HEEA FRoBEZS FRRE
IPSJ SIG Technical Reports

2007— S LDM—132 (25)
200711722

F—BNRAGRICBITBAF 2 — AW A T ¥ 2 — VREFE

B T

&F ek

T JLEESERB F R FEBE RS FERAFHER T 923-1292 B)IIREETES 1-1
E-mail: {{t-obata,mkaneko}@jaist.ac.jp

HoEL

REERERELTIFHRELLTIBy I AXa—ROY ¥4 IV 726ATIFE/MMERS LTV,

RT LARABERIZBNTIE, TV RERIAF LI VOMESA IV S ICAF 2= BA LAY Va—%
EETHZLICHYT S, BEF A IV T DRAF 2 — ¢ Ay Va— L ERIFICEBELT 5MEIX NP-hard THBH Z &
BEAINTVEN, FETROPR P2 —L 2RI, AFX2—DBALRAFPa—VOEFE|IZLY, avba—
NATF v TEEZHBT 2FHEL2BRTS. ELERICI - TEAFEROEDELERTS.

F—0—F ®AER, A¥a—, AFVa—N

A Schedule Improvement with Skew Control in Datapath Synthesis

Takayuki OBATA' and Mineo KANEKO!

t School of Information Science, Japan Advanced Institute of Science and Technology
Asahidai 1-1, Nomi, Ishikawa, 923-1211 Japan
E-mail: t{t-obata,mkaneko}@jaist.ac.jp

Abstract As well as the schedule affects system performance, the control skew, i.e., the arrival time difference

of control signals between registers, can be utilized for improving the system performance, enhancing robustness

against delay variations, etc. In this paper, we discuss the simultaneous optimization of the control step assignment

and the control skew assignment. Since the problem has been proved to be NP-hard, a heuristic algorithm based

on critical paths in a schedule is proposed.

Key words High-level synthesis, skew scheduling, control Scheduling

1. Introduction

In the logic level VLSI design, the clock skew is now uti-
lized intentionally for improving system performances, en-
hancing the robustness against delay variations, reducing
maximum peak power, etc., and significant efforts have been
devoted to so-called clock-scheduling and simultaneous opti-
mization of re-timing and clock-scheduling [1]- [3]. Recently,
the importance and the impact of considering timing skew
in the high level synthesis are recognized, and researches on
this issue have been started at several sections [6]- [9].

High level synthesis is the transformation from the be-
havioral description in the algorithm level to the structural
and the behavioral descriptions in the register-transfer (RT)
level, and the performance of the datapath customized to
a specified application has been determined mostly at this
design stage. Because of the existence of several different
approaches to the high level synthesis, the way of introduc-

ing an intentional skew into high level synthesis for designing
higher performance VLSIs would not be unique. One pos-
sible scenario is that a conventional synthesis system incor-
porates intentional timing skew, and uses it to compensate
mismatches of function delays. One other possible scenario is
that a concurrent datapath/floorplan synthesis system [10]-
[14] incorporates intentional skew, and uses it to compensate
mismatches of path delays (each path delay may include
function delays and signal propagation delays). Similar to
the clock schedule in the logic level design, the skew-aware
high level design will contribute to reducing the clock period,
enhancing the robustness against delay variations. In addi-
tion, the intentional skew will also contribute to reducing the
number of control steps (makespan) for a target application.

It is well-known in the logic level design that the clock
skew only is not enough for achieving the highest perfor-
mance, and the combination of the clock skew with the re-

timing technique is a promising approach. Similar to this

-145 -

situation, in the skew-aware high level synthesis, the simul-
taneous optimization of the control step assignment and the
skew assignment has a higher potential in performance opti-
mization.

In this paper, we discuss a simultaneous optimization of
the control step assignment and the skew assignment, which
can be used as a common core task in various different scenar-
ios of skew-aware high level synthesis. Taking the peculiarity
of the skew assignment into consideration, we assume that
resource binding and the temporal order of lifetimes of data
assigned to the same register are fixed and they are specified
in the input description to our problem. Our simultaneous
control-step and skew optimization has been shown to be
a NP-hard problem [15], whereas each of skew optimization
with fixed control-step assignment and constrained control-
step optimization (that is, resource binding and the temporal
order of lifetimes of data assigned to the same register are
fixed) with fixed skew assignment is in the class P. Major con-
tributions of this paper are to give a heuristic algorithm for
our simultaneous control-step and skew optimization prob-
lem, and to show how much the simultaneous optimization
improves system performance. In the past, the intentional
skew was used to shorten a clock period, and as a result, the
clock period was not controlled intentionally. This paper is
the first one that uses the intentional skew to shorten control
steps (and hence a real application time) under a specified
clock period.

This paper is organized as follows. In Section 2, we sum-
marize basic notations with comments about our stance on
scheduling issue. In Section 3, our simultaneous optimiza-
tion of the control step assignment and the skew assignment
is formulated. We present a heuristic algorithm in Section
4. Experimental results are shown in Section 5. Finally, we

present conclusions in Section 6.
2. Background and Motivation

2.1 Structural Description of Datapath Circuit

‘We assume that an input algorithm to the high-level syn-
thesis is described as a data flow graph (DFG in short) (O, D)
as shown in Fig.1(a). A vertex set O is the set of operations
and an edge set D indicates data dependencies between op-

(a) (b)
Fig. 1 Examples of DFG and RT-Level architecture.

erations.

The input algorithm is transformed to a datapath circuit
by determining resource assignment, that is, a functional unit
assignment p : O — F and a register assignment £ : O — R,
where F is a set of functional units, R is a set of registers,
and £(o) = r means that the output data of an operation o
is assigned to a register r (the output of o is stored in).
Interconnections and multiplexers in the datapath part is so
designed that, for each operation o; with (0i,0;) € D, the
output terminal of an input register £(0:) is connected to
the input terminal of an functional unit p(0;) and the out-
put terminal of p(o;) is connected to the input terminal of
an output register £{(0;). A simple example of a datapath
circuit is shown in Fig.1(b).

2.2 Scheduling Problem and Control Issue

Registers and multiplexers are driven by control signals.
There are three kinds of control signals related to an oper-
ation o € O in an input algorithm. One is control signals
for two multiplexers (ml and ml’ in Fig.1(b)) located at
input terminals of a FU p(o) (ful in Fig.1), one for an out-
put register £(0) (r2 in Fig.1), and the last one for an input
multiplexer (m2 in Fig.1) of the output register £(o).

Now M denotes the set of all registers and multiplexers,
and S denotes the set of all control signals. ¢ € S represents
the control signal that is related to the execution of 0o € O
and is sent to £ € M.

When the execution delay in a functional unit is dominant,
wire delay is negligible, and also clock/control skew is negligi-
ble, the timing of control signals can be determined from the
conventional operation schedule without ambiguity. That is,
it is enough to determine the start control step and the end
control step for each operation with considering maximum
execution delay only. However, it is not the case for LSIs
with non-negligible wire delay and clock/control skew, and
we will now consider control signals, instead of operations,
as the objects to be scheduled [14]. (Please note that, if we
set parameters appropriately, the control signal schedule can
simulate the operation schedule. In this sense, the control
signal schedule is a generic concept including the operation
schedule.) It has an additional merit that, considering the
timing of control signals directly, the so-called wave pipelin-
ing, which utilizes not only maximum path delay information
but also minimum path delay information, can be naturally
embodied.

The behavior of the datapath circuit is determined by the
arrival timing of control signals to registers and multiplexers.
The arrival timing is partly determined by the control step
assignment, and the rest by the timing skew. Each ¢ € S
will be assigned to an appropriate control step. The control
step is denoted as o(cg) and we call 0 : S — Z, as a con-

- 146 -

*«—8— _
ek L[LI L
1 o4
L ry
- (il
7 ;
2 / 063
C‘:s Crs
re
8\ /4 6
rs
03 06
Crs Crs
(b) Design 1
*5+
clk L[L L1
o1 (04
r T,
ri
%\,
a 02 L7
Crg c‘r”g
re 4/ ¥
P Ne
s\ N\
rs :
shew ¥ shew A =4
05,08 05 06
=05 &% L =3 208 3,08
(c) Design 2 (d) Design 3

Fig. 2 Necessity of skew aware scheduling.

trol schedule. 7(z) for z € M is the skew value assigned
to z. In total, the control signal ¢ reaches r at the time
o(cz) - clk + 7(z), where clk is a clock period.

2.3 Motivational Example

Fig.2(a) shows a schedule of 6 control signals. The num-
ber written beside a slant solid (broken) arrow shows max-
imum (minimum) path delay of the data propagation. The
schedule requires 3 clock cycles. This is an optimal schedule
under zero skew if the number of control steps is restricted
to smaller than or equal to 3, and its minimum clock period
is 8 (the total computation time is 8 x 3 = 24). When we as-
sign skew (7(r1),7(r2),7(r3)) = (0, —0.5, 0.5), the minimum
clock period can be reduced to 7.5 (the total computation
time is now 7.5 X 3 + 0.5 = 23). The situation is illustrated
in Fig.2(b). Fig.2(c) shows an optimal schedule and skew
assignment. The minimum clock period is now 5 (the total
computation time is now, 5 x 3 + 3 = 18).

This example shows that we can not obtain an optimal so-
lution by applying the skew assignment and the control step
assignment separately, and so we should schedule control sig-

nals considering skew.

3. Simultaneous Optimization of Control
Step and Skew Assignments

3.1 Formulation of the Problem

Our simultaneous optimization problem,
(o,7,clk)-optimization, receives (1) data flow graph G, (2)
resource assignment p, £, and (3) the execution order of op-

erations assigned to the same FU and the production order

next(z,0;)

Fig. 3 Setup / Hold constants.

of data assigned to the same register (a function nezxt re-
flects the corresponding information) as the input instance,
and outputs o, 7 and clk.

Fig.3 illustrates the correct timing of control signals with
respect to the execution of o;. We assume that o; is an
operation generating an input of oj, and the output of the
operation o; is written in a register r; (£(0;) = r;). On the
other hand, the resource z; is either a register which stores
the input data for o;, an input multiplexer of a FU p(o;), or
an input multiplexer of r;.

The arrival of the control signal cﬁj has to be later than the
arrival of the result of o;. This is called “setup constraint”

and is formulated as

U(c::) -k + ’l‘(:L‘.',) + terr + D:’:_,.’. +s£

o(er)) -k +(r;) (1)

where o, is the operation which generates the input stored
in z; when the resource z; is a register storing an input of
0j, or 0. = 0; when z; is a multiplexer at the input of either
p(o;) or rj. D:':_,.j is the maximum path delay from z; to r;
related to the execution of 0;, terr is a timing margin, and s
is the setup time of the register ;.

On the other hand, the arrival of c;J has to be earlier than
the destruction of the result of o;. This is called “hold con-

straint” and is formulated as

O'(C:;) -clk + T(TJ‘) Fterr £
o_(c::zt(::i,oﬁ)) . clk + T(xi) + d;”::_,.j —h, (2)

where d:’;_,j is the minimum path delay from z; to r; re-
lated to the execution of 0;, and h is the hold time of r;.
nezt(zi, 0;) is the operation next to o; on the resource z;.

It is natural and convenient to constrain 0 £ 7(z) < clk
for all z € M. It is clear that such restriction does not cause
the loss of optimality.

In general, the objective of the scheduling is the minimiza-
tion of the computation time and the size of a resultant cir-
cuit. When the binding £ and p are fixed, the minimization
of the size of a circuit is reduced to the minimization of the
size of a controller. We can assume that the size of the con-

troller is an increasing function of |[M| and CS (the number

-147-

of required control steps). Since |M| is fixed, CS is our ob-
jective to be minimized. On the other hand, the computation
time of a circuit can be evaluated with clk - CS. Finally, we
choose

cdk-CS+X-CS

as the objective to be minimized, where A is a weighting pa-
rameter similar to what we can see in many multi-purpose
optimization problems.

3.2 Partial Problems

Depending on a design strategy, design methodology, tar-
get application, design constraints, etc., we may encounter
several partial problems.

(7,clk)-optimization is the problem to optimize 7 and clk
while keeping control schedule o unchanged. Because T and
clk take real numbers, (7,clk)-optimization problem can be
formulated as LP problem. An efficient graph theoretic ap-
proach has been proposed [6].

(o,clk)-optimization is the problem to optimize o and clk
under given skew 7. Conventional high level synthesis sys-
tems treat (o,clk)-optimization with zero skew.

(o,7)-optimization is the problem to optimize ¢ and 7 un-
der a give clock period clk. In most cases clk may be deter-
mined considering various factors, and we often encounter
this type of optimization problem. (o,r)-optimization can
be considered also as a candidate subroutine for solving the
original (a','r,clk)—optimization, that is, for example repeat-
ing (o,7)-optimization with a systematic sweep of clk. NP-
hardness of (o,7)-optimization has been shown in [15] as well
as NP-hardness of (o,7,clk)-optimization problem [16].
the rest of this paper, we investigate solution algorithm for

(o,7)-optimization problem.
4. Heuristic Algorithm

By our preliminary study, we have proven that, even if
the execution sequence of operations assigned to the same
resource is fixed and only the control step assignment re-
mains unfixed, (o, 7)-optimization under a fixed clock period
is N'P-hard [15). In this section, we show a heuristic algo-
rithm for this (o,7)-optimization problem.

4.1 Skew Constraint Graph

From (1) and (2), we have

Tr —Tm 2 (09F — 0%%) - clk + Terr + D%, + 5(3)
T = Tr 2 (02 — o™ ™)) -l Tepr — 25, + h(4)

We generate a skew constraint multigraph G, = (V, E) from
(3) and (4) as shown in Fig.4. V is a set of multiplexers,
registers and one auxiliary source node vs. A set of weighted
edges F is the union of a set of edges reflecting (3) or (4) (i e.,
an edge (m, r) with weight (onf —o7*) - clk+ Terr + Dg¥_,.

(ovk — o) - clk + Terr + D2

m—r +

(02 — one=tH™OR)) el oy —d%__ +h

'm—r

Fig. 4 Skew constraint multigraph

nezt(m op)) Ll 4 Tapy —

d2*__ + h over all operations), and a set of auxiliary edges
{(m,vs)Im € V \ vs} U{(vs,m)|m € V \ v;}. Edge weights
for {(m,vs)|m € V' \ v5} and {(vs,m)|m € V \ v,} are —clk
and 0, respectively. Then, skew assignment problem is now

or an edge (r, m) with weight (or* —

considered as the problem to assign real values to vertices
in G5, and maximum path lengths from v, to other vertices
give us a solution, i.e., skews of registers and multiplexers.
If G, has a positive cycle, feasible skew schedule does not
exist.

4.2 Schedule Constraint Graph

From (1) and (2) with regarding integral o, we have

o(e)) —o(ck) 2

[(r(zt) —7(rj) + terr + D3I _,, +s) /czk] (5)

o(cz™) — o)) 2

[(75) = 7(00) + terr = A1, + 1) Jelk] (©)

We generate a schedule constraint graph Go = (Vs Es)
similar to a skew constraint graph. V, = §|J{vs} where v,
is an auxiliary source node. E, is the set of edges reflect-
ing (5) or (6), and (vs,v) for all v € S whose weight is 0.
Once 7 and clk are given, the longest path length from v, to
each node v is a feasible value of (v), and the maximum of
those longest path lengths gives CS. A path which gives CS
is called a critical path. If G, has a positive cycle, feasible
schedule does not exist.

4.3 Heuristic Algorithm for (o, 7)-optimization

Problem

Suppose we have computed 7 from G, and consider the
union T of a longest path from v, to each node. Then, T is a
spanning tree, and for each edge (zi,r;) in T, relative skew
(r(r3) — 7(z:)) mod clk is equal to either “(terr + Dza
s) mod clk” or “(terr — d3?

T —T;

.
+ h) mod clk” depending on
the edge weight. Therefore, we can consider the skew opti-

mization problem as the problem to extract a spanning tree

-148 -

o)

’

partition2
Fig. 5 We add an edge on a critical path in G, to T.

Stepl. Generate G- and Go

Step2. Generate an initial spanning tree T C Gr.

Step3. Compute T from 7. Compute o from G,. Let P be a

critical path in Go.

Step5. For each edge (u,v) € G+ corresponding to e € P, try to

generate T(y,) from T by adding (u,v) and removing an appro-

priate edge. If we can compute T(y,,), compute skew assignment

T(u,v) and the number of control steps CS(y,v)-

Step6. If C'S(y,y) > CS or we cannot generate T(,,,y) for all (u, v)

in Step5, output 7 and o and quit. Otherwise, set T = T(y,) by

such (u,v) which achieves the smallest CS(y,,), and go to Step3.

Fig. 6 Heuristic algorithm

from G,.

Since the right hand side of (5)-(6) has a ceiling, if the rela-
tive skew (7(r;) — 7(z:)) mod clk is equal to (terr +D:‘£ ot
s) mod clk or (terr —dgi_, , +h) mod clk, the weight of the
edge reflecting inequality (5) or (6) is minimized. There-
fore, to minimize CS, it is efficient to set relative skew to
(terr+D3J_, , +8) mod clk or (terr — d:i_,.j +h) mod clk for
as many edges as possible.

Our heuristic algorithm is shown in Fig.6. We start with
the spanning tree T whose edge set is {(vs,m)|m € V \ v,}
i.e. 7(m) = 0 for all m. We replace (vs,m) by an edge
corresponding to an edge on a critical path in G, one with
one. We use a partitioning to know which edge we can add
and which edge we have to remove in order to keep T a tree.
Each connected component in T\{(vs,z)|z € V} forms a
partite set of a partition. Because T is a tree, only one edge
from each partite set connects to vs. If we generate T(y,.) by
adding (u,v) to T, we remove the edge between v, and the
connected component to which v belongs to. G- in Figure 5
shows the replacement of edges. We add (u,v) to T only if
u and v belong to different partite sets.

5. Experiments

The proposed algorithm has been implemented using C
programming language and tested on AMD Opteron™
based PC. As input applications, we use three DAG algo-
rithms modified from Jaumann wave filter, all-pole lattice
filter and elliptic wave filter.

Path delays between two modules are the sum of delays

of register-multiplexer, multiplexer-FU, FU, FU-multiplexer,

Table 1 Experimental results

Algorithm | #fu | #reg | clk [¢F) time(ms)
n/s|w/s| n/s | w/s

Jaumann 6 6 20 | 38 | 33 [0.122 |8.31
40 | 22 | 18 | 0.124 | 11.4

60 | 18 | 13 | 0.125 | 12.4

80 | 14 | 11 (0.123 | 11.9

100 [13 | 11 | 0.122 | 14.9

7 7 20 [33 | 31 [0.114 | 1.72

40 | 19 | 17 | 0.114 | 3.05

60 | 13 | 12 | 0.113|11.3

80 | 11 9 |[0.115 | 10.5

100 | 11 9 [0.116 | 9.13

Lattice 3 5 20 | 55 | 50 | 0.075|2.12
40 | 31 | 27 |0.076 | 3.05

60 | 24 | 18 | 0.080 | 5.37

80 | 19 | 15 [0.075 | 3.80

100 | 15 | 12 | 0.073 | 5.64

4 5 20 | 50 | 46 | 0.078 | 2.76

40 | 29 | 25 | 0.078 | 3.33

60 | 19 | 16 [0.078 | 3.43

80 | 17 | 14 [0.077 | 5.02

100 | 16 | 13 | 0.084 | 6.10

Elliptic 8 13 20 [66 | 57 |0.241 | 42.1
40 | 38 | 33 [0.241 | 74.0

60 | 32 | 24 | 0.238 | 88.6

80 | 23 | 16 [0.239 | 96.5

100 | 19 | 15 | 0.232 | 108

8 14 20 | 67 | 58 | 0.245 | 42.2

40 | 38 | 31 |0.244 | 51.6

60 | 32 | 20 |0.240 | 57.8

80 | 22 | 18 [0.243| 101

100 | 20 | 17 | 0.242 | 90.6

and multiplexer-register. Maximum/minimum delays of
multipliers and adders are 60/10 and 20/10, respectively.
The other delays are given randomly. The minimum register-
multiplexer and FU-multiplexer delays are chosen from num-
bers from 3 to 25 and the minimum multiplexer-register and
multiplexer-FU delays are chosen from 2 to 15. The maxi-
mum delay of each path is 1.1 to 1.4 times larger than its
minimum delay.

We have prepared 2 input instances for each input algo-
rithm, each instance has different resource assignment, dif-

ferent delay assignment and different operation order. For

. each instance, we have applied schedule optimization with-

out skew optimization (assuming zero skew) and proposed
algorithm.

The col-
umn “#fu”,”#reg”,”clk” represent the numbers of func-

Table 1 shows some of experimental results.

tional units, registers, and clock period of each instance,
respectively. The column “CS” represents the number of
control steps (makespan) of an output schedule and “time”
represents the computation time in milli seconds. Figures 7
through 9 plot the application time (i.e., CS x clk) vs. clock
period. Those plots are obtained by applying our algorithm
repeatedly with increasing clk by 1 at a time. A thin doted
line represents the lower bound of CS x clk.

Experimental results show the effectiveness of our pro-
posed algorithm, and also the potential of the simultaneous
optimization of skew and control step assignments in improv-

ing system performance.

-149 -

2500 T T T T T T T

NO skew =

With skew s

Schedule in real number w#wmumn
2000 f J
1500 J
1000]
500 p

20 30 40 50 60 70 80 90 100

Fig. 7 Application time (CS X clk) vs. clk for Jaumann

2500 T T T T T . .
No skew
With skew s
Schedule in real number s
2000 1

1500

1000

0) . . \) \ \
20 30 40 50 60 70 80 90 100

Fig. 8 Application time (CS X clk) vs. clk for Lattice

2500 T T T T T T T
No skew
With skew wmsmmun
Schedule in real number
2000
1500
1000 | 1
500 | 1

20 30 40 50 60 70 80 90 100

Fig. 9 Application time (CS X clk) vs. clk for Elliptic

6. Conclusion

We have introduced a novel optimization, simultaneous
schedule (control step assignment) and skew optimization
problem, and we have proposed a heuristic algorithm for
the simultaneous control step and skew optimization under a
given clock period. The algorithm has the potential to play a

central role in various scenarios of the skew-aware high level

synthesis. Relation between the simultaneous optimization

of skew and re-timing in the logic level and our problem

in the register-transfer level is one of the interesting future

works.

1
[

8l

4

(5]

(6]

Yyl

8

9l

(10]

(11]

(12]

(13]

(14

(18]

[16]

-150-

References

John P. Fishburn, “Clock Skew Optimization”, IEEE Trans.
on Computers, pp. 945951, Vol.39, No. 7, 1990.

R. B. Deokar and S. S. Sapatnekar, “A graphtheoretic ap-
proach to clock skew optimization,” Proc. IEEE Int. Symp.
Circuits and Systems, pp. 1.407—.410, 1994.

Xun Liu, Marios C.Papaefthymiou, Eby G. Friedman, “Re-
timing and Clock Scheduling for Digital Circuit Optimiza-
tion”, IEEE Trans. on Computer Aided Design, pp.184-203,
Vol.21, No. 2, 2002.

E. Kamibayashi, Y. Kohira and A. Takahashi, “Circuit
Modification Method of Semi-Synchronous Circuit,” Tech-
nical report of IEICE, VLD2004-46, ICD2004-242, March
2005.

Y. Kohira, A. Takahashi, “Clock Period Minimization
Method of Semi-Synchronous Circuits by Delay Insertion”,
IEICE Trans. Fundamentals, Vol.E88-A No.4, pp.892-898,
2005.

Takayuki Obata and Mineo Kaneko “Control Signal Skew
Scheduling for RT Level Datapaths,” Proc. of IEICE 18th
Karuizawa Workshop on Circuits and Systems, pp. 521-526,
April 2005.

Takayuki Obata, Mineo Kaneko, “Control Signal Skew
Scheduling in RT Level Datapath Synthesis”, Proc. of IEEE
International Midwest Symposium on Circuits and Systems,
CD-ROM ISBN:0-7803-9198-5, August 2005.

Takayuki Obata, Mineo Kaneko, “Simultaneous Control-
step and Skew Assignment for Control Signals in RT-Level
Datapath Synthesis”, Proceedings of SASIMI2006, pp.314—
321, April 2006.

Shih-Hsu Huang, Chun-Hua Cheng, Yow-Tyng Nieh, Wei-
Chieh Yu, “Register binding for clock period minimization”,
Proc. of the 43rd annual Conference on Design Automation,
pp.439-444, July 2006.

J. P. Weng, A. C. Parker, “3D scheduling: high-level syn-
thesis with floorplanning,” Proc. Design Automation Conf.,
pp.668-673, 1991.

V. G. Moshnyaga, K. Tamaru, “A placement driven
methodology for high-level synthesis of sub-micron ASIC's,”
Proc. Int. Symp. on Circuits and Systems, vol. 4, pp572-575,
1996.

S. Tarafdar, M. Leeser, Z. Yin, “Integrating floorplanning
in data~transfer based high-level synthesis,” Proc. Int. Conf.
on Computer Aided Design, pp.412—417, 1998.

K. Ohashi, M. Kaneko, S. Tayu, “Assignment-space ex-
ploration approach to concurrent datapath/floorplan syn-
thesis,” Proc. Int. Conf. on Computer Design, pp.370-375,
2000.

M. Kaneko, K. Ohashi, “Assignment Constrained Schedul-
ing under Max/Min Logic/Interconnect Delays for Placed
Datapath”, Proc. APCCAS2004, vol.2, pp.545-548, 2004.
Takayuki Obata, Mineo Kaneko, “Computational Com-
plexity of Simultaneous Optimization of Control Schedule
and Skew in Datapath Synthesis”, IEICE technical report,
VLD2006-65, DC2006-52 pp. 83—88, November 2006.
Takayuki Obata, Mineo Kaneko, “Computational Complex-
ity of Simultaneous Optimization of Skew, Schedule and
Clock in High-Level Synthesis”, IEICE technical report,
CAS2006-75, pp. 31-36, January 2007.

