We desig-
nate the case of these new parameter values for the total cost
function as Case 5.

For each of these three different task sets, we again ran
the placement algorithm and obtained the three values. The
fractions of these measured values over those of Case 1 are
provided as the Case 5 data in each figure.

In addition, we consider a default case in which the pa-
rameters areset as a =1, =5, y=land d = 5. As
noted earlier, the //0 Oriented strategy always plays an im-
portant role. Likewise, as noted later, the Fragmentation
Aware strategy has an impact, in particular, on the small
task set. When the characteristics of tasks are not known in
advance, this parameter setting enters into play. We denote
this case as Case 6. For completeness of the presentation of
our experimental results, we add the results for Case 6 to
each figure.

We are now ready to present our experimental results for
each task set category. Note that the designation of each cat-
egory, small, medium, and large, means that the largest task
in each set is small, medium, and large, respectively, in size.
The tasks in a small task set are of height between 1 and 16
and width between 1 and 24. Note that the largest values in
task height and width, respectively, are a quarter of those for
the FPGA. We show the experimental results in Figure 11.
The data for Cases 2 and 4 clearly indicated performance im-
provements by their corresponding strategies, /0 Oriented
and Fragmentation Aware. We therefore set the parameter
values for Case 5as a =5, § =40, y=1, and § = 30.

In this small task set, area fragmentation would most likely
to occur since there are a lot of small tasks placed in the
FPGA. Therefore, we assigned a value of 30 to the parameter
8 to incorporate a relatively high impact by the Fragmenta-
tion Aware fitting strategy. As mentioned earlier, the //0
Oriented strategy always improves the results in any task set
category. So we set 8 = 40 for Case 5. It should be noted
that this case further improved the results.

In the medium task set category, task heights and widths
are between 1 and 21 and between 1 and 32, respectively.
Note that the maximum height and width each are set to be
a third of the FPGA height and width.

By comparing the results for Case 4 in this and the pre-
vious figures, we observe that Fragmentalion Aware has less
impact in the medium task set than in the small task set.
This is because a greater number of larger tasks would likely
to reduce area fragmentation. Note also that in both the
small and medium task sets, the Path Duration strategy did

not produce good results. This is most likely due to the facts
that a lot of tasks are placed in the FPGA and that the fin-
ish times of the tasks vary very much. Therefore, we set the
parameters of Case 5as a =1, §=10, y=0,and § = 1.

In the large task set, the tasks have heights between 1 and
32 and widths between 1 and 48. Note that the largest task
height and width are set to a half of the FPGA height and
width, respectively.

The figure shows that the Path Duration strategy now has
a positive effect on the results. Since more relatively large
tasks exist in the set, there are a smaller number of tasks be-
ing executed simultaneously in the FPGA, as compared to
the small and medium task sets. Furthermore, the large task
sizes would most likely not to produce many small fragmenta-
tions. Thus, the effect of the Fragmeniation Aware strategy
becomes low as indicated in the figure. Therefore, we set the
values of parameters of Case 5as a =1, § =100, v = 10,
and § = 5.

5. Conclusions

In this paper, we introduced a new model for online FPGA
placement. Unlike the conventional model, our model con-
siders the effect of communications between the tasks and
the I/O elements on the periphery of a partially reconfig-
urable FPGA. We proposed two fitting strategies for task
placement in our model. We developed an online task place-
ment algorithm, which selects an emply area for each task
using a combination of these two and two other previously
used fitting strategies. Together with two existing strategies,
we showed by simulation the effectiveness of our strategies
of our placement algorithm.

In the next step of our research, in our model we as-
sume the existence of an unlimited amount of communication
channels. In the near future, we will conduct research for the
case of limited communication resources. In such a system, it
would make sense to keep some empty areas between placed
tasks so as to accommodate future needs of I/O communi-
cations of new arrivals. We plan to introduce a new FPGA
model and develop a new online task placement method for
such a model.

Acknowledgment

This work was partially supported by MEXT.KAKENHI
((C)(2)15500023) and ((B)16700067) and the Okawa Foun-
dation Research Grant.

References

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, "Fast Tem-
plate Placement for Reconfigurable Computing Systems,”
IEEE Design and Test of Computers, Vol. 17, pp. 68-83,
2000.

[2] S. Fekete, E. Kohler, and J. Teich, “Optimal FPGA Module
Placement with Temporal Precedence Constraints,” Proc.
of Design Automation and Tesl sn Europe Conf. and Exhi-
bition, Munich, Germany, 2001, pp. 658-665.

[3] M. Handa and R. Vemuri, “Area Fragmentation in Recon-
figurable Operating Systems,” Proc. of International Conf.
on Engincermg of Reconfigurable Systems and Algorithms,
Las Vegas, NV, June, 2004.

{4] M. Handa and R. Vemuri, “An Efficient Algorithm for Find-
ing Empty Space for Online FPGA Placement,” Proc. of
41st Design Automation Conf., San Diego, CA, June, 2004,
pp. 960-9865.

[5] H. Walder, C. Steiger, and M. Platzner, “Fast Online Task
Placement on FPGAs: Free Space Partitioning and 2D-
Hashing,”

[6] Xilinx, Inc. http://www.xilinx.com/

