2008 — SLDM—137 (26)
2008 /11/19

HEEBEA FROUBFS FERE
IPSJ SIG Technical Reports

ZA IV THIENC K B R E R Ui EBELE T — XS A G

HE BN &F &t HE Al

T JeRESeInRl 2R MR ZERT AR [BHMAEZER T 928-1292 AJIRBEETES 1-1
E-mail: {{k-inoue,mkaneko,iwagaki}@jaist.ac.jp

H5FL BEBBOFR—IVE « 24 IV IRBERRET 2 FEL LTL IR ZNOBHEARFIEE S OBIFITHENNE
REIEFFREtR 2 HE $ % Backward-Data-Direction (BDD) 7w F > FHAHIGNW T3, AETIRChICiA TEY
F7 9T« LIV TEBEDIDD L VR ZANDEE AR FIEHESE3/EFF Forward-Data-Direction (FDD) % 11w
FUTOLBEEREERL, YL VR INOBEAHFIEESTEIER (EFZ 0w 3% ordered clocking) %
BT37— 2 AEAREART AMEICOVTHERT 5. BZUDHITEELHO T TEL L BIET 37— XX &%,
ERMBEYLIEF I Oy F T 2ET3 OO IR ZE DY TIEL LTERLL, LIXZEER/MET 2RE
MNP HETHZC L%RY. K, TOMBEO—fREL UTEMEHERICE I BERBRL, HEMERICL-
TEOBNEETET 5.

F—0—F F—21RERKR, BERELDE, EFEI/uvF Y, LIZAAH DY T, NP R, BHEHESE

111

Delay Variability-Aware Datapath Synthesis Based on Safe Clocking for
Setup and Hold Timing Constraints

Keisuke INOUE!, Mineo KANEKO?, and Tsuyoshi IWAGAKI'

t School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
E-mail: t{k-inoue,mkaneko,iwagaki}@jaist.ac.jp

Abstract It is known that Backward-Data-Direction (BDD) clocking is one of methods to guarantee the hold
timing constraint. BDD clocking is a relative order relations between the arrivals of control signals at a pair of
registers. In this paper, in addition to BDD clocking, we introduce Forward-Data-Direction (FDD) clocking for the
setup timing constraint, and discuss the synthesis of datapath which has appreciate order relations of the arrivals
of control signals between registers (ordered clocking). First, we formulate the problem as a minimum register as-
signment problem for datapaths which has a proper ordered clocking, and then prove that the problem is NP-hard.
After that, we propose an ILP formulation and show the experimental results for some benchmark circuits.

Key words Datapath synthesis, delay variation, ordered clocking, register assignment, NP-hard, ILP

1. Introduction design in high-level has been proposed [3] [4]. (In other litera-

tures, it is called “contra”-data-direction clocking. However,

With the advance of process technologies, the feature size
of transistors in a VLSI becomes smaller, and switching de-
lay becomes shorter. As the operation speed becomes higher,
on the other hand, delay variations caused by the fluctuation
of process parameters, the change of the temperature, sup-
ply voltage noise, coupling noise, etc., have become a serious
problem. There are several reports on this problem from
different points of view [1] [2].

Recently, Backward-Data-Direction (BDD) clocking based

here we call it “backward”-data-direction.) BDD clocking is
a well-known technique to ensure the hold constraint [5]. In
this technique, the arrival of the clock signal at a source reg-
ister is controlled to be no earlier than that of the clock signal
at the destination register. Hence, if only the timing order
relation between registers is maintained (for example, by an
appropriate choice of a clock tree layout), the satisfaction
of the hold constraint is guaranteed. However, on the other
hand, applying BDD clocking may degrade the timing mar-

-151-

gin for the setup constraint. Forward-Data-Direction (FDD)
clocking rather than BDD is preferable to the setup con-
straint. In this paper, we will discuss an overall framework
of “ordered clocking” (including FDD and BDD) together
with SRV-based register assignment [6), [7] [8], formulate the
problem to determine register assignment and clocking order
among registers simultaneously, and present an ILP solution.

This paper is organized as follows. Section 2 describes tim-
ing variability-aware design. In Section 3, our optimization
problem, performance-aware ordered clocking-based register
assignment problem is formulated, and NP-hardness of our
problem is proven. After that, we derive ILP formulation
in Section 4. Experimental results for some benchmark cir-
cuits are shown in Section 5. Finally, Section 6 concludes
the paper.

2. Delay Variability-Aware Design

In this paper, we treat the register-transfer level datap-
ath synthesis. An input application algorithm to the syn-
thesis is assumed to be represented as a data flow graph
(DFG), where vertices are operations, and arcs are data
dependences between operations. Throughout this paper,
a,a’,b,b, etc., represent data, and Oa,O,r,0s,Oy, etc.,
represent operations, where a,a’,b,b’,... are the results of
Oa,041,04,04,. ..

2.1 Setup and Hold Constraints

For a register-transfer level datapath circuit, a register-

, respectively.

to-register path corresponds to a multiple-input, multiple-
output combinational circuit. It means that a register-to-
register path consists of several logic paths. “The minimum-
(maximum-) path delay from one register to another” is the
minimum- (maximum-) logic path delay over all those logic
paths between specified two registers.

Fig. 1 illustrates the correct timing of control signals with
respect to the execution of an operation Op. We assume that
O, is assigned to a functional unit (FU) FU,4 (we will use p
to represent functional unit assignment, like p(Os) = FU,),
an input data a for O, is stored in a register r1, and the
result b of O, is written to a register ro. In this paper, we

©) a(a) - tc a(a') -t
R ,
\@max)
@ FU, dmin
72 N
o(b) - tc

Fig. 1 Setup and hold constraints

assume that a datapath is designed under zero skew, i.e., the
nominal delay r(4, j) from a clock source (or a controller) to
the jth flip-flop (FF) of a register r;, has the same nominal
value 7(4,j) = ro for all i and j. Note that a similar argu-
ment can be made for a datapath designed with intentional
skew, but we will limit our discussion to a datapath designed
with zero skew for the sake of simplicity.

The arrival of the control signal at 7, for latching data b
has to be later than the arrival of b. This is called “setup
constraint”, and is formulated as

o(a) - tc + dmax £ a(b) -t

where t. is the clock period, o(z) € Z is the control step in
which the controller sends out the control signal for latching
data 7, and dmax is the maximum-path delay from r; to o
including the output delay of r1 and the setup time of rs.
Note that, for simplicity in notation, the time axis is defined
so that the arrival of a control signal at each register occurs
nominally at a multiple of ..

In general, a register is shared by several data. If data a
and o' share the same register 71, and a is overwritten by
a’, the control signal for latching data b has to arrive at o
before b is destroyed by the change of input @ to a’. This is
called “hold constraint” and is formulated as

O'(b) ‘e < cr(a') +te + dmin

where dmin is the minimum-path delay from 7; to r; includ-
ing the output delay of 71 minus the hold time of rs.
2.2 Coping with Delay Variation
In this paper, we mainly focus on the variation of the ar-
rival timing of a control signal at a register. The following
shows the setup and hold constraints considering delay vari-
ations,
(@) “te + Ar(1)max + Gmax+ £ 0(b) - te + Ar(2)min» 1)
o(b) te + Ar(2)max < 0(a') - tc + Ar(1)min + dmin (2)

where A, (i)max = mJax{Ar(.',j)} and A, (i)min = mji'l{Ar(-‘,j)}
with A, (; ;) as the delay variation of 7(4,).

With respect to the setup constraint, a feasible clock pe-
riod t. is determined by the details of dmax and A (iymax/min-
In a conventional design, designers must insert a sufficient
timing margin for delay variations, and it causes a perfor-
mance degradation.

(C1 : Ensuring the hold constraint by SRV)
Recently, Structural Robustness against delay Variation
(SRV)-based register assignment has been proposed [6] [7]
[8]. SRV-based register assignment provides more than
or equal to one step margin for the hold constraint of Oy.
Fig. 3(a) shows a register assignment based on (C1). In
this figure, an oval represents a scheduled operation, a

-152-

o(a)-te 0(d) te + Ar(1)min

_ k! L :

n
|
clock i dman dmin

¢ 5t Fua
| \
ry . '
O’(b) +te + Ar(2) max
(a) Nominal design
a(a) - tc a(a’) cte + Ar(l)min
Nt S
! dma;: 4dmin
| Ar(l)min
i i ~ Ar(2)max
clock -3 i
¢ moemen LB
=== e
c

U(b) ste + Ar~(2) max
(b) Backward-Data-Direction clocking

o(a) - te a(a') - te + Ar(1)min
clock T 1 t

:ima.x @min

\
ra te -4

a(b) -t + Ar(2) max

(c) Forward-Data-Direction clocking

Fig. 2 Forward-/Backward- Data Direction clocking.

rectangle represents data-lifetime, a directed edge (u,v)
between lifetimes « and v means that v is the output of
the operation that uses u lastly, and data in the gray re-
gion are data assigned to the same register. When O, is
the sole operation which uses a as an input, the writing
an output to one of input registers (Fig. 3(b)) is done
safely under delay variation.

(C2 : Ensuring the hold constraint by BDD clocking)

“Guaranteeing A, (1)min > Ar(2)max for delay variations
by BDD clocking.” From (2), the following inequality
holds.

Ar(2)max = Ar(1)min < (0(a') — o(b)) * te + dmin- (2)’

If Ar(1)min > Ar(2)max i8 guaranteed, the left hand side

of (2)' is always negative. Supposing 0 < dmin i8 trivial,
(2)' is satisfied with o(a’) 2 o(b) under any delay varia-
tion (Fig. 2(b)). The condition A,(1)min > Ar(2)max iS the
Backward-Data-Direction (BDD) clocking. Fig. 4 shows
the register assignment based on (C2).

Fig. 4 Illustration of C2: Ensuring the hold constraint by BDD

(C38 : Ensuring the setup constraint by FDD clocking)
“Guaranteeing A,(1)max < Ar(2)min for delay variations
by FDD clocking.”

If the nominal setup constraint o(a) - tc + dmax < o(b) -
t. is “tight”, it can be easily violated dependence on
the values of A,(1)max and < A;(2)min. However, if
Ar(1)ymax < Ar2)min i8 guaranteed, we have only to
maintain delay variations of datapath circuits so that
(dmax)/(o(b) — o(a)) < t. is satisfied without consider-
ing delay variations of control signals (Fig. 2(c)). The
condition A,(1ymax — Ar(2)min < 0 is the Forward-Data-
Direction (FDD) clocking technique for the setup con-
straint.

Here we formally define “tight operation” as follows. For
an operation Oy, if its result b (which is not destroyed by
other data until o(b)-t.) arrives at its destination register
no earlier than one step before o (b), we call Oy a tight op-
eration. If Oy is a “tight operation”, we must apply FDD
clocking to input-output register pair for O,. Fig.s 5(a)
and 5(b) show the register assignment based on (C3).

3. Notation and Problem Formulation

In this section, we formulate our problem and show a sim-
ple demonstrative example.

3.1 Notation

For simplicity in notation, we use r; >¢ r; for two regis-
ters 7, r; to represent the timing order A, (iymin > Ar(j)max-
Then, ordered clocking (including BDD and FDD) can be
represented as a partial order >~c on a set of registers R,
and we call it clocking-order. It is clear that clocking-order

-153 -

(@ (b)

Fig. 5 Illustration of C3: Ensuring the hold constraint by FDD

(R, >c) must be transitive (r; >c¢ 75,7 >c Tk = Ti >c Tk)
and antisymmetric (r; >c r; = r; %c 7i), but not be reflec-
tive (Vr € R, r 5}c r) (because of it, clocking-order is not a
partial order in a strict sense, but just a quasi-order). The
antisymmetric law means that a cycle of order relation such
as T4 g T2,... yTk—1 >c Tk, Tk >c T1 is not allowed.

3.2 Problem Formulation

Our optimization problem, performance-aware ordered
clocking (OC)-based register assignment problem receives (1)
an application algorithm presented by a DFG G = (0O, A),
where O is a set of operations, A is a set of arcs representing
dependences between operations, (2) a set of data D, which
has one-to-one correspondence to O, (3) a control schedule
o: O — Zy, (4) sets of functional units F and registers R,
and (5) FU assignment p : O — F as a problem instance,
and outputs a register assignment £ : D — R together with
clocking-order on R so that setup and hold constraints in the
application are ensured by (C1)~(C3), and |R| is minimized.

Note that whether each operation is a tight operation or
not depends on a control schedule, an FU assignment, and
an MUX control. Now, our problem receives control sched-
ule and FU assignment. Assuming that an MUX switching is
done appropriately, operation type (tight or not) is decided.

8.3 Example

We explain our OC-based register assignment problem us-
ing a small DFG and its schedule shown in Fig. 6(a). We
prepare three functional units (two ALUs ALU;, ALU: and
one multiplier MUL), and assume that O., O, and Oq4 are
additions (single-cycle operations), O, is a multiplication
(two-cycle operation), and the functional unit assignment
is done as p(0a.) = p(0O.) = ALUi, p(Oq) = ALUgz, and
p(Os) = MUL.

In the first assignment shown in Fig. 6(b), which uses the
minimum number of registers, data e in 72 is overwritten
by b at the same timing that output a of O, is written to
r1. If the arrival of the control signal to write a to r; is
later than the arrival of the fastest effect of the input change
from e to b, incorrect data polluted by this fastest effect

T1 >cT2 >cT3

(@) (b) ©

Fig. 6 A problem instance (a), and two different feasible mini-
mum register assignments (b) and (c) for a conventional
design, an OC-based design, respectively.

may possibly be written to r1. To avoid this malfunction,
we have to keep 72 >c 71, i.6., Ar(2)min > Ar(1)max, for the
hold guarantee of O,, and at the same time, ry >¢ 72, i.e.,
Ar(l)ymin > Ar(2)max, for the hold guarantee of O.. Conse-
quently, we have r; >c r1 and r2 >¢ 72 by the transitive law
in (R, >c), but it is infeasible because order relation r; ¢ r;
is forbidden by non-reflective law.

Next, we show that the second assignment shown in
Fig. 6(c) is a minimum register assignment for OC-based
design. Any data whose start time is same with the end of
a cannot share the same register with a because O. and O4
are setup-tight operations which use a lastly (symbol “x” in
Fig. 6(c) means a forbidden step to which any data cannot
be assigned). So assuming that ¢, d, and a are written to 1,
r2, and rg, respectively, we need clocking-order r2 >¢ r3 and
r1 »c r3 by FDD clocking rule. These clocking-orders can
be written as r1 ¢ r2 >c r3 from the transitive law, and
the hold constraint of O, can be ensured by this clocking-
order. Note that O, is setup-tight and the operation which
uses e lastly, however, the setup and hold constraints of b are
ensured by written-back to the input register, i.e. sharing r;
with e, and the hold constraints of ¢ and d are ensured by
one-step margin (SRV property). Therefore these clocking-
order assignments are feasible, and every setup and hold con-
straint is ensured by ordered clocking and SRV. The number
of registers needed for OC-based design is determined by
the maximum number of temporal-overlaps of lifetimes and
symbol “x”s. So we can conclude that the assignment is
minimum.

This example shows that a conventional register assign-
ment is not always a feasible one for an OC-based register
assignment, and it tends to increase the number of registers.

3.4 Computational Complexity

In [4], the safe clocking minimum register assignment prob-
lem (only consider BDD clocking) is formulated and shown

-154 -

to be NP-hard. Our problem, performance-aware OC-based
register assignment problem includes it as sub-problem.
Therefore we have the following theorem.

Theorem 1: Performance-aware OC-based register assign-
ment problem is NP-hard.

4. ILP Formulation

At the first step, let nr be the maximum number of regis-
ters available, R be a set of registers {r1,72,... ,mnz}, and
D = {d1,ds,... ,d.} be a set of data needed to be assigned
to registers. Without loss of generality, we can assume the
OC-order relation on R as

T1>cT2>c " »c Tnp-

(1) Foreachi (1 £i<n)andj (1< j<ng), we prepare
a binary variable z;; € {0,1}. z;; = 1 if data d; is as-
signed to register r;, otherwise z; ; = 0. Each data d; must
be assigned to exactly one register. This condition can be
represented by the equation

nR

> omi=1, 1Lign

j=1

(2) If the lifetimes of data d; and dx have an overlap, they
cannot share a register. This condition can be represented
by the inequality

zij+zr; £1, 1<j<ne

(3) Let di be an output data of an operation that uses
data d; lastly, and there is another data d; whose start time
of its lifetime is the same with dx (£ k). From the register
sharing conditions for OC-based register assignment and the
specified OC-order on R, if the index of the register to which
di is assigned is larger than that for d; (i.e., £(d:) >c £(dk)),
d; and d; can share the same register. On the other hand,
if the index of the register to which d. is assigned is smaller
than that for d; (i.e., £(dx) >c £€(d:)), d; and d; cannot share
the same register This condition can be represented by the
inequality

R

Tij+o; S1+ Y Tam, 1Sj<nr—1

m=j+1

(4) Let di be an output data of a setup-tight operation
that uses data d;. The index of the register to which dj is
assigned is smaller than that for d; (i.e., £(di) >c £(di)).
This condition can be represented by the inequality

ngR nR
i<y i Th
1

i=1 i=

(5) For representing our objective, we prepare a binary

variable z; € {0,1} for each j, 1 £ j < ng. z; = 1if at least
one data is assigned to register r;, otherwise z; = 0. This
condition can be represented by the inequality

zij Sz, 1£i<n,1<j<nr.

(6) Our objective is to minimize the number of registers
needed in OC-based register assignment, which can be writ-

ten to
“R
minimize) z;.
i=1

5. Experimental Results

In this section, we demonstrate some design examples.
DFGs used in the experiments are the following three bench-
mark circuits: the 8-point Fast Fourier Transform (8-FFT)
[10], the fifth-order Elliptic Wave digital Filter (EWF)[11],
and the Fast Discrete Cosine Transform (FDCT)[12]. In
Table 1, the column “design” represents benchmark cir-
cuits. We use two types of functional units, ALU (addi-
tion/subtraction) and MUL (multiplication). ALU (MUL)
is treated as a single- (two-) cycle operation, respectively.
For each benchmark circuit, we picked up three palate op-
timal points in the numbers of ALUs, MULs, and latency
(defined as total control steps). The column “FUs” repre-
sents a set of functional units for each palate point. We use
list scheduling heuristic algorithm to obtain schedule results,
and the column “latency” represents latency.

6.1 Conventional Design

We first demonstrate a design example on a conventional
register assignment. In this case, minimum register assign-
ment problem is known to be solved in a polynomial time by
the well-known left-edge algorithm [9]. The column “conven-
tional design / # reg.” represents the number of registers
obtained by the algorithm.

For each setup and hold constraint of operation, we count
the number of the setup and hold constraints of operations
which do not satisfy the design rules described in Section 2.2
(hence, they can be potentially violated). The column “con-
ventional design / potential violations /setup (hold)” rep-
resents the number of potential violations of setup (hold,
respectively) constraints. The column “conventional design
/ potential violations /total” represents the total number of
setup and hold potential violations. Note that we consider
the setup and hold constraints for each pair of input and
output data of an operation. For example, if operation O.
receives data b (stored in register r1) and c (stored in register
r2) and outputs data a (stored in register r3), we consider the
setup and hold constraints between r; and r3, and between
r2 and r3. The result shows that 30 to 70 % of the setup

-155-

Table 1 Experimental results

design . conventional design OC-based design
(#op) FUs latency shreg potential violations? fhreg potential violations? ILP
setup hold total setup hold total time(s]
arrr |20 12 10 | 40/58 (89%) | 19/40 (23%) | 59/98 (60%) | 15 | 0/58 (0%) | 0/40 (0%) | 0/98 (0%) | 1501.83
@9 (3,2) 9 11 | 41/58 (70%) | 20/40 (50%) | 61/98 (62%) | 15 | 0/58 (0%) | 0/40 (0%) | 0/98 (0%) | 6909.25
(4,2) 8 10 [41/58 (71%) | 31/40 (78%) | 72/98 (78%) | 15/147| 0/58 (0%) | 0/40 (0%) | 0/98 (0%) | 10000<
EWE (2,1) 21 10 | 37/68 (54%) | 10/563 (19%) | 47/121 (38%) | 17 | 0/68 (0%) | 0/53 (0%) | 0/121 (0%) | 263.12
0 (3,2) 18 10 | 33/68 (49%) | 9/52 (17%) [42/120 (35%) | 18 | 0/68 (0%) | 0/52 (0%) | 0/120 (0%) | 335.88
(3,3) 17 11 | 32/68 (47%) | 9/51 (18%) | 41/110 (34%) | 19/187| 0/68 (0%) | 0/51 (0%) | /119 (0%) | 10000<
S D) 20 12 | 45/84 (54%) | 23/65 (35%) | 68/149 (46%) | 17/16'| 0/84 (0%) | 0/65 (0%) | 0/149 (0%) | 10000<
) (3,1) 34 11 | 41/84 (49%) | 13/66 (20%) | 54/150 (86%) | 14 | 0/84 (0%) | 0/66 (0%) | 0/160 (0%) | 84.10
(3.,3) 14 11 [48/84 (58%) | 27/64 (42%) | 76/148 (51%) | 17/161| 0/84 (0%) | 0/64 (0%) | 0/148 (0%) | 10000<
*(#ALU,#MUL), !#violated traints/#constraints (ratio %), ' temporary best/lower-bound
and hold constraints are potential violations. It can be eass ACKNOWLEDGMENTS This work is partly supported by

ily expected that the operation type (tight or not) strongly
depends on the schedule and FU assignment. Even in a con-
ventional design, potential violations may be decreased in
part by modifying schedule and FU assignment.

5.2 OC-Based Design

We next demonstrate a design example on OC-based de-
sign. For each problem instance, ILP constraints are gen-
erated by a computer program written in C language, gcc
2.8.1 on Sun Blade 1500. ILP is solved by CPLEX 11.0.0 [13]
on a PC equipped with 2.40 GHz AMD (R) Dual Opteron
(TM), 8.00 GB RAM. The column “OC-based design / #
reg” represents the number of registers obtained by ILP, and
the column “OC-based design / time[s]” represents the total
execution time of ILP. In some cases, the solver cannot termi-
nate over 10000 seconds (denoted as “10000<” in the table),
and we show a temporary best solution and lower bound in
this case. It motivates us to develop an effective heuristic al-
gorithm. In OC-based design, the number of registers needed
to each benchmark increases by about 50 % compared with a
conventional design. Instead of the drawback, we can obtain
a datapath which has no potential violations of the setup
and hold constraints. Extra registers are introduced partly
in order to compensate tight operations, and they may be
decreased by modifying schedule and FU assignment.

6. Conclusion

This paper introduced a novel class of datapaths that have
robustness against delay variations, which is achieved by or-
We have
proven that the problem to minimize the number of regis-

dered clocking (OC)-based register assignment.

ters is NP-hard. In this paper, an integer linear program-
ming formulation for this novel NP-hard problem was pre-
sented. Experimental results showed the effectiveness of our
approach. Development of an efficient heuristic algorithm
for our problem for a large problem instance is one of our
future problems.

the Society for the Promotion of Science, Japan, under
Grant-in-Aid for Scientific Research (C) No. 19560340,
2007-2008.

References

[1] J. Jung and T. Kim, “Timing variation-aware high-level
synthesis,” Proc. International Conference on Computer-
Aided Design (ICCAD), pp. 424-428, November 2007.

[2] S. Ghosh, S. Bhunia, and K. Roy, “CRISTA: a new
paradigm for low-power, variation-tolerant, and adaptive
circuit synthesis using critical path isolation,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Sys-
tems, Vol. 26, Issue 11, pp. 1947-1956, November 2007.

[3] K. Inoue, M. Kaneko, and T. Iwagaki, “Safe clocking min-
imum register assignment in high-level synthesis,” IEICE
Technical Report, vol. 108, no. 105, pp. 7-12, June 2008 (in
Japanese).

[4] K. Inoue, M. Kaneko, and T. Iwagaki, “Safe clocking regis-
ter assignment in datapath synthesis,” Proc. International
Conference on Computer Design (ICCD), pp. 120-127, Oc-
tober 2008.

[5] N H. E. Weste and K. Eshraghian, Principles of CMOS
VLSI Design - Syst, Perspective, S d Edition,
Addison-Wesley Publishing Company, 1994.

[6] K. Inoue, M. Kaneko, and T. Iwagaki, “A basic study on
datapath synthesis considering delay variation,” vol. 106,
no. 387, November 2006 (in Japanese).

[7] K. Inoue, M. Kaneko, and T. Iwagaki, “Structural robust-
ness of datapaths against delay-variation,” Proc. Workshop
on Synthesis And System Integration of Mized Information
technologies (SASIMI), pp. 272-279, October 2007.

[8] K. Inoue, M. Kaneko, and T. Iwagaki, “Novel register
sharing in datapath for structural robustness against delay
variation,” IEICE Trans. on Fundamentals of Electronics,
C icati and Computer Sci , vol. E91-A, no. 4,
pp. 1044-1053, April 2008.

[9] F. J. Kurdahi and A. C. Parker, “REAL: a program for

register allocation,” Proc. Design Automation Conference

(DAC), pp. 210-215, June 1987.

B. Mulgrew, P. Grant, and J. Thompson, Digital Signal

Processing, Macmillan Press Ltd, 1999.

P. Michel, U. Lauther, and P. Duzy, The Synthesis Ap-

proach to Digital System Design, Kluwer Academic Pub-

lishers, 1992.

I. Ahmad, M. K. Dhodhi, and F. M. Ali, “TLS: a tabu

search based scheduling algorithm for behavioral synthe-

sis of functional pipelines,” BCS The Computer Journal,

vol. 43, no. 2, pp. 152-166, 2000.

ILOG, CPLEX, http://www.ilog.com

(10]

[11]

(12)

[13]

-156 -

