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Abstract The verification cost of complex SoCs has been increasing in a fast pace. Many techniques and methodologies have
been developed to address this problem. Nevertheless logic simulation is still the most used technique to verify SoCs. In order
to decrease the verification cost (time) of a design using logic simulation, we first must analyze the subtasks that compose it:
specification analysis, building the verification environment (which includes the testbench, test pattern, and reference model),
and simulation.' There has been work on methodologies that improve the specification analysis and the simulation cost, but
the technical challenges that must be overcome are big. On the other hand, improving the process of building verification
environments has a lower technical hurdle (meaning low cost of implementation) but is very effective. We feel that this is
not very explored, thus, in this paper we target this problem. Verification component’s reuse and its automatic generation are
key factors to decrease the cost of building a verification environment. In general it is very difficult to automatically generate
components such as reference models for complex hardware units in an SoC. However, hardware units such as bus bridges
or DMA controllers, where there is no data computation, do not require complex reference models. This lowers the hurdle
for automatic generation of verification environments. In this paper we target the latter type of hardware units and propose
a methodology to generate components used in a verification environment. We also present a case study where the proposed
methodology has been used to build the verification environment of a bus bridge used in a commercial product.

Key words Testbench, Unit Verification, Transactor, Protocol checker
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1. Introduction

The design and implementation of an SoC has been increasing
in complexity. However, the verification complexity of an SoC has
been increasing at even.a higher pace. Various methodologies, tech-
niques, and tools have been developed to address this problem. De-
spite the proposal of new techniques, by far the most used verifica-
tion methodology is still logic simulation.

When we focus on the task of verifying an SoC or a hardware unit
using simulation, we can divide it into 3 subtasks: understanding
the DUT’s (Design Under Test) specification, building the verifica-
tion environment, and the actual simulation. From our experience,
about a third of the total verification effort is spent in each of these
subtasks. There has been some ongoing work on methodologies to
improve the process of analyzing a specification [2] and on improv-
ing simulation cost [1]. However, the technical hurdles to overcome
are big. On the other hand, the technical hurdles that need to be
overcome to improve the process of building verification environ-
ments are not as big, meaning lower cost of implementation. We
feel that this is not very explored as it should be.

References [4], [5] propose methodologies for functional verifi-
cation of hardware units in an SoC and how to build a verification
environment. These methodologies basically share the same char-
acteristics by recommending that verification environment compo-
nents be built at a higher level of abstraction (namely transaction
level [7]) than the signal level abstraction of DUTs to ease the im-
plementation and reusability of the components. These components
can be divided into three categories: an architecture or framework
used to drive/collect stimuli to/from the DUT, the stimuli set, and
the reference model [4], [5].

Although the methodologies recommend best practices and the
authors (tool vendors) provide libraries and tools to be used in the
verification of hardware units, there are a few points that are not
properly addressed in these methodologies. These points are how to
build an adequate stimuli set, how to build a reference model, and
how to build a transactors between transaction and signal levels. It
is up to the user of these methodologies to implement each of these
key points.

There is some ongoing work on the generation of stimuli sets
from functional specifications [3]. The reference models used in
verification to decide whether the response of the DUT is correct
or not, can be derived from the same reference model used for
designing the DUT. Many methods that automate the creation of
verification components related to signal-level interface protocols
have been proposed. Regular expressions have often been used
as basis of formal specification languages for signal-level interface
protocols. Protocol checkers can be generated automatically from
them [8],[11]. Once a protocol checker is generated as an FSM,
constraint synthesis technique [9] can be used to generate a pseudo

model. It is also reported that transactors have been successfully
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generated from regular-expression-based specifications [10]-[12].

In this paper we focus on the automatic generation of verification
environments for hardware units. Our target is the generation of the
components used to interface transaction and signal levels, which is
left to the user by the tool vendor’s methodologies. The main contri-
bution of this paper is that we have filled this gap by providing tools
that implement the techniques that allow the automatic generation
of transactors and pseudo models.

In section 2. we briefly explain our unit verification environment.
Then in section 3. we describe our method for generating the trans-
actors, pseudo models, and protocol checkers. In section 4. we
present a case study in which we actually used the developed tools
to build the verification environment of a bus bridge in a commercial
SoC preduct.

2. Unit Verification Environment

M';;el =—+ DUT

Test Controller

Test Controller

(a) Random simulation (b) Transaction-based simulation

Fig. 1 Unit verification environments.

For unit verification, we need to build the environment that pro-
vides stimuli for the design under test (DUT) and checks its re-
sponse. In this paper the DUT is a hardware unit such as bus bridges
or DMA controllers where no data computation is done by the DUT.
Examples of unit verification environments are illustrated in Fig. 1.

The first example (a) is an environment for random simulation.
The pseudo model selects DUT inputs every cycle from the patterns
that do not violate the interface protocol at random. The protocol
checker monitors all interface signals, finds interface protocol errors
of the DUT, and possibly finds errors of the pseudo model. The data
checker checks the correctness of the data computed by the DUT.

The second example (b) is an environment for transaction-based
simulation. The user of the environment controls test scenarios and

* calls an API of the transactor for each event at transaction-level. The

transactor translates transaction-level communication into signal-
based communication and returns a DUT’s response to the driver
through the APL

In both cases, the simulation effort is evaluated based on cov-
erage analysis. Several types of coverage may be defined in the
verification of a DUT. Code coverage is the percentage of a DUT’s
source code activated in a simulation run, which includes various
subclasses, e.g. block coverage and expression coverage. Func-
tional coverage is the percentage of a DUT’s functions checked by

the test scenarios. Another coverage, called transaction coverage in



this paper, can be measured using the protocol checker. The trans-
action coverage is the percentage of the signal-level instances of the
interface protocol covered in a simulation run. It can be measured
as the protocol checker’s internal state transitions covered in a sim-
ulation run and is collected by the coverage collector.

3. Generating a Verification Environment

Our target is the automatic generation of transactors, data check-
ers, coverage collectors, protocol checkers, and pseudo models. The
goal of the proposed method is to build a framework in which de-
signers specify the interface protocol definition of hardware units,
this specification is shared among the design and verification teams,
and it is also used to generate various verification components.

We use timing-diagram-based formal protocol definition in tabu-
lar form, called protocol definition table. It is easy-to-read as well
as easy-to-write. Conventional formal protocol definition is based
on text-based mathematical description, which is fully understood
only by the person who wrote it and some other skilled verification
engineers. It is very important that a formal protocol definition is
shared by all members of the design and verification teams because
it drastically reduces misunderstanding among the team. Since mis-
understanding is a very common cause of design flaws, a formal
protocol is really effective in reducing the total cost of design and
verification. We intentionally limited the expressive power of pro-
tocol definition table in order to keep it easy-to-read for all peo-
ple. From our experience, interface protocols used in a SoC can be
classified into two groups: one is a group of simple protocols and
another one is a group of standard high-performance bus or I/O pro-
tocols. Our target is the former and the latter would be covered by
general reuse and distribution methodologies of verification IPs.

Fig.2 Verification component generation flow.

The verification component generation flow is shown in Fig. 2.
Protocol checker, pseudo model, and protocol wrapper are gener-
ated automatically from a protocol definition table. The protocol
wrapper is a sub-component of a transactor. Additional informa-
tion of transaction-level API, which is a manual design, is needed
to complete the transactor. Some human decisions are needed to de-
sign the AP], e.g. controllability of wait cycles, handling of burst-
transfer, and choice of blocking/nonblocking interfaces.

The protocol wrapper is also used as a sub-component of a data
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Fig. 4 Generating a coverage collector.

checker or a coverage collector (Fig. 3 and 4). Likewise the trans-
actor, we need additional information from the verification specifi-
cation in order to complete the design of the data checker and the
coverage collector.

Protocol wrapper generation automates protocol-dependent and
error-prone part of transactors, data checkers, and coverage collec-
tors by leaving its customizable part for verification engineers. This
enables a reduction in the time required to build a verification envi-
ronment.

3.1 Protocol Definition Table

Fig. 5 Interface protocol P between units A and B.

The format of the protocol definition table is originally based on
a subset of CWL [11], [12]. Briefly speaking, it is a regular expres-
sion with data equality. The protocol definition table for protocol P
in Fig. 5 is shown in Fig. 6. A protocol definition table is basically
a table composed of two blocks (“Port Definition” and “Sequence
Definition”) as in Fig. 6 (a). The first block can also be viewed as a
timing diagram as in Fig. 6 (b). Our tool can switch those two views
according to user operation.

In the first block, there are six rows corresponding to six sig-
nals defined in this protocol (clk, cmd, req, ack, rd[7:0],
and wd [7:0]). Each of the five columns on the right of the sig-
nal names expresses the combination of the signal values (patterns)
at a certain cycle. Special value “@” means the rising edge of the
clock signal and “?” means that the signal value is not restricted,
i.e. don’t-care, at that cycle. For each column, the name of the

pattern is defined at somewhere in the second block. The patterns



Port Definition

Elre«lnnnmmu bits _name
input  clock clk @ @ @ @ @
output _control cmd 0 0 1 1 ?
output _control req 1 1 1 1 0
fnput _control ack 1 0 1
input data [7:.0] rd D ? ?
output _data_ (7:0) _ wd ? D D
Sequence Definition
attribute namo | |
FOREGROUND READ RR+ | RA(D)
FOREGROUND __ WRITE WR(D)+| WA(D)
BACKGROUND NOP
(a) Table view
Port Definition
EElonmllhlm bits _name
input__ clock S [ N ey N oy B
output_control cmd
output _control req i/
input__control ack | A
input__data [7:0) rd 5 &
output _data_ [7:0] __ wd 0 D
Sequence Definition
attribute name
[~ FOREGROUND __READ | [ RR:__RAD)
FOREGROUND __ WRITE WR(D)+ _WA(D)
BACKGROUND | NOP

(b) Diagram view

Fig. 6 Protocol definition table of P.

are named RR, RA (D), WR (D), WA (D), and NOP respectively. The
sign “+” appended to RR and WR (D) means that those patterns can
be repeated once or more. i

In the second block, there are three rows corresponding to two
types of transactions defined in this protocol (READ and WRITE)
and the state when no transaction is performed. It means that trans-
action READ consists of one or more cycles of pattern RR followed
by a single cycle of pattern RA (D), transaction WRITE consists of
one or more cycles of pattern WR (D) followed by a single cycle
of pattern WA (D), and pattern NOP appears when no transaction is
active.

The same parameter used in a transaction definition means that
the corresponding value must be the same throughout each transac-
tion. Parameter D in the WRITE definition represents that the value
of signal wd [7:0] must be stable during a WRITE transaction.

4. Case Study

We have actually used the verification environment generation
flow described in this paper in the verification of a bus bridge. The
specification of the bus bridge is shown below.

e The master side of the bridge interfaces with an AHB [13]
bus and a proprietary bus.

e The slave side of the bridge interfaces with a memory inter-
face controller.

e The bridge has an arbiter with a built-in priority to arbitrate
the access of the masters to the memory interface controller.

e [t also has a temporary data buffer.

The testbench used in the verification of this bus bridge is shown
in Fig.7. The testbench consists of the following blocks.

e The bus bridge (DUT).

Test Controller

Random
Bus Driver

+
Protocal Transactor
-Checkar H Eroprictary

-

DUT
Protocol Memory UF
Checker
IMemory VF T
+ Date/Address)
Checker Pseudo Checker
Memaory Model
Pseudo Memory Module

Fig. 7 Bus bridge testbench.

The test controller.

Protocol checkers for each protocol handled by the DUT.
— AHB checker: used existing verification IP.

Proprietary bus checker: generated from the protocol defini-
tion table.

— Memory I/F checker: generated from the protocol definition
table.

®  Bus master models.

— AHB model: the transactor is an existing verification IP, and
the driver is hand-built (SystemC).

— Proprietary bus model: the transactor is generated from the
protocol definition table, and the driver is hand-built (Verilog).

® Pseudo memory module: models the memory I/F controller.
The transactor was generated from the protocol definition table. and
the pseudo memory model was hand-built (Verilog)

e Data/address checkers.

- Data/address checker between the AHB driver and the
pseudo memory module: hand-built (Verilog).

— Data/address checker between the proprietary bus driver and
the pseudo memory module: hand-built (Verilog).

Table 1 shows the code size of the testbench components that
were automatically generated. Table 2 shows the code size of the
components that have to be hand-built in order to complete the de-
sign of the bus driver and memory model. Table 3 shows the size
of the various protocol definition tables we defined in order to build
the testbench. The size is shown in terms of the table’s columns x
rows.

The DUT is a design that is going to be used with different mem-
ory interfaces, all sharing the same interface protocol. Different
memory interfaces, even though sharing the same protocol, may
have different transaction behaviors. Thus the bus bridge was de-
signed to support any behavior within the defined protocol state
space.

The standard method to verify this type of design is to bring (or
build) the models of the various memory interface controllers that



Table 1 Verilog code size of automatically generated components

Block name size (lines)

Proprietary bus protocol checker 9168

Proprietary bus transactor 9398
Memory I/F protocol checker 22154
Memory I/F transactor 34122

Table 2 Verilog code size of hand-built components

Block name size (lines)
Proprietary bus driver 147
Memory model 414

Table 3 Protocol Definition Table Size

Protocol definition

size (columns X rows)

Proprietary bus p 1 check 18 x 15
Proprietary bus transactor 23x23
Memory I/F protocol checker 64 x 27
Memory I/F transactor 75 x 40

the DUT may interface with, and verify the DUT with each of them.
This is a time consuming task since we must do a simulation run for
for each memory interface controller model.

In this case study, we built a memory interface transactor based
on the memory interface protocol definition table. By integrating
the transactor and pseudo memory model into the pseudo memory
module, we obtain a memory model that responds to requests from
the DUT with transactions that cover the entire protocol state space.

The approach taken to verify this design is simulating the DUT
into which transactions are randomly issued by the bus master
drivers. The approach consists of:

(1) Each bus master driver generates random transactions and
issues them at random.

(2) Compare the address and transaction type issued by the
bus master drivers with the address and transaction type that the
DUT issues to the memory interface.

(3) Compare the data transferred from/to the bus masters with
the data stored in the memory model.

The verification goal is to achieve 100% block, expression, and
transaction coverage.

In order to evaluate the effectiveness of the verification using the
pseudo model described above, we evaluated the following 2 cases:
Case A The pseudo memory module models a specific type of
memory interface block.

Case B The pseudo memory module models transactions that
cover the entire memory I/F protocol state space.

In each case we measured 3 different coverage metrics: block,
expression, and transaction. The code coverage is shown in Table 4.
In this table we show in different entries the block/expression cov-
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Table 4 Code Coverage

Coverage type Case A (%) Case B (%)
Block coverage (memory I/F) 85.7 9.3
Block coverage (other blocks) 99.4 99.4
Expression coverage (memory I/F) 82.0 96.3
Expression coverage (other blocks) 99.2 99.2

Table 5 Transaction Coverage

Coverage type Case A (%) Case B (%)

Transaction coverage 64.0 95.7

erage of the hardware block that implements the memory I/F and
the other hardware blocks. We can see that both block and expres-
sion coverage rates of the memory I/F hardware block are lower in
case A compared to case B. Because the only difference in cases A
and B is the pseudo memory module, it is natural that block and
expression coverage of the other hardware blocks do not differ.

Table 5 shows the transaction coverage of the memory I/F pro-
tocol. We can easily see that the transaction coverage of case A is
much lower than of case B. This means that the DUT’s memory I/F
hardware in case B is more exercised than in case A.

We analyzed the uncovered blocks and expression of both cases A
and B. In case B all the uncovered blocks and expréssions are false
warnings. So if we remove them, we achieve a 100% block and ex-
pression coverage. In case A, even if we remove all the false warn-
ings, the block/expression coverage is still very far from 100%.

We also analyzed the uncovered transactions of both cases A
and B. In case B, all the uncovered transactions cannot occur be-
cause the DUT do not support them. So, if we remove these trans-
actions from the transaction coverage count we achieve 100% trans-
action coverage. In case A, even if we remove the same transactions
we removed in case B from the coverage count, the transaction cov-
erage is 67%, much lower than 100%.

The result of this case study shows that one random transaction
generator, which is used in pseudo models and that is built from
a protocol specification table, can be used to thoroughly verify a
DUT. We do not need to build or bring various pseudo models to
achieve a high quality verification (high, 100% or close to 100%
block, expression, and transaction coverage)

If this methodology did not exist we would have built all the com-
ponents (protocol checkers and transactors) by hand, increasing the
time required to build and verify the verification environment. In
this case study we took about 4 weeks to build the verification en-
vironment shown in Fig. 7. There are 9 components (besides the
DUT) in the verification environment, 7 were new components and
2 were existing verification IPs. Among the newly generated com-
ponents, the test controller and both data/address checkers were
hand-built. The other 4 components were totally or partially gener-



ated automatically (as it can be seen in Table 2, the hand-built part is
very small compared to the automatically generated part). Most of
the 4 weeks were spent building and verifying the test controller, the
most complex hand-built component, and the data/address checkers.

From our experience, hand building all the 7 new components
would have taken at least twice as long. Also, the quality of these
components would not be the same compared to the components au-
tomatically generated. One might argue that 4 weeks is not a short
period of time. However, the author was not completely familiarized
with the tools that automatically generate the verification environ-
ment components. The protocol checker generator has been in use
for some time, but the pseudo model and protocol wrapper genera-
tors were first deployed in the case study’s verification project (the
tools were not mature).

We believe that with experience and mature tools, 3 weeks would
be enough. If the DUT complexity and its interfacing protocols
were less complex, 1 week would be enough to build the verifica-
tion environment (we still would need to build the test controller
and data/address checkers, which would take most of this 1 week
work).

We also found out that the protocol definition table is an excel-
lent means to share information. In this case study the verification
team actually used the protocol definition table to deepen the under-
standing of the proprietary protocol. In a conventional approach, the
protocol’s properties would be listed like PSL properties and a re-
view meeting, that takes a few hours, would be held with the design
team to review these properties.

In a PSL description, one would have to specify properties for
each signal, its dependency (timing) relationships with respect to
other signals using temporal relations. Checking whether every
property is correct and whether the assertions correctly define and
cover 100% the protocol is a difficult task. Because the protocol
definition table defines a protocol like a timing diagram, covering
every signal involved in the protocol, a close comparison with tim-
ing diagrams is enough to certify whether, for example, a protocol
checker will cover a proprietary protocol.

For this reason, using the protocol definition table the verification
team was able to certify the proprietary bus protocol by exchanging
a few e-mails (about two to three e-mails exchanges were enough).

5. Conclusion

We proposed a framework in which designers specify the in-
terface protocol definition of hardware units, this specification is
shared among the design and verification teams, and it is also used
to generate various verification components.

We introduced the protocol definition table, which is a timing-
diagram-based formal protocol definition in tabular form. The pro-
tocol definition table is not only an input to the automatic generation
method, but is also a document for all members of the design and
verification teams. We intentionally limited the expressive power

of protocol definition table in order to keep it easy-to-read for all
people.

Protocol checker, pseudo model, and protocol wrapper can be
generated automatically from a protocol definition table. Transac-
tors, as well as coverage collectors and data checkers, can be easily
created using the protocol wrapper and additional information from
either the verification specification or the transaction-level API de-
sign specification.

In a case study, we have found that the methodology proposed in
this paper is very flexible and can provide sufficient help for design-
ers and verification engineers by allowing the share of information
and decreasing the time required to build the verification environ-
ment.
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