HEEA HROUEZS HERE
IPSJ SIG Technical Reports

2006—S LDM—126 (17)
200671026

OV a—R VAT LB B IS L ERED I L— B4 T DT L
BEEEF vy V2T —FTF I F %
BEOE AR ET HE fug

+ BEEANMN Y AT LISSRETAZERT, T 814-0001 BRI HE B X HEIE 2-1-22 &/ SRP > X —E)L 7F
T AWM KE S AT LLSIFIEE Y Z—, T 814-0001 BT R BX H#EIE 3-8-33
HH KR RER Y A7 LR 2 AR EREZEER, T 816-8580 EHMEHALE 6-1

E-mail: {sugihara@isit.or.jp

HS5FL AETIR, V21— FVATLRABRALEABVEGOOEBRINZRICELHL, aVv¥a—2 VX7
Lk LTOEEMEZHHRT 5. EAMICIZ, SRAM X DRAMODV T FIS—RDBWCEBL, —&NTa>
Ea—RYATLCBWTI, SEECHEDCHICE L—FIINEETI L2 T 5. £z, SEEL R
WS GEEET Yy aT7—2F7F v BRETZ. GEEEFvyv a7 —FF7F v BV TIE, =20
BEE—F, $hbb, EREE—FRUMEE—FE2EATS. FrvPa XABYOBMEE—RERETZC LK
h, AVa2—EYATFLOERELHEREIITS. FEBERICKD, BREIZEEREETF vy aT7—FF 2
FyHaAVECa—R2 AT LOEEME L HEEREIT S L ERT.

*—0—F v7bx5—, Sk Mk FryyraXwy

An Analysis on a Tradeoff between Reliability and Performance
and a Reliable Cache Architecture for Computer Systems

Makoto SUGIHARA', Tohru ISHIHARA™, and Kazuaki MURAKAMI'

1 ISIT, 2-1-22 Momochihama, Sawara-ku, Fukuoka 814-0001 Japan
+1 System LSI Research Center, Kyushu University, 3-8-33 Momochihama, Sawara-ku, Fukuoka 814-0001 Japan
111 The Department of Informatics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580
E-mail: fsugihara@isit.or.jp

Abstract In this paper, we discuss reliability of a computer system which consists of various IC components. We focus on
the difference between SERs of SRAM and DRAM memories and analyze a tradeoff between reliability and performance of
a computer system. We also propose reliable cache architectures for both reliability and performance. We introduce reliabil-
ity and performance modes for reliable cache architectures. Controlling the operation mode of a computer system decreases
vulnerability of a computer system under a certain performance constraint. Our experiments show that switching the oper-
ation modes of the cache memories affects performance and reliability of a computer system and is effective for tuning its
performance and reliability.

Key words Soft Error, Reliability, Performance, Cache Memory

1. Introduction

A hard error is caused by a permanent physical defect while a soft
error usually refers to a transient defect which is caused by thermal
neutrons, high-energy neutrons, or a particles. May first discovered
that « particles emitted from radioactive substances caused soft er-
rors in DRAM modules [6]. The feature size of integrated circuits
has reached nano-scale and the nano-scale transistors become more
soft error sensitive. Soft error estimation and highly-reliable de-
sign become of utmost concern in mission-critical systems as well
as consumer products. Recently, several techniques for estimating

soft errors have been proposed. In (3,8, 15], soft error simulation
with fault injection is discussed. In [3, 7], a soft error estimation
technique is discussed for microprocessors. Soft error simulation
in logic circuits are also being studied and developed [11-14]. The
structure of memory modules is so regular and monotonous that it is
comparatively easy to treat their soft errors. Once their SERs are ob-
tained, the values can be utilized as references. Their SERs can be
obtained with field and accelerated tests experimentally [4]. These
SERs of memory modules become pessimistic when they are em-
bedded into computer systems. In obtaining the SERs of memory
modules by field or accelerated tests, every single event upset (SEU)
on memory modules is regarded as a critical error. This implicitly

assumes that every soft error on memory cells of a module make
a computer system faulty. In computer systems which behave dy-
namically, memory modules are used temporally and spatially and
every soft error on the memory modules does not necessarily make
the computer system faulty. In this sense, the soft errors in computer
systems should be treated in a different way from those in memory
modules.

Accurate soft error estimation at system level is one of the issues
of urgent concern. Several soft error vulnerability estimation tech-
niques have been proposed [1,2,5,10]. The authors of this paper
discussed an accurate soft error estimation technique which can be
adopted early in development of computer systems [10]. It is nec-
essary that the dynamic behavior of computer systems is taken into
account in order to accurately estimate the reliability of them. The
time during which a memory module or a logic circuit is utilized
depends on the behavior of a computer system with a program and
affects its reliability. It is hard to distinguish the soft errors in mem-
ory which are or are not critical to the computer system without
knowing its behavior. The complicated structure of the hierarchi-
cal memory modules which are utilized in computer systems makes
soft the error estimation of them harder. In such a computer sys-
tem, it is hard to judge which part of memories are active to operate
the computer system. Our soft error estimation technique computes
the number of soft errors on all memory modules of the computer
system by cycle-accurate instruction-set simulation (ISS) with their
dynamic behavior taken into account.

The soft errors on electronics are getting probable as the technol-
ogy node of ICs proceeds. The reliability issues must be taken into
account in the mission critical applications as well as in consumer
products. In this paper, we analyze a tradeoff between reliability and
performance of computer systems and also propose a novel mem-
ory hierarchy for making computer systems reliable. The recent re-
search on the single event upsets (SEUs) on memory modules iden-
tified that the SRAM modules are getting more vulnerable than the
DRAM modules. In the sense, there exists a tradeoff between the
performance and the reliability of computer systems because their
cache memories are made from vulnerable SRAM memories and
contribute to the performance improvement. In our memory hier-
archy, a cache memory is adaptively activated or deactivated for
controlling performance and reliability. The cache memory is ac-
tivated in the phase where the performance is required while it is
deactivated in the phase where reliability is required. Switching the
mode of the cache memory contributes to controlling performance
and reliability of computer systems. This paper experimentally val-
idates that switching the mode of the cache memories affects the
performance and the reliability of computer systems and is effective
for performance and reliability of computer systems.

2. Performance and Reliability of Computer
Systems

A soft error rate (SER) is often utilized for measuring and evaluat-
ing vulnerability of a memory component. All possible single event
upsets (SEUs) are considered critical to the memory component on
measuring its SER. The SER is directly inapplicable to estimating
vulnerability of computer systems, because they dynamically be-
have to use memory modules temporally and spatially. This means
that some of SEUs on memory modules make the computer systems
faulty and the others not. In the sense, it is pessimistic to adopt the
SERs for evaluating reliability of computer systems. From the point
of executing programs, it is not an SER but the number of soft errors
occurred during a certain job that should be the metric for estimating
the reliability of computer systems.

Several soft error vulnerability estimation techniques have been
proposed [1,2,5, 10]. The authors of this paper recently proposed a
methodology and an algorithm for estimating reliability of computer
systems [10]. Their estimation methodology adopted cycle-accurate
simulation to identify which part of memory is utilized spatially and
temporally during executing programs. Identifying the spatial and

temporal usage of memory modules contributed to more accurate
estimation of reliability of computer systems. The proposed method
estimated 96.7% less number of soft errors occurred during execut-
ing a program than a naive estimation method which basically cal-
culated the reliability with the product of SERs and its runtime.

In this section, we review the relation between performance and
reliability of ICs. We examined the number of soft errors during
the execution of a program on a microprocessor-based system con-
sisting of an ARM processor (ARMv4T, 200MHz), an instruction
cache module,a data cache module, and a main memory module.
The cache line size and the number of cache-sets are 32-byte and
32, respectively. We adopted the Least Recently Used (LRU) pol-
icy as the cache replacement policy. We evaluated the reliability of
the computer system with the two write policies, write-through and
write-back ones. The cell-upset rates (CUR) of both SRAM and
DRAM modules are shown in Table 1. We used the cell-upset rates
shown in [9] as the cell-upset rates of non-ECC SRAMs and non-
ECC DRAM s and assumed that adopting an ECC circuit makes the
reliability of a memory module 1000 times higher.

1 Cell-upset rates.
Cell upset rates
[errors/word/cycle]
non-ECC ECC
44%10%7 44x10°
44x10°% 44x102

[FIT/bit)
non-ECC ECC
10x107* 1.0x107%
1.0x10% 1.0x 10712

SRAM
DRAM

Figure 1 shows vulnerability and runtime of a computer system
which adopts non-ECC L1 cache memory and a non-ECC main
memory. The horizontal axis indicates the number of cache ways
which translates the size of the cache memory. In this memory con-
figuration, the CUR of the non-ECC SRAM is 10k times higher than
that of the non-ECC DRAM, and the SER of the non-ECC SRAM
resultantly degraded the reliability of the computer system. The
vulnerability increases as the size of the cache memory increases as
shown in Figure 1.

Figure 2 shows vulnerability and runtime of a computer system

OE-12

SE-12

.0E-12

SE12 [—

\0E-12

SE-12

OE-12

0E-13

0E+00 .
o 1 2 4 8 16 2 84

Cache ways

1ot errors (IL1) M4 soft emors (IMM) C1# soft errors (DL1) T4 soft erors (DMM) —=# clock cycles |

B4 1 Vulnerability vs cache size (non-ECC L1, non-ECC main memory).

1.0E+09
9.0E+08

0E-12

5E12 §—

OE-12

SE-12

oE12 508408
12 40Ev08 §
305408
0E12
208408
0813 10E+08
0Es00 0.0E+00
o 1 2 4 8 16 32 84
Cachas ways

soft ervors (IL1) E# soft ervors (IMM) L3 # soft errors (CL1) LI # soft erors (DMM) --Ododu.ydes]

2 Vulnerability vs cache size (non-ECC L1, ECC main memory).

which adopts a non-ECC L1 cache memory and an ECC main mem-
ory. In this memory configuration, the CUR of a non-ECC SRAM
is 1M times higher than that of a non-ECC DRAM. Comparing Fig-
ure | and with Figure 2, adding an ECC circuit to the main mem-
ory hardly decrease vulnerability of the computer system because
vulnerability of not the main memory but the L1 cache memory is
dominant in the computer system.

Figure 1 shows that the vulnerability of a non-ECC L1 cache
memory is dominant in the computer system and connotes that
adding an ECC circuit to the L1 cache memory would decrease
vulnerability of the computer system. Figure 3 shows adding an
ECC circuit to an L1 cache memory decreased much vulnerability.
The CURs of the L1 cache memory and the main memory, conse-
quently, become same as the other, that is 1.0x1072 [FIT/bit]. The
total SER of the main memory becomes larger than that of the L1
cache memory because the size of the main memory is larger than
that of the L1 cache memory. In this memory configuration, it is
deduced that the vulnerability of the main memory would be dom-
inant in the vulnerability of the computer system. Figure 3 shows
that the vulnerability of the computer system decreases as increas-
ing the size of the cache memory increases the performance of the
computer system. Higher performance decreases the vulnerability
of the main memory because time the computer system use the main
memory is reduced.

OE-14 1.0E+09
8.0E+08
B.0E+08

SE14 R

OE-14 7.0E408 g

6.0E+08
5.0E+08 2

406408 §
308408

SE-14
OE-14 |

QE-15

0E+00

o 1 2 4 8 16 2 64
Cache ways.

soft emrors (IL1) B # soft errors (IMM) CJ# soft errors (DL1)D#wﬂm(DMM)-—#M:ydes|

3 Vulnerability vs cache size (ECC L1, non-ECC main memory).

Figure 4 shows vulnerability and runtime of a computer system
which adopts an ECC L1 cache memory and an ECC main memory.
In this memory configuration, the SER of the cache memory is dom-
inant in the computer system and the vulnerability of the computer
system increases as the size of the L1 cache memory increases.

GE-18
SE-16
0E-16
SE-16
OE-16
SE-16
\OE-16

QE-17

0E+00

0 1 2 4 8 16 32 64
Cache ways.

soft erors (IL1) WE# so errors (IMM) C3# soft emrora (DL1) D#mm(ﬂ“\l)*—#d&*ml

4 Vulnerability vs cache size (ECC L1, ECC main memory).

As shown in Figures 1, 2, and 4, there exists a tradeoff between
reliability and performance of a computer system, in which the SER
of a cache memory is dominant in the reliability of the computer
system. The experimental examination also shows that cache mem-
ory sizing contributes to adjusting the reliability of the computer
system.

3. Cache Memory Sizing Architecture

As discussed in the previous section, decreasing the size of a
cache memory contributes to increasing the reliability of a com-
puter system with some performance degradation. In this section,
we propose a reliable cache memory architecture which dynami-
cally switches its size, controls its SER, and affirmatively accepts
some performance degradation for increasing its reliability. The re-
liable cache memory architecture is useful when the deadline time
at which a program finishes is given.

Before we discuss the reliable cache memory architecture, we re-
view the general cache memory architecture. Figure 5 shows a read
mechanism for a 4-way set associative cache memory. The cache
memory behaves on a read as follows. Given an address from a
CPU for read, the index address of the given address selects all the
corresponding lines of all cache ways. Then their tags are compared
with the tag of the given address for examining whether or not the
corresponding data item is on the cache memory. In the meantime,
the words of the lines are selected by the block offset of the given
address. The data item is finally outputted if it is on the cache mem-
ory.

ToCPU Data

Way
Selacior Word
Selector Lino

5 Read mechanism for 4-way set associative cache memory.

Figure 6 shows an LRU-based write mechanism for a 4-way set
associative cache memory. LRU bits of each line holds the index for
the least recently used cache way. The cache memory behaves on a
write as follows. Given an address from a CPU for write, the index
address of the given address selects all the corresponding lines of all
cache ways. Then their tags are compared with the tag of the given
address for examining whether or not the corresponding data item is
on the cache memory. If the data item is on the cache memory, the
date item is updated. Otherwise, the line of the LRU way is written
out to a lower memory and the line of the data item is allocated to
the line of the LRU way. The data item from the CPU finally is
written on the line of the LRU way.

Address from CPU
[Tog I Index | BlockOffset |

[LITTTITITITIITT]

[Vaild Flag
Cache way |
overwritton Tag *— Data
Lower Data
Memory

Line

6 LRU-based write mechanism for 4-way set associative cache memory.

Reliable Cache Memory Architecture

As discussed in Section 2., decreasing the size of a cache memory
contributes to increasing the reliability of a computer system with
some performance degradation. It is relatively easy to dynamically
change the size of a cache memory as shown in Figure 7. The easiest
way for this is only to activate or deactivate some cache ways.

Way 0 Way 1 Way N
0
1
2
3
4
5
6
7 vee
8
9
10
o .
0 . . .
0 H
M-2
M-
Control signal
Selector

7 Simplified read mechanism for N-way set associative cache memory.

There are basically three approaches to activate or deactivate
cache ways as follows.

Naive cache architecture

In this cache architecture, some cache ways are activated under a
reliability mode while all of cache ways are activated under a per-
formance mode as shown in Figure 8. Ideally speaking, every cache
way may change into either active or inactive mode. From the view-
point of hardware implementation, some of cache ways may change

manages is to halt the computer system.

p
Active W Active ‘(Inactive)
Way 0 Way 1 Way 2 Way 3 Way N
0
1
2
3
4
6
8
7 aee
8
9 |
10 | |
0 : " : "
H : : : : :
M2
M-1
. I I J\ J

9 Detection-oriented mechanism for N-way set associative cache mem-
ory.

Correction-oriented cache architecture

This cache architecture is error-correction-oriented. In this cache
architecture, three or more cache ways are regarded as a redundant
set and they retain same content as each other as shown in Figure 10.
If an SEU occurs on a redundant set of cache ways, the SEU is
promptly detected and corrected by majority rule. A correct value
is decided by majority among the corresponding cache ways.

its operation mode.

Y

s - "
Active Inactive
Way 0 Way 1 Way N

0

1

2

3

4

5

6

7 X

8

9

10

0 N

0 . . .
0 H

M-2

M -1 I 1

Control signal
———4\ Selector

8 Naive mechanism for N-way set associative cache memory.

Detection-oriented cache architecture

This cache architecture is error-detection-oriented. In this cache
architecture, two cache ways are regarded as a redundant pair and
they have the same content as each other as shown in Figure 9. If an
SEU occurs on a redundant pair of cache ways, the SEU is promptly
detected and the CPU manages the SEU. The simple way the CPU

s " "
Active \ (Inactive)
Way 0 Way 1 Way 2 Way N

]

1

2

3

4

5

6

7 eoe .o

8

9

10

H : : : :

° H : H H
i

° k 1 K 1 i) L

Valunlseammdwlﬁamawltydsdstml
\ J

Control signal

=

10 Correction-oriented mechanism for N-way set associative cache
memory.

The merits and demerits of the three approaches are summarized
in Table 2.

%2 Three cache memory architectures.

Reliability | Area Overhead | Performance | Power
Naive low low high low
Detection middle middle middle high
Correction high high low high

4. Case Study

We calculated performance and vulnerability of computer sys-
tems on switching the operation mode of cache memory, that is the
performance mode or the reliability mode. We used the GNU C

compiler and debugger for ARMvAT architecture to generate ad-
dress a trace. Vulnerability of the computer system was calculated
with the simulation-based soft error estimation method presented
in [10]. We utilized Compress, that is a data compression program,
as a benchmark program for this experiment. The trace of a bench-
mark program is 100 million instructions long.

We adopted the operation mode under which a cache memory is
completely disabled as the reliability mode. We also adopted the op-
eration mode under which a cache memory is fully activated as the
performance mode. Our experiment was done under several com-
puter systems which have a cache memory whose size is 2kB, 4kB,
8kB, 16kB, 32kB, 64kB, or 128kB.

We adopted cell upset rates shown in Table 1 in Section 2. for
our experiment. We used the cell-upset rates shown in [9] as the
cell-upset rates of non-ECC SRAMs and non-ECC DRAMs. We
assumed that a cell upset rate of a non-ECC memory is 1,000 times
higher than that of an ECC memory.

We ran the program as the following procedure.

E 1 g Begin to run a program under the reliability mode,
2) Switch the operation mode from the reliability mode to the

per{%"anrcﬁe";?gg}am finishes.
In this procedure, the operation mode of a program is switched once
a job.

Figures 11, 12, 13, 14, 15, 16, and 17 show vulnerability and
performance of a computer system for various timing of switching
the operation mode from the reliability mode to the performance
mode. In the figures, accumulated area graphs show the number of
soft errors occurred during the execution of the program, and the
lines show performance of the computer system. In the figures, The
“Switched cycle” indicates when the computer system switches its
mode from the reliability mode to the performance mode. The fig-
ures clearly show that there exists a tradeoff between reliability and
performance on the cache memory sizing architecture.

5. Conclusion

In this paper, we analyzed a tradeoff between reliability and per-
formance of computer systems. It was experimentally found that
there exists a tradeoff between reliability and performance of com-
puter systems in which an SER of a cache memory is more critical
than that of a main memory.

We proposed three cache memory architectures: (i) Naive
cache architecture, (ii) detection-oriented architecture, and (iii)
correction-oriented cache architecture. Each cache architecture has
its own merits and demerits. System designers should choose their
one of them for the requirements of their products.

We experimentally examined correlation between runtime and
vulnerability of a computer system. The experimental results im-
ply that the operation mode under which a cache memory operates
should be adaptively determined. Urgent programs should be exe-
cuted under the performance mode while non-urgent ones should be
executed under the reliability mode. The operation mode of a pro-
gram may be adaptively switched in accordance with the situation
around the computer system. This aspect is important in RTOS sys-
tems. Controlling reliability and performance by an RTOS is one of
our future work.

X [

[11 H. Asadi, V. Sridharan, M. B. Tahoori, and D. Kaeli. Vulnerability
analysis of L2 cache elements to single event upsets. In Proceedings
of the conference on Design, Automation and Test in Europe Confer-
ence (DATE), Munich, Germany, March 2006. IEEE.

[2] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee,
and R. Rangan. Computing architectural vulnerability factors for
address-based structures. In Proceedings of IEEE Inter ! Sym-
posium on Computer Architecture (ISCA), pages 532-543, Madison,
WI, USA, June 2005. IEEE.

[3] V. Degalahal, S. Cetiner, F. Alim, N. Vijaykrishnan, K. Unlu, and
M. J. Irwin. SESEE: soft error simulation and estimation engine.
In Proceedings of MAPLD International Conference, Washington,

(4]

[5]

(6]

7

(8]

[9

(10]

(1]

(12]

[13]

[14]

[15]

D.C., USA, October 2004. IEEE.

H. Kobayashi, K. Shiraishi, H. Tsuchiya, M. Motoyoshi, H. Usuki,
Y. Nagai, K. Takahisa, T. Yoshiie, Y. Sakurai, and T. Ishizaki. Soft er-
rors in SRAM devices induced by high energy neutrons, thermal neu-
trons and ‘alpha particles. In Technical digest of IEEE International
Electron Devices Meetings, pages 337-340, San Francisco, Decem-
ber 2002. IEEE.

X. Li, S. V. Adve, P. Bose, and J. A. Rivers. SoftArch: An architec-
ture level tool for modeling and analyzing soft errors. In Proceedings
of IEEE International Conference on Dependable Systems and Net-
works (DSN), Yokohama, Japan, June 2005. IEEE.

T. C. May and M. H. Woods. Alpha-particle-induced soft errors in
dynamic memories. IEEE Transactions on Electron Devices, Vol.
26:2-9, 1979.

S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error prob-
lem: an architectural perspective. In Proceedings of IEEE Inter-
national Symposium on High-Performance Computer Architecture
(HPCA), pages 243-247, San Francisco, CA, USA, 2005. IEEE.

M. Rebaudengo and M. Violante M. S. Reorda. An accurate anal-
ysis of the effects of soft errors in the instruction and data caches
of a pipelined microprocessor. In Proceedings of the conference on
Design, Automation, and Test in Europe - Volume 1, pages 10602—
10607, Munich, Germany, 2003. IEEE Computer Society.

C. W. Slayman. Cache and memory error detection, correction and
reduction techniques for terrestrial servers and workstations. IEEE
Transactions on Device and Materials Reliability, 5(3):397-404,
September 2005.

M. Sugihara, T. Ishihara, K. Hashimoto, and M. Muroyama. A
simulation-based soft error estimation methodology for computer
Sy In Proceedi 34 of IEEE Inter i 1S on Qual-
ity Electronic Design, pages 196-203, San Jose, CA, USA, March
2006. IEEE.

Y. Tosaka, H. Ehara, M. Igeta, T. Uemura, H. Oka, N. Matsuoka,
and K. Hatanaka. Comprehensive study of soft errors in advanced
CMOS circuits with 90/130 nm technology. In Technical digest of
IEEE International Electron Devices Meetings, pages 941-948, San
Francisco, CA, USA, December 2004. IEEE.

Y. Tosaka, H. Kanata, T. Itakura, and S. Satoh. Simulation technolo-
gies for cosmic ray neutron-induced soft errors: models and simula-
tion systems. IEEE Transactions on Nuclear Science, 46:774-780,
June 1999.

Y. Tosaka, S. Satoh, and T. Itakura. Neutron-induced soft error sim-
ulator and its accurate predictions. In Proceedings of IEEE Inter-
national Conference on Simulation of Semiconductor Processes and
Devices (SISPAD), pages 253-256, Cambridge, MA, USA, Septem-
ber 1997. IEEE.

Y. Tosaka, S. Satoh, and H. Oka. An accurate and comprehensive soft
error simulator NISES II. In Pr dings of IEEE Inter ! Con-
ference on Simulation of Semiconductor Processes and Devices (SIS-
PAD), pages 219-226, Munich, Germany, September 2004. IEEE.
N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characteriz-
ing the effects of transient faults on a high-performance processor
pipeline. In Proceedings of IEEE International Conference on De-
pendable Systems and Networks (DSN), pages 61-70, Florence, ltaly,
July 2004. IEEE.

0E-16 10E+09 3E-16

1.0E+09
BE-16 [—— - - B.0E+08 sE8 9.0E+08
6E-18 B.OE+08 $E-16 8.0E408
4E-16 70408 'g s 208008 T
2E-16 6.08+08 N s 6.0E408 -§,
0E-16 s0Ee08 § 508408 :g
0E-17 4.0E+08 E e 4.0E+08 g
0EA7 30408 & e acers &
0BT 2.0E+08 EA7 208408
QE-17 1.0E+08 JE17 1.0E+08
1E+G0 0.0E+00 1E+00 = RO 0.0E+00
0.0E+00 1.0E+08 2.0E+08 3.0E+08 4.0E408 5.0E+00 6.0E+08 7.0E+08 8.0E+08 0 Es08 26408 3E+0B AE+0B SES08 GE403 7E40B BE408
Swilched cycle . Switched cycla
4 soft emors (IL1) CJ# sof erors (IMM) C14 soh erora (DL1) BE# sofl emors (DMM) —— Runtime 430t errors (IL1) CJ# soft emors IMM) 14 soft emors (DL1) M4 s0R errors (DMM) ~—Runtime]
11 Vulnerability and performance on switching non-cache to direct B 15 Vulnerability and performance on switching non-cache to 16-way
mapped cache. set associative cache.
JE-18 1.0E+08 JE-18 1.0E+09
JEA7 9.0E+08 9E-16 9.0E+08
JEN7 8.0E+08 3618 8.0E+08
JEAT 7.0E408 T €18 708408 T
JEA7 6.0E408 .g' %16 6.0E+08 g
FEA7 506408 § IE18 508408 §
AT 40008 § A7 4gEs0s §
JEAT7 308408 & kA7 30E008 &
JEA7 2.0E+08 JEA7 2.0E+08
JEN7 1.0E408 E7 1.0E+08
IE$00 2 s 0.0E+00 1E+00 0.0E+C0
0 1E+08 2E+08 3E+08 4E+08 SE+08 GE+08 7E+08 8E+08 0 1E+08 2E+408 3E+08 4E+0B 5E+08 6E+CB 7E+08 BE+08
Switched cycle Switched cycle
4 so emors (IL1) E53# ot errors (IMM) C3# soft errors (DL1) M # soft orrors (OMM) —— Runiime | #soft errors (iL1) C3# s0t emors (IMM) CJ# soh emars (DL1) BRN# 50t orrars (DMM) ~— Runtime]
B 12 Vulnerability and performance on switching non-cache to 2-way set 16 Vulnerability and performance on switching non-cache to 32-way
associative cache. set associative cache.
JE-18 1.0E+09 JE-16 1.0E+09
3E-16 9.0E+08 SE-16 8.0E408
3E-16 8.0E+08 2E-16 8.0E+08
4E-16 7.0E+08 ‘g 3E-16 7.6E+08 g
16 6.08408 & 1E18 6.0E+08
JE-16 5.0E408 g_ JE18 5.0E+08
EA7 40ev08 £ SE-18 4.0E+08 é
JEA7 30808 & E16 30E+08 &
IEAT 2.0E+08 JE-17 2.0E+08
IE7 1.0E408 ' 1.05+08
1E+00 — ’ 0.0E+00 1E+g0 FEEE . i 0.0E+00
0 1E+08 2E+408 3E+08 4E+08 SE+08 6E+08 7E+08 BE+08 o 1E+08 2E+08 3E+08 4E+08 5E+08 GE+08 7E+08 B8E+08
Switched cycle Switched cycle
#s0ft emors (IL1) C# sof errors (IMM) (J# soft ervors (DL1) GR1# soRt errors (DMM) —— Runtime | 4 s0ft errors (IL1) CZ14 soR emors (IMM) [14 soft erars (DL1) B4 soft errors (OMM) —— Runtime]
B 13 Vulnerability and performance on switching non-cache to 4-way set B 17 Vulnerability and performance on switching non-cache to 64-way
associative cache. set associative cache.
3E-16 1.0E+09

SE-16 9.0E+08

4E-16 8.0E+08

18 7.08+08

6.0E+08
IJE-16

5.0E+08
JEAT

4.0E+08
JEA7

Runtime [clock cyctes]

3.0E+08

JE7 2.0E+08

EA7 1.0E+08

1E+00 n 0.0E+00
o 1E+08 2E+08 3E+08 4E+08 5E+08 GE+08 7E+08 BE+08

Switched cycle

¥ soft errars (IL1) C1# sof errors (IMM) [0 soft errors (DL1) BER# soft errors (DMM) —— Runtime |

[X 14 Vulnerability and performance on switching non-cache to 8-way set
associative cache.

