fEEA HENEES RS
IPSJ SIG Technical Reports

2008 — SLDM— 134,2008 —EMB— 8 (17)
2008 /3/27

A Realization of RPC in Embedded Component Systems

Takuya AZUMI!, Hiroshi OYAMA', and Hiroaki TAKADA!

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
tt OKUMA Corporation
5-25-1 Shimo-oguchi Oguchi-cho Niwa-gun, 480-0193, Japan
E-mail: t{takuya,hiro}@ertl.jp, {thi-ooyama@gmx.okuma.co.jp

Abstract This paper presents a Remote Procedure Call (RPC) channel in an embedded component system. The

RPC channel is one of the components used in our component framework to facilitate the transparency of connected

components in embedded systems. By supporting the RPC channel, it is possible to reuse the same component with-

out modification on different communication mechanisms, including different task communications on the same or

different processors and on networks. In addition, a memory allocator component and new keywords of a component

description are provided. The effectiveness of our work is demonstrated.

Key words Component-Based Software Engineering, Embedded Systems, Real-Time Systems

1. Introduction

In recent years, the size and complexity of the software
in embedded systems have increased. At the same time,
the focus of software design in embedded system is moving
away from a single processor towards a multiprocessor. To
improve software productivity, software component technol-
ogy for embedded systems has been increasing the attention
from researchers [1]. Component technology for embedded
systems, such as Koala component 2], PECT (3|, PBO [4],
and SaveCCT (5], have been developed so far. We have
also developed an embedded component system, TOPPERS
“? Embedded Component System (TECS [7), (8]), which
is aimed to develop a base software for use in embedded
systems. Features of TECS are the control-based connec-
tion, the static configuration, and the composite component.
The control-based connection means that interconnection be-
tween components is done by the function call. The static
configuration implies that both the configuration of compo-
nent’s behavior and the interconnections between the com-
ponents are static. It is also possible to reduce the overhead
of execution time.

This paper presents a new RPC Channel in the embedded

(*1) : TOPPERS (Toyohashi OPen Platform for Embedded Real-time
Systems) Project [6], which is based on the technical development re-
sults obtained by applying ITRON, is aimed to develop a base software
for use in embedded systems.

component system. The RPC channel is one of the compo-
nents used in TECS to facilitate the transparency of con-
nected components. By supporting the RPC channel, it is
possible to reuse the same component without modification
on different communication mechanisms, including different
task communications on the same or different processors and
on networks. Moreover, developers are able to select a suit-
able RPC channel which depends on an environment when
components are connected. Generally, RPC users are not
able to select RPC channels because RPC channels of exist-
ing RPC technologies, such as CORBA [9), are hidden in the
framework. In addition, a memory allocator component and
new keywords of a component description are provided. The
memory allocator component is useful for embedded systems
because it is possible to select a suitable memory allocator
in a variety of memory allocators. The keywords are pro-
vided to effectively use the memory allocators between com-
ponents.

TECS is described in Section 2. Sections 3 and 4 repre-
sent the RPC channel for the Embedded component system.

Summaries of this work are presented in Section 5.
2. Our Component System

In this section, the specifications of the TOPPERS Em-
bedded Component System (TECS) are described.

2.1 Features of TECS

Embedded systems are usually considered to be resource-

-97-

constrained with respect to memory and must perform fast
enough to fulfill their timing requirements. Typically, the
greater the number of deadlines to be met is, the shorter the
time between these deadlines needs to be. Thus, the com-
ponent framework should influence the ability of the embed-
ded system to accomplish its activities. Versatile component
technologies, including JavaBeans and ActiveX for desktop
applications, and the CORBA Component Model (CCM)
and COM+ for distributed information, are generally un-
suitable for embedded systems. For these technologies, the
components are dynamically created and connected to other
components during execution. This increases the overhead
for creating, connecting, and calling a component. In the
case of TECS, there is no need to reconfigure an application
during execution. Consequently, to reduce overhead, com-
ponents are statically created and connected to other com-
ponents in the development of an application. This static
configuration is the most important feature in TECS. As
well, since TECS supports a variety of granularities of com-
ponent, TECS can be used in different domains of an em-
bedded system. A small granularity component, such as a
device driver component, can be used to distinguish between
the hardware-dependent and hardware-independent parts of
the driver. A large granularity component, such as a TCP/IP
protocol stack, is represented as a composite component con-
sisting of two or more components. The benefit associated
with using a composite component is the significant reduc-
tion in the complexity of component connection because sev-
eral components can be treated as a single component, which
enhances usability through the connection of components for
an application developer (component user).

A variety of different types of components, such as memory
allocators or RPC channels, are provided in order to increase
reusability. For example, an RPC channel is one of the com-
ponents used in TECS to facilitate the transparency of con-
nected components. By supporting the RPC channel, it is
possible to reuse the same component without modification
on different communication mechanisms, including different
task communications on the same or different processors and
on networks,

2.2 Component Model

A cell is a component in TECS. Cells are connected prop-
erly in order to develop an appropriate application. A cell
has entry port and call port interfaces. The entry port is
an interface that provides services (functions) to other cells.
The service of the entry port is called the entry function.
The call port is an interface that uses the services of other
cells. In this environment, a cell communicates with other
cells using these interfaces. The eniry port and the call port

have signatures (sets of services). A signature is the defini-

tion of the interfaces in a cell. Interface abstraction using a
signature provides control of the dependencies of each cell.
The cell type is the definition of a cetl, similar in scope to an
object-oriented language Class. A cell is an entity of a cell
type.

Figure 1 shows an example of the connection of cells. Each
rectangle represents a cell. The left cell is an A cell, and the
right cellis a B cell. Here, tA and tB represent the cell type
name. The triangle in the B cell depicts an entry port. The
connection of the entry port in the A cell describes a call
port.

cCallPort

Figure 1 Example of Cells

A call port can only connect to an entry port. Therefore,
in order to connect several entry ports, a call port array is
used. An eniry port can connect to call ports. However, in
this case, it is impossible to identify which call ports are con-
nected. A singleton cell is a particular cell, of which there
is only one in a system. The singleton cell is used to reduce
overhead because the cell can be optimized.

2.3 Component Description

A component description in TECS can be divided into
three descriptions: a signature description, a cell type de-
scription, and a build description.

2.8.1 Signature description

The signature description is used to define a set of function
heads. Figure 2 shows an example of signature description.
A signature name, such as sSig, follows a signature keyword
to define the signature. The initial letter of the signature
name (“s") represents the signature. A set of function heads

is enumerated in the body of the signature keyword.

signature sSig {

ER funcl(void);
ER func2([in, size_is(size)] const char * buf,
[in] int size,
[inout] int *result);
}

Figure 2 Signature Description

The in, out, and inout keywords are used to distinguish
whether a parameter is an input or an output. These key-
words are understandable when a parameter is a pointer. In

this case, the result parameter is used as input and output

-98.-

because the previous result has an effect on the subsequent
result. It is necessary to describe the size of an array by
using size_is keyword in the TECS. The ER represents the
error code of the return value.

2.3.2 Cell Type description

The cell type description is used to define the entry ports,
call ports, attributes, and variables of a cell type. Figure 3
shows an example of cell type description. A cell type can
have entry ports, call ports, attributes and variables., A cell
type name, such as tA, follows a celltype keyword to define
the cell type. The initial letter of the cell type name (“t”)
represents the cell type. To declare an entry port, an en-
try keyword is used. Two words follow an entry keyword:
the signature name, such as sSig, and an entry port name,
such as eEntryPort. The initial letter of the entry port name
(“e”) represents the entry port. Similarly, to declare a call
port, a call keyword is used. The initial letter of the call port
name (“c”) represents the call port. The attribute and vari-
able keywords that are used to increase the variety of cells
are attached to cell type and are initialized when each cell
is created. For example, a serial communication cell has an
atiribute to control the baud rate. Although each attribute,
such as the baud rate, can not be changed during execution
time, each varigble, such as the file name of a file cell, can be
changed. The set of attribute or variable keywords are enu-
merated in the body of this keyword. This keyword can be
omitted when a cell type does not have an attribute and/or

varieble.

(celltype tA {)
call sSig cCallPort;
b H

celltype tB{
entry sSig eEntryPort;
attribute{

b
variable{

,
Y
\ J

Figure 3 Cell Type Description

2.3.3 Build description

The build description is used to declare cells and to con-
nect between cells in order to create an application. Figure
4 shows an example of build description. To declare a cell, a
cell keyword is used. Two words follow the cell keyword: a
cell type name, such as tB, and the cell name, such as B. In
this case, the eEntryPort (entry port name) of B (cell name)

connects to the cCallPort (call port name) of A (cell name).
The signatures of the call port and the entry port must be

the same in order to connect cells.

cell tB B{

bH

cell tAA {

cCallPort = B.eEntryPort;
¥

Figure 4 Build Description

2.4 Development Flow in the Framework

Figure 5 shows the development flow in the framework.
The signature and the cell type descriptions are described
by the component developers. The build description is writ-
ten by the application developers. Based on the component
descriptions, an interface generator can create C-language
interface codes (.h or .c). Developers in this framework are
divided into two groups: a component developer (component
provider) and an application developer (component user).
The role of the component developer is to define the signa-
tures and cell type and to write the implementation codes
(Component Source) for cells. Generally, a component is
provided by the source code. On the other hand, the role of
the application developer is to develop an appropriate appli-

cation by connecting the celk.

Component Developer
{Component Provider)

Design

T
a

==

,

% Header éﬂ
Interface

Code

Application Developer
{Component User)

Figure 5 Development Flow in the Framework

3. RPC Channel in the Embedded Com-
ponent System

3.1 RPC Channel Cell

An RPC channel is one of the components used in TECS
to facilitate the transparency of connected components. By
supporting the RPC channel, it is possible to reuse the same
component without modification on different communication

mechanisms, including different task communications on the

-99.

same or different processors and on networks. There are a
lot of communication channels, such as a FIFO, a shared
memory, a data queue, a mail box, TCP/IP, and so forth,
in embedded systems. Therefore, the benefit of the RPC
channel is that application developers are able to select a
suitable RPC channel when the developers describe a build
description.

Figure 6 represents an example of the communication be-
tween cells on different CPUs. In this case, celil0 (cell name)
of tCT10 (cell type name) on CPU1 uses cell20 (cell name) of
tCT20 (cell type name) on CPU2 through an RPC channel.
The dual line between the celis shown in Figure 6 depicts an
RPC channel. The RPC channel is one of the cell types in
TECS. An RPC channel cell type is shown in Figure 7.

cPUL cPu2

tCcT10 tcr20
cell10 cell20
<Call12:sSig2 cEnt21:55ig2

Figure 6 Connection of a Distributed Cell

The tRPCChannel is a composite cell type as shown in
Figure 8. The composite cell type includes two or more cells.
The benefit associated with using a composite cell type is the
significant reduction in the complexity of component con-
nection because several cells can be treated as a single cell
type, which enhances usability through the connection of cells
for an application developer (component user). The tRPC-
Channel can be divided into four parts: tServer, tMarshall,
tUnmarshall, and tChannel cell types. The tServer cell type
controls the RPC channel and calls functions of cell20. The
tMarshall cell type is used to convert a standard date type for
an RPC. The tUnmarshall cell type is used to reverse a stan-
dard data type. The tChannel cell type is used to transfer
data that is converted by tMarshall.

cruL crPu2
tcT10 APC Channet 1CcT20
celllo Ll cell20
cCalll2:55ig2 —):g:g' :gg’ eEnt21:55ig2

Figure 7 RPC Channel Cell Type

3.2 The through keyword

The through keyword is provided for inserting a cell be-
tween cells. This keyword is used to insert the RPC Channel
into this framework. Figure 9 is an example of using the
through keyword. The upper part of Figure 9 represents the
component models, while the lower part of Figure 9 shows
each build description. The through keyword is described
just before the description (cCallPort=B.eEntryPort) of the

celtypa:tServer

Rre Channd) cell name:sarver

ce'kype:IRPCChanng!
cell name:rpcChannel

v
cetitype.tMarshal celRype:tChannel ceitype:tUnmarshal
ﬁ"? cett cell ceil name:unmarashal ccamn2
2 #!
> <« =

Figure 8 Composite Cell Type of an RPC Channel Cell Type

connection, which includes “Plugin” and “argl”. “Plugin”
represents the type of plug-in. The plug-in is used to define
the inserted cells and to generate C-language source codes
when interface codes are generated by the interface gener-
ator. The application developers need to select the plug-
in provided by component developers for inserting the cell.
“argl” gives additional information for the plug-in.
Although the through keyword is used to insert the RPC
Channel, the keyword can be used for other purposes, such
as inserting access control components [10]. An important
advantage of using this description is that it is not necessary
to modify the existing components. Therefore, it is possible

to maintain the re-usability of components.

cell tB B{ cell tB B{
}i }
cell tA A{ cell tA A{

[through(Plugin, "arg1")]

cCallPort=B.eEntryPort; cCallPort=B.eEntryPort;

b H }

Figure 9 Example of Through

3.3 Memory Allocator

It is necessary to support a number of memory allocators
in embedded systems to meet two requirements. The first
requirement is that the developers should select a suitable
memory allocator because there are memory allocators, such
as a fixed-sized memory pool, a variable-sized memory pool
and so forth. The second requirement is as follows. To avoid
a memory fragmentation, a heap memory should be divided
into several parts according to memory size. Also, according
to task priority, the heap memory should be divided to avoid
the case that high priority tasks can not allocate memory
due to too much usage of a memory by low priority tasks.

In addition, there is a special purpose memory except the
main memory, such as dual port memory on devices. In this

case, specialized memory allocators are used to be allocated

- 100 -

from the special purpose memory. The required type or the
number of allocators depends on applications. A memory
allocator is one of the components used in TECS for appli-
cation developers to freely select suitable memory allocators.

Figure 10 represents signature and cell type description of
a memory allocator cell. The signature of memory allocator
cell has two functions to allocate or deallocate memory. The
cells which are connected the allocator cell can use the same

memory allocator.

signature sAlloc {
ER alloc([in]int32 size, [out]void **p);
ER dealloc([in]void *p);

}H

celltype tAlloc {
entry sAlloc eA;

};

Figure 10 Allocator Component

3.4 Extended Signature Description

As mentioned in Section 2. 3. 1, TECS provides the in, out,
and inout keywords to distinguish whether a parameter is an
input or an output. The new keywords, send and receive, are
provided to effectively allocate or deallocate memory in the
component framework. These keywords are used for pointer
parameters of functions. It is important to use these key-
words with respect to memory allocation. A memory alloca-
tor for existing component system, such as Microsoft COM,
do not need to pay attention about which an allocator is used
because the same allocator is used in the systems.

The in and send keywords are used to transfer data from
a caller cell to a calee cell. Figure 11 shows the difference
between in and send keywords. In the case of using in key-
word, a caller cell allocates and deallocates a data buffer. In
the case of using send keyword, a caller cell allocates a data
buffer and a callee cell deallocates. The send is used at the
oneway situation which means a caller cell does not need to
wait for finishing callee cell. Namely, the send is useful when

a caller cell and a callee cell are executed in parallel.

data flow data flow
—— ———)

alloc
alloc dealioc
deal loc P
caller in callee caller send callee

Figure 11 Difference Between in and send Keywords

The out and receive keywords are used to transfer data
from a callee cell to a caleer cell. Figure 12 shows the differ-
ence between out and send keywords. In the case of using out

keyword, a caller cell allocates and deallocates a data buffer.
In the case of using receive keyword, a callee cell allocates a
data buffer and a caller cell deallocates. The receive is use-
ful when a caller cell gets the data which is unknown size in

advance.
data flow data flow
alloc h
deal loc alloc
deal loc
. T
caller out cslies caller recelve calles

Figure 12 Difference Between out and receive Keywords

Two functions, which are used send and receive, are added
into the signature description of Figure 2 as shown in Figure
13. Each of send and receive has a signature of an alloca-
tor cell like sAlloc in Figure 13. The send and receive are
described just before a parameter (buf).

ER func3([send(sAlloc),size_is(sz)]int8 *buf,
[in]int32 sz);

ER func4([recelve(sAlloc),size_is(*sz)]int8 **buf,
[out]int32 *sz);

Figure 13 Signature Description for send and receive

Figure 14 shows a build description for an allocator com-
ponent. Allocator components connect to each parameter
of entry port which is declared send or receive. It is not
necessary to describe that allocator components connect call
port because cell which has call port uses the same allocator
of connected eniry port. This description is described just

before each cell declaration.

\

cell tAlloc alloc {

¥

{allocator(
eEntryPort.func3.buf=alloc.eA,
eEntryPort.func4.buf=alloc.eA

)
cell tB B{

U Y,

Figure 14 Build Description for Allocator Component

4. Ewvaluation

The aim of this work is enable the development of an ap-
propriate application by using an RPC channel. We imple-
mented prototype RPC channels and evaluated the effective-
ness of send on the RPC channels. Figure 15 shows the con-

struction of the RPC channel which is used for evaluation. To

- 101 -

implement the RPC channel, date queues of ITRON-based
real-time operating systems for single processor and multi-
processors are used. The RPC channels are generated by
the interface generator. Function calls from cell A to cell B
through the RPC are validated. This section compares the
component programs with using send and in on the RPC.

oot foricmind
T
Channm
" ol rame marashat Data Queue oall neme:unmarsshal N
A -> = <+ > B

Figure 15 A Prototype RPC Channel

The number of clock cycle from cell A called to cell B com-
pleted is measured for each case. To measure the clock cycle,
SkyEye [11] environment which simulates ARM architecture
based microprocessors is used. In this experiment, this sim-
ulator is performed on a Centrino Duo 1.83GHz, running
on Windows XP. The component programs and the RPC
channel are performed on real-time operating systems which
are TOPPERS/ASP kernel for a single processor and TOP-

PERS/FMP kernel for a multiprocessor. To implement allo-

cator, the memory pool of these RTOS is used. Table 1 shows
the number of clock cycle for in or send on the RPC of a sin-
gle processor and a multiprocessor. The numbers in Table 1
are the average of clock cycle for 100 iterations. The result
implies that send is greater than in at the oneway situation
for both RPC channels. The oneway situation means a caller
cell does not need to wait for finishing callee cell. The dif-
ference of the clock cycle is because the input data is copied
for executing in parallel in the case of using in. Therefore,
send improves the performance compared with in at oneway
situation. Namely, send is useful at parallel execution using
the RPC.

Table 1 Comparison of The Numbers of Clock Cycle

RPC(single) | RPC(multi)
in (oneway) 22,124 20,063
send (oneway) 20,355 18,371

5. Conclusion

This paper describes a Remote Procedure Call (RPC)
channel in an embedded component system. The RPC chan-
nel is one of the components used in our component frame-
work to facilitate the transparency of connected components

in embedded systems. By supporting the RPC channel, it

is possible to reuse the same component without modifica-
tion on different communication mechanisms. In addition, a
memory allocator component, and send and receive keywords
are provided. The memory allocator component is useful for
embedded systems because it is possible to select a suitable
memory allocator. The keywords are provided to effectively
use the memory allocator between components. Moreover we
implemented prototypes of RPC channels and demonstrated
the effectiveness of send keyword on the RPC channels.

Acknowledgment

The authors would like to thank the TOPPERS compo-
nent working group for their helpful comments and sugges-

tions.

References

1] LL. Yen, J. Goluguri, F. Bastani, and L. Khan, “A
component-based approach for embedded software devel-
opment,” Proceedings Fifth IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Comput-
ing, 2002. (ISORC 2002), Washington, DC, USA, pp.402-
410, 29 April-1 May 2002.

[21 R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, “The koala component model for consumer elec-
tronics software,” IEEE Computer, vol.33, no.3, pp.78-85,
March 2000.

[38] K.C. Wallnau, “Volume iii: A component technology for
predictable assembly from certifiable components.,” Techni-
cal report, Software Engineering Institute, Carnegie Mellon
University, Pittsburg, USA, 2003.

[4] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of dy-
namically reconfigurable real-time software usingport-based
objects,” Software Engineering, vol.23, no.12, pp.759-776,
December 1997.

[5] M. Akerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Hikansson, A. Méller, P. Pettersson, and M. Tivoli, “The
save approach to component-based development of vehicu-
lar systems,” Journal of Systems and Software, vol.80, no.5,
pp.655-667, May 2007.

[6] TOPPERS Project.
http:/ /www.toppers.jp/en/index.html.

[7] T. Azumi, M. Yamamoto; Y. Kominami, N. Tak-
agi, H. Oyama, and H. Takada, “A new speci-
fication of software components for embedded sys-
tems,” Proceedings 10th IEEE International Symposium
on Object/component/service-Oriented Real-Time Dis-
tributed Computing, 2007. (ISORC 2007), Santorini Island,
Greece, pp.46-50, 7-3 May 2007.

[8] T. Azumi, S. Yamada, H. Oyama, Y. Nakamoto, and
H. Takada, “Visual modeling environment for embedded
component systems,” Proceedings IEEE 7th International
Conference on Computer and Information Technology (CIT
2007), Fukushima, Japan, 16-19 October 2007.

[9] OMG, “CORBA.”
http://www.omg.org/corba/.

[10] T. Azumi, S. Yamada, H. Oyams, Y. Nakamoto, and
H. Takada, “A new security framework for embedded com-
ponent systems,” the 11th IASTED International Confer-
ence on Software Engineering and Applications, Cambridge,
Massachusetts, USA, pp.584-589, 19-21 November 2007,

[11) SkyEye.
http://www.skyeye.org/index.shtml.

-102 -

