HEREA HHAEES RS

2008 — SLDM~ 134,72008 —EMB—8 (7)

IPSJ SIG Technical Reports 2008 /3 / 27
BIE L ~NVAEF M2 TE A U T B EaiR o B
B #F Bl &2t FE BW wE EHE S &F "t
t BEBARZREB RN 2R
tt BRI ES 2 —

T 464-8603 BHRATETTRXTER
E-mail: t{hara,tomiyama,honda,hiro}@ertl.jp, {tishii@itc.nagoya-u.ac.jp

BS5EL FEXTIE, KRAKRBERETO IS L0ON—FY 27 29RBERT IBFARFEERERT 3.
FREFER, W OPDOUFIBHFAELZEENSBRENZ OIS LeANLL, BRIV OEFIEE AR
IKEALDD, 2607 —2 A RERRTIY Fa—LRAERENZ 3 & 5 £EifFddosdlesRET 3. ol
YR BEEtEREE LTERILT 5. ERick D, FFROFHERRT.

F—0—F Biffam, BELVEPE, BREHERE

Partitioning Behavioral Descriptions Exploiting Function-Level Parallelism

Yuko HARA, Hiroyuki TOMIYAMA', Shinya HONDA', Hiroaki TAKADA!, and Katsuya ISHII'

1 Graduate School of Information Science, Nagoya University
11 Information Technology Center, Nagoya University
Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
E-mail: t{hara,tomiyama,honda,hiro}@ert).jp, 1}ishii@itc.nagoya-u.ac.jp

Abstract This paper proposes a method to efficiently generate hardware from a large behavioral description by

behavioral synthesis. For a program consisting of functions which are executable in parallel, this proposed method

determines an optimal behavioral-level partitioning which fully exploits the function-level parallelism with simul-

taneously minimizing the area in the datapath and control path. This partitioning problem is formulated as an

integer programming problem. Experimental results demonstrate the effectiveness of our proposed method.

Key words Behavioral Synthesis, Function-Level Parallelism, Integer Programming Problem

1. Imntroduction

In these years, a continuous increase in the size of LSIs
has brought the design productivity crisis. As a result, the
LSI design is being gradually shifted from the traditional
Register-Transfer Level (RTL) design with Hardware Design
Languages (HDLs) to behavioral synthesis, which automat-
ically synthesizes an RTL circuit from a behavioral descrip-
tion{1]. Although behavioral synthesis is one of the most
prospective technologies to improve the design productivity,
behavioral syntheéis has not been widely adopted in industry
yet. This is because the quality of automatically generated
circuits by behavioral synthesis is inferior to that of human-
designed one, which is especially serious for the synthesis
from large behavioral descriptions. .

In general, a large program consists of a number of func-
tions. There are mainly two techniques to handle functions
in behavioral synthesis; function inlining and function-based
partitioning. With function inlining, all the callee functions

are inlined into their callers, which results in a huge main
function, and then, the main function is fed by a behavioral
synthesis tool. This produces an inefficient circuit with a
long delay and large area of control path although hardware
resources can be shared effectively among functions. On the
other hand, function-based partitioning produces n hardware
modules {one main module and n — 1 sub modules) from a
program consisting of n functions. This can reduce the delay
and the area of control path in individual modules, while the
overall datapath may be increased since hardware resources
cannot be shared between modules.

In our earlier work [2], we have proposed an N-way par-
titioning method based on integer programming, where N
denotes the number of hardware modules. Qur method in [2]
optimally determines functions to be inlined into a main
module and ones to be synthesized into sub modules in such
a way that the overall datapath is.minimized while keep-
ing the complexity of the control path lower than a cer-
tain level. Simultaneously, it optimizes the number of mod-

-37-

ules N. However, our method in [2] does not explicitly take
the function-level parallelism into account, which can de-
grade the performance when applied to a program with func-
tions which are executable in parallel. This paper proposes

an improved method of [2] for behavioral-level partitioning.

Our proposed method in this paper determines an opti-

mal behavioral-level partitioning which exploita the function-.

level parallelism with simultaneously minimizing the area in
the datapath and control path. '

There have been several studies on behavioral-level par-
titioning to efficiently synthesize hardware by "behavioral
synthesis. In the last decade, Vahid has extensively stud-
ied behavioral-level partitioning for sequential programs [3]~
[6]. The partitioning approach presented in[3] consists of
three steps; procedure determination, pre-clustering and N-
way partitioning. The first two steps decide the appropri-
ate granularity of procedures (functions) using various tech-
niques [4]~[6]. After that, traditional N-way partitioning is
performed. The first two steps in 3] are useful to determine
the appropriate granularity for N-way partitioning. How-
ever, his work does not take the parallelism among proce-
dures (functions) into account.
the parallelism of an input program where functions are ex-
ecutable in parallel, leading to the performance degradation
of 8 circuit to be synthesized. Takahashi et al. have pro-
posed a partitioning method for behavioral descriptions with
processes (functions){7]. Their work can utilize the paral-
lelism by considering processes (functions) which are explic-
itly specified to be executable in parallel. However, both (3]
and [7] assume that the number of modules N for functions
to be partitioned into is fixed, which may not perform the
optimal partitioning. As stated in[7], in many cases, it is
efficient to partition functions into the smaller number. of
modules since as smaller the number of modules, as larger
the number of hardware resources shared among functions.
However, there are some cases where better circuits can be
generated with the larger number of modules, which will be
seen in experiments with our previous method [2] in Section
4. This partitioning cannot be obtained by, (3] nor [7].

The rest of this paper is organized as follows. Section 2
describes fundamental techniques to handle functions in be-
havioral synthesis. Section 3 proposes a function-level par-
titioning method based on integer programming. Section 4
shows experimental results to demonstrate the effectiveness
of the proposed method. Finally, Section 5 concludes this

Thus, it may not exploit

paper with a summary.

2. Fundamental Techniques for Behav-
ioral Synthesis

This section presents fundamental techniques for behav-
joral synthesis and discusses their advantages and disadvan-
tages. :

2.1 Function Inlining

Function inlining replaces function calls with the bodies of
the called functions. Let us consider an example program

main
p module 5(“!’ “l"d“';,,l
fmain () { 4nt f,(int x)(! W\
int a,b; I the body of ¥ 8 111+
igtfz(oa,)zl, 22;| function £15 @ﬁw ,ﬁca gww
=f:(a): : X7 {¢ sub module 2
oo int filint function
22=£,(a); the fogd?(o%) { W ?/}call fi
cue £ ti £27 el
FiE yooneesen =g gﬁcall i g
@ ®) ©

Fig.1 Traditional methods: (a)An example program, (b)Function

inlining, (c)Function-based partitioning without cluster-

ing
shown in Fig. 1(a). This program consists of a main func-
tion and two functions, fi and f2, which are called from the
main function, Fig. 1(b) shows the FSM of a circuit which
is synthesized from the program in Fig. 1(a) with inlining.
Note that f1 is inlined twice since it is called twice from the
main function.

Inlining has an advantage of minimizing the total datapath
by sharing the resources between different functions. Assume
that f; requires one adder and one multiplier, and fa requires
two adders and two multipliers. Since these two functions are
implemented in the same hardware module, they can share
the hardware resources, that is, two adders and two multi-
pliers are used in total. Moreover, there is no performance
degradation caused by inter-module communication. Also,
inlining extends operation-level parallelism and the scope of
optimizations such as common sub-expression elimination,
constant propagation, copy propagation, dead-code elimina-
tion and so on. However, the large number of states in'the
main module may produce an inefficient circuit with a long
critical path delay due to the complicated control path, or
behavioral synthesis may not be completed within & practi-
cal time. These disadvantages become significant, especially
for programs with large functions which are called a number
of times from different points of the program text.

2.2 Function-Based Partitioning without Cluster-

ing

Function-based partitioning without clustering is to run
behavioral synthesis for each function. This approach pro-
duces N hardware modules from & program consisting of N
functions. Let us consider the same example program in Fig.
1(a). The FSM of the circuit synthesized with this approach
is shown in Fig. 1(c), where one main module and two sub
modules are generated. Note that only a single module is
generated for fi even though it is called twice.

This generates individually small modules, leading to the
small area and short delay in the controller circuit. How-
ever, it has a disadvantage of increasing its total datapath
area because the resources cannot be shared between mod-
ules such as sub modules 1 and 2 in Fig. 1 (c), even though
their being sequentially called. Moreover, the inter-module
communication overhead may degrade the performance.

2.8 Function-Based Partitioning with Clustering

Function-based partitioning with clustering is a method to

-38-

main module sub module

| (Ranctionfi) int fi.(int w, int id)(
main(){ int z;
S | Mt | swishyie
H /| | int z0,21,22; z=£1 (w) ; /*inlined*
(Bf call N7 z0=f12(a,1); ‘break; l
JJ2 25e . case 2:
H 7| | 22nfitac)i 2=£2 (w) ; /*inlined#/
Of call 5 £ JPI=fua (o) break:
turn z;
o .) re ‘
(@) ®)

Fig. 2 Clustering: (a) Partitioning with clustering, (b) A refined
program for clustering

cluster and implement some functions in a sub module, in-
stead of implementing them individually. Fig. 2 (a) shows
the FSM by clustering fi and fa2 in Fig. 1 (a). It sup-
presses the number of states in the main module. Also, the
sub module minimizes the datapath area by sharing the re-
sources between functions. Moreover, clustered functions are
implemented only once in the sub module, leading to the
small control path area in the sub module. Thus, clustering
multiple functions can minimize the overall circuit area.

This can be achieved by transforming a program as shown
in Fig. 2 (b). A function fiz is newly defined, which calls ei-
ther f1 or f; based on a parameter id. f; and f are inlined
into fi2, while fi2 itself is not inlined.

If too many functions are clustered when synthesizing from
a program with a number of functions, however, a sub mod-
ule may have the large number of states, similar to inlining.
Thus, it is important to appropriately determine functions
to be implemented in the main module and sub modules.

3. Partitioning Exploiting Function-Level
Parallelism

This section proposes a new behavioral-level partitioning
method exploiting the function-level parallelism.

3.1 Problem Description

This section proposes an improved method of [2]. This new
method optimally determines functions to be implemented
in the main module and sub modules with exploiting the
function-level parallelism. This problem is formulated as an
integer programming. Our goal is to minimize the overall
datapath area (i.e., the total cost of hardware resources)
with fully exploiting the function-level parallelism of the in-
put program while keeping the complexity (i.e., the number
of states) of individual modules lower than a certain level
specified by a designer.

In our problem definition, the delay and area of the con-
trol path, which sometimes affect the overall critical path
delay and chip:area, are not explicitly taken into account.
Instead, they are implicitly managed by means of the con-
straint on the number of states since it is known that the
number of states largely affects the delay and area of the
control path [8].

For simplicity, we assume that no function except the main
function calls other functions and there is no global variables
used in functions which are executable in parallel. Our future

rmain module sub module

main{) (

int a;
i

(a)

Fig. 3 An example program with functions which are executable
in parallel: (a)A pseudo program, (b)An example parti-

tioning

work will relax these assumptions. At present, for the first
assumption, if a function f calls another function f’, either
f or f’ needs to be inlined into its caller before the partition-
ing step. For this purpose, granularity selection techniques
presented in (3] can be used.

Let us consider an-example program depicted in Fig. 3(a).
This pseudo program describes function calls from a main
function. We assume that a pseudo statement, par, explic-
itly specifies the parallel execution of functions. Namely, in
Fig. 3(a), the execution of function f; is followed by the par-
allel execution of functions fz and fs, with taking the result
of f1 (z1) as input to f2 and f3. After the completion of f2
and fa, the results of f2 and f3 are written to z2 and 23,
respectively. Then, function fy is executed by taking z2 and
23 as input. '

For example, the FSM in Fig. 3(b) can be obtained by our
proposed method for the program in Fig. 3(a). In Fig. 3(b),
f2 and f4 are inlined into a main module, while f1 and f3 are
implemented in a same sub module. Black and white arrows
in Fig. 3(b) represent the state transition and inter-module
communication, respectively. The state 81 (r1) represents
the state to send (receive) data to (from) f; implemented in
the sub module. Also, 83 and r3 are the same for fs. Note
that f2 and fs are implemented in different modules since
the par statement in Fig. 3(a) explicitly specifies that they
are executable in parallel. In Fig. 3(b), first, z1 and id=0,
which is to select fi, are sent from the main module at s,
to the sub module.. Then, the sub module receives data at
7 from the main module, and f; in the sub module are ex-
ecuted. After the completion of fi, at ry, the main module
receives the result z1, which is sent from the sub module at
8. Next, z1 and id=1, which is to select f3, are sent from
the main module at s3 to the sub module, followed by the
parallel execution of fa and f3. After that, the main module
receives the result z3 from the sub module at r3 after the
completion of f2 and f3. Finally, f4 is executed in the main
module.

3.2 Problem Formulation

This section shows the formulation of the proposed parti-
tioning problem as an integer programming problem. First,
the following notations are defined:

Ng: the number of hardware resource types

-39-

rii hardware resource (j =0,1,...,

a;: the area of resource 5

Np: the number of functions in a program

fit function in a given program (i = 0,1,...
Note that fo represents a main function.

¢;: the number of times function f; is called in the program
text

ni,;: the number of resource rj required by function f;

8;: the number of states in a module synthesized from
function f; individually
Note that s; does not include the number of states

for inter-module communication.
Ssna: the number of states required for inter-module

communication to send data
Srev: the number of states required for inter-module

communication to receive data
Np: the number of hardware modules
my: hardware module (k=1,...,Ny — 1)
Note that mo represents a main module synthesized
from the main function.
Sk: the number of states in module m;
Sconst: the designer-specified constraint on the number of

states for each module
fer: the l-th function call point
FCi: a set of functions which are called at fo
FCiotar: the total number of function call points which

require inter-module communication

Ag: the datapath area of module m;
Atotal: the total datapath area
N™?: the number of comparator required in module my
a°"?: the area of a comparator

It should be noted that 8snq and 8rcv are one in most cases,
but may be more than one depending on the numbers and
sizes of data to be transferred. Therefore, for generality, Sona
and 8,c, are left as parameters rather than one.

Next, a 0-1 variable x; ; is defined as follows:

ik = { (1)

where 3, Zir = 1.

Next, let us explain F'C; with the examp]e of Fig. 3(a).
Fig. 3(a) totally has three function call points, corresponding
to gray boxes. Note that functions in one par statement are
called at the same point. In Fig. 3(a), function f; is called
at the first function call point, fco, so FCo = {f1}. Next,
since functions fo and fs3 are in-a par statement, they are
called at the same point fé1, thus FCi = {f2, fs}. Finally,
function fy is called at fez, 80 FC2 = {fa}.

As explained in the previous section, functions which are
executable in parallel, i.e., functions which belong to a same
FCy, such as f2 and f3 in Fig. 3(a), should be implemented
in different modules. Thus, the next formula shoud be met.

Nr-1)

9NF - 1)

if function f; is implemented in module m;
otherwise

FEFCIAfy € FOIAi+# = mi-myp =0,V (1)

Then, with the notations defined above, the number of
states in module my, is estimated as follows:

So = s0+ Y 8- Ti0 + FCiotat * (Sand + 8rev) (2)
- ‘

Sk = E 8; Tik
T

+ (3and+3rcv) (k=1,...,Nm — 1) (3)

Formula (2) represents the estimated number of states in
the main module mqo. For an inlined function, its number of
states s; multiplied by its number of time being called from
the main function ¢; is added to the number of states in the
main module. The last term FCiotal * (Sand + 8rcv) denotes
the total number of states for inter-module communication
between the main module and sub modules. Since the main
module requires one pair of 8snqa and 8rcy for inter-module
communication at one time, FCiotal pairs of 8sna and 8rcy
are needed in total. FCiotar is obtained by the next formula.

Y ou)]
1

where a 0-1 variable y; is defined as follow:

={1 lfI.IiIEFC zi0=0
{ 0 otherl\';lse '

FCiotat =

Formula (3) represents the estimated number of states in
the sub module 7. The last term denotes the number of
states to communicate with the main module. The number
of states in each module cannot exceed the limit specified by
8 designer. Therefore, the formula below must hold.

Sk ésconst;(k=0, 1,-..,NM—1) (5)

Next, the datapath area of the main module and sub mod-
ules can be estimated by formules (6) and (7), respectively.

Ao =) _{max(zi0-niy)- a} (6)
7

Ay = Z{mia.x(mi,k *74,5) - a5}
3

+ NP a™P (k=1,...,Ny - 1) (7

In module my, the required number of resource r; is given
by the maximum number among n;,;’s for functions which
are clustered into module m;. A sub module which imple-
ments more than one function requires comparators to de-
termine the function to be executed. The required number
of comparators, NJ™, is given by 3, #i,x when it is greater
than one, otherwise 0.

Then, the total datapath area A¢otqr can be estimated by
the formula below:

- A @
k

As shown above, the optimization problem on behavioral-
level partitioning can be defined as an integer programming
problem, which finds z;,; minimizing formula (8) with sat-
isfying the constraints in formulas (1) and (5). By finding
the optimal solution of the integer programming problem; a
designer can obtain the optimal partitioning. To find the op-
timal solution, some commercial solvers for ILP can be used,

Atotal

or some general algorithms: such as the ‘branch and bound

-40 -

Table 1 Characteristics of functions in £ft
EAEIEILIEY Lip
I
4 1
bit Cor 2 |9lo]s|} 2|
DIt 8 2%:]
sk, (o (4141413 ¢ |1]d
i lbgactens |
Dl e | 1 |1b|1h| 6|6 2 5|

method, simulated annealing, the genetic algorithm, and so
on, can be applied. As seen later, a simple exhaustive search
algorithm was used in our experiments. Still, it yields an
optimal solution within one second for realistic benchmark
programs. For larger programs, however, it may be neces-
sary to develop more efficient algorithms, which remains as
one of our future works.

It should be noted that our method finds the optimal num-
ber of hardware modules as well as the optimal N-way parti-
tioning simultaneously, by simply adding the following equa-
tion into the integer programming formulation.

Ny = Np (9)

This equation does not mean that the number of modules
must be exactly Nr, but means that it must be equal to or
less than Np. If the optimal number of modules is less than
Nr, a solver will yield z; . = 0, Vi, for some module m;.

4. Experiments

We conducted a set of experiments to demonstrate the
effectiveness of our partitioning approach. We used a bench-
mark programs ££t from [9], which performs an Fast Fourier
Transform for a matrix of double-precision floating-point
numbers. This program is composed of & main function
and several double-precision floating-point arithmetic func-
tions [10]. Note that this program is rather large, which con-
sists of approximately 900 lines of C code without including
comment lines or empty lines. Characteristics of functions in
fft, such as the number of function calls and the types and
the number of hardware resources required by each function,
are shown in Table 1, where double. is omitted for some
functions due to the limited space. Next, we performed
behavioral-level partitioning proposed in this paper. Also,
the method proposed in [2] was performed for the compari-
son. Then, we gave the constraint on the number of states
every 20. We developed a C program to find the optimal
solution for the integer programming problem defined in the
previous section. Our solver is based on exhaustive search,
but it took less than one second to find the optimal parti-
tioning for each constraint.

Then, we conducted behavioral synthesis and logic syn-
thesis to evaluate the area and clock period of the design.
Xilinx Virtex 4[11] was specified as a target device. YXI
eXCite[12] and Synplicity Synplify-Pro[13] were used for
behavioral synthesis and logic synthesis, respectively. All
of these synthesis processes were optimized for performance
maximization. Regiéter-transfer level simulation was also

performed to measure the execution cycles.

Table 2 summarizes the synthesis and simulation results
with our previous method in [2] (Method-1) and the method
proposed in this paper (Method-2). The first column denotes
the constraint on the number of states. The results with
Method-1 are described from the second to fifth columns.
Also, the results with Method-2 are described from the sixth
to ninth columns. Numbers in parentheses from the sixth to
ninth columns are normalized values whose baseline are the
results from the second to fifth columns under the same con-
straint. By Method-1 and Method-2, nine and five partition-
ing solutions were totally obtained, respectively. Function-
based partitioning without and with exploiting parallelism
were performed for the comparison. Note that function-
based partitioning without parallelism is a technique ex-
plained in Section 2, and function-based partitioning with
exploiting parallelism is its improvement. Although Method-
1 obtained nine partitioning solutions, behavioral synthesis
could not be completed within 24 hours when the constraint
is greater than or equal to 180. The reason for the differ-
ence in the total number of partitioning solutions obtained
by Method-1 and Method-2 is as follow. When it is possi-
ble to execute functions in parallel, such as double.add and
double_sub in £ft, those functions are implemented in dif-
ferent modules by Method-2. Thus, when formula (1) gives
the constraint on the number of states greater than or equal
to 160, Method-2 obtained a same solution, which minimizes
formula (8) with meeting formula (5) in the previous section.

First, let us compare the results in Table 2 when the same
constraint on the number of states is given to Method-1 and
Method-2. In £ft, multiple functions are called at four func-
tion call points out of 11 points. Then, by exploiting the
function-level parallelism, Method-2 achieves up to 47% re-
duction of the execution time when the constraint is 120, and
on average 26.2% reduction compared with Method-1. On
the other hand, the area with Method-2 is larger than that
with Methods-1 under the same constraint. This is because
Method-2 implements parallel functions in different modules
in order to exploit the function-level parallelism. This leads
to the decreased resources sharing among functions.

Next, for results with each of Method-1 and Method-2,
as the constraint becomes loose, the area tends to decrease
due to the increased resource sharing, while the execution
time tends to increase due to the long delay of control path.
Thus, area-performance trade-off points are well described
for Method-1 and Method-2. However, some exceptions can
be seen on the area when the constraint is 140 with Method-

-41-

Table 2 Partitioning obtained by the method in [2] and the method proposed in this paper

Constraint The method proposed in 2] {Method-1 "The method proposed in this er (Method-2
on states Partitioning No. of[Gate ! ec. l’a_rﬂ'ﬁﬁi?ﬁgp 0. O '(_G'aifé Lxec.
states| count |[time (us) states| count |time (us)
310 | (i o aoutte; sia cos'}| — — —
[220-320 | main } — — —
{ add, sub, , div, }
int_to double, sin, cos
200 (Pt o 3dubia’ } — — —|{oain, add, int.to.double, sin} 137
{pul, div, sin, cos} {sub} 10(1,028,924| 344.50
180 :ain,b div = — — {mul, div, cos} 128 (1.26)[(0.86)
{1nt_tao,d'u%‘2}.e' sin, ¢ 3
add mgibn 1 5
160 { dtv, in%_ta.dmguﬁle} 70| 813,489| 400.17
ain, cos 149
imain, int_to.double, cos 132 {main, add, sin} 138
140 add, sub, mul, div, sin 136| 933,168 336.46 {sub, int._to_double} 131,034,673 331.06
{mul, div, cos} 128] ~ (1.11)] (0.98)
{main} B8 {main, add, int_to_double} [i]:]
120 {122, gobs mule 0} 103| 901,809 448.54 {sub, div, sin} . 115(1,067,732] 236.51
{div, cos} 116 {mul, cos} 92 (1.08) (0.53)
{main, div} 02 {main} 48
100 add, sub, mul, sin 100{1,049,861 345.68 {add, int_to.double, sin} 82|1,067,716] 235.97
int_to.double, cos 82 sub, cos 87| (1.02)] (0.68)
mul, div 51
{main} 58 {main, add, int_to_doubleJ
80 {1334y 2u0, B} 70(1,087,182] 338.64 {sub, sin} 79(1,174,695| 216.81
sin 71 {mul, div} 511 (1.08)] (0.64)
cos 79 {cos} 79
Constraint | Function-based partitioning without exploiting parallelism unction-based titioning with exploiting parallelism
on states Partitioning No. of Ga% Exec. Partitioning No. of éu%e Exec.
states| count jtime (us) states| count itime (us)
Tmain’ B8 | {main 48
[add 10 add 10
sub 10 sub 10
— mul 151,178,844} 325.68 mul 15|1,172,, 218,78
div 38 div 38((0.99) (0.67)
{int_to_double } 5 { int_to.double } 5
8 . 7 sin 71
cos 79 cos 79

1 and 100 with Method-2, and on the execution time when
the constraint is 120 and 140 with Method-1. One reason for
the exceptions is logic-level optimization, which sometimes
affects the area and the clock period, but that is not taken
into account in our proposed methods.

The experimental results in Table 2 demonstrate the effec-
tiveness of the partitioning method proposed in this paper.
This method more efficiently determines the optimal par-
titioning which fully exploits the function-level parallelism
with simultaneously minimizing the overall area compared
with our previous method in [2].

5. Conclusions

In this paper, we have proposed a behavioral-level parti-
tioning method based on integer programming. Our method
optimally determines functions to be inlined into the main
module and ones to be synthesized into sub modules in such
a way that the function-level parallelism of an input pro-
gram is fully exploited and the overall datapath is minimized
while keeping the complexity of individual modules within
a manageable level. Experimental results demonstrate that
the proposed partitioning method enables efficient behavioral
synthesis from a large behavioral description.

Acknowledgements

This work is in part supported by KAKENHI 19760040.
References
{1} D. Gajski, N. Dutt, A. Wu, and 8. Lin, High-Level Syn-

2

(3l

[4

8l

fe)

7

-42.

thesis: Introduction to Chip and System Design, Kluwer
Academic Publishers, 1892,

Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii,
“Function-Level Partitioning of Sequential Programs for Ef-
ficient Behavioral Synthesis,” IEICE Trans. on Fundamen-
tals vol.E90-A, no.12, pp.2853-2862, Dec. 2007.

F. Vahid, “Partitioning Sequential Programs for CAD Using
a Three-Step Approach,” ACM Trans. on Design Automa-
tion of Electronic Systems, vol. 7, no. 3, pp. 413 - 429, July
2002.

F. Vahid, “Procedure Exlining: A Transformation for Im-
proved Systern and Behavioral Synthesis,” International
Symposium on System Synthesis, 1995.

F. Vahid, “Procedure Cloning: A Transformation for Im-
proved System-Level Functional Partitioning,” ACM Trans.
on Design Automation of Electronic Systems, vol. 4, no. 1,
pp. 70 - 96, Jan. 1999.

F. Vahid, “Techniques for Minimizing and Balancing
1/O during Functional Partitioning,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systemas,
vol. 18, no. 1, pp. 69 - 75, Jan. 1999.

M. Takahashi, N. Ishiura, A. Yamada, and T. Kambe,
“Thread Composition Method for Hardware Compiler Bach
Maximizing Resource Sharing among Processes,” IEICE
Trans. on Fundamentalis, vol. E83-A, no. 12, pp.2456 - 2463,
Dec. 2000.

G. R. Gupta, M. Gupta, and P. R. Panda, “Rapid Esti-
mation of Control Delay from High-Level Specifications”,
Design Automation Conference, pp. 455 - 458, 2008.

SNU Real-time Benchmarks,
http://archi.snu.ac.kr/realtime/benchmark/.

SoftFloat, http://www.jhauser.us/arithmetic/SoftFloat.html.
Xilinx, http://www.xilinx.com/.

Y Explorations, Inc., http://www.yxi.com/.

Synplicity, http://www.synplicity.com/.

