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Abstract We propose a fast hardware algorithm for division in GF(2™). It is based on the extended Euclid’s algorithm
and requires only one iteration to perform the operations that require two iterations of previously reported division algorithms

based on the extended Euclid’s algorithm. Since the algorithm performs modular reductions in parallel by changing the order

of execution of the operations, a circuit based on this algorithm has almost the same critical path delay as the previously pro-

posed ones. The circuit computes division in m clock cycles, whereas the previously proposed circuits take 2m — 1 or more

clock cycles. By logic synthesis, the computation time of the circuit is estimated to over 35% shorter than that of a previously

proposed circuit.
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1. Introduction

Galois field GF(2™) has many applications, especially in ellip-
tic curve cryptography (ECC). In order to accelerate such applica-
tions, rapid implementation of arithmetic operations in GF(2™) is
required. Among basic arithmetic operations in GF(2™), division
takes the maximum time. In this report, we propose a fast hardware
algorithm for division in GF(2™) with parallelization of modular
reductions.

In general, one of the following three methods is employed for
division in Galois field: the Fermat’s little theorem [1], [2], the ex-
tended Euclid’s algorithm [3]~[11], or a solution of a system of
linear equations [12],[13]. When m is large, division algorithms
based on the extended Euclid’s algorithm are the most efficient way
to implement circuits, because circuits based on them can be imple-
mented easily and have lower AT-product [4], [13). The algorithm
to be proposed in this report is also based on the extended Euclid’s
algorithm.

The proposed algorithm requires only one iteration to perform the
operations that require two iterations in previously reported division
algorithms based on the extended Euclid’s algorithm. Division algo-
rithms based on the extended Euclid’s algorithm perform modular
reductions. Although two iterations of the previously proposed di-
vision algorithms perform two modular reductions sequentially, the
proposed algorithm performs them in parallel by changing the order
of execution of the operations.

We have designed a circuit based on this algorithm, which per-

forms the operations in one iteration of the algorithm in one clock
cycle. The latency of the circuit is m clock cycles, which is almost
half of that of the circuits proposed in [3], [10] that have architecture
similar to our circuit. The critical path delay of the circuit is larger
by the delay of a 2-input XOR gate compared to that of the circuit
reported in [10], and smaller by approximately the delay of a 2:1
multiplexer compared to that of the circuit reported in [3] because
of its parallelism.

We have synthesized the circuit using 0.18um CMOS standard
cell library and estimated its area and computation time. The com-
putation time of the proposed circuit is estimated to over 35%
shorter than that of the circuit proposed in [10].

This report is organized as follows. In the next section, we ex-
plain arithmetic operations in GF(2™) and the previously propbsed
division algorithms based on the extended Euclid’s algorithm. In
section 3., we propose a fast hardware algorithm for division in
GF(2™) with parallelization of two modular reductions. In sec-
tion 4., we show a design of a circuit based on this algorithm and
estimate the area and the computation time of the circuit. '

2. Preliminaries

2.1 Arithmetic Operations in GF(2™)
Let

G@)=2" + gmaz™ 4+ gz 41

be an irreducible polynomial on GF(2), where g; € {0,1}. Then,
we can represent an arbitrary element in GF(2™) defined by G(z)
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as
A(z) = am—12™ + - + a1 + ao,

where a; € {0,1}.

Addition and subtraction in GF(2™) are defined as polynomial
addition and subtraction on GF(2), respectively. Thus, both are
computed with bitwise exclusive-OR operation. Multiplication “-”
in GF(2™) is defined as a polynomial multiplication modulo G(z)
on GF(2). Multiplicative inverse B~!(z) of B(z) in GF(2™) is
defined as the element that satisfies

B(z)-B™'(z)=1.
Then, division “+” in GF(2™) is defined as
A(z) + B(z) = A(z) - B~ \(z).

In this report, an algorithm that receives three polynomials, A(z),
B(z), and G(z), and outputs A(z) + B(z) in the field defined by
G(z) is called division algorithm. A(z) and B(z) are polynomials
on GF(2) with a degree less than m, and G(z) is the irreducible
polynomial on GF(2) with a degree m that defines the field.

2.2 Hardware Algorithm for Division in GF(2™ ) Based on

the Extended Euclid’s Algorithm

Here, we describe the division algorithm proposed by Brunner et
al. [3], which is a typical algorithm based on the extended Euclid’s
algorithm. The algorithm of Brunner et al. is as follows, where 7,
and sy, denote the m-th coefficients of R(z) and S(z), respectively.
The notation f A P(z) denotes

P(z) (f=1)

fAP(z)= )
(f=0

and the operation “x” represents polynomial multiplication on
GF(2). § is a variable for determining the time of swap of the two
polynomials, R(z) and S(z), for mutual division.

[Algorithm BCH]
(Brunner et al.’s Division Algorithm [3])
1: R(z) := B(z); S(z) := G(z);
2 U(z) := A(z); V(z):=0;
3 0:=0;
4: fori =1to2mdo
s:  ifrm = 0then

6: R(z) := R(z) X z;

7: U(z) :=U(z) - =;

8: d:=4+1;

9: else

10: S(z) := (S(z) — sm A R(z)) X z;

1m: V(z) := V(z) - U(z);
12: if § = 0 then

S

R(z)| _[S(=)|.
S@) | |R@)|

" ()| _[V()|.
V)| U@

15: U(z) :=U(z) - z;
16: d:=1;

17: else

18: U(z) :=U(z) +=;
19: 6:=6-1;

20: end if

21:  endif

22: end for

23: output U(z) as the result.
[m]}

3. Fast Hardware Algorithm for Division in
GF(2™)

We propose a fast hardware algorithm for division in GF(2™).
First, we describe the division algorithm proposed by Guo and
Wang [4]. Guo and Wang’s algorithm is a modified version of Algo-
rithm BCH, and has been developed for systolic architecture. The
feature of this algorithm is that there are two for-loops in the algo-
rithm so that we can avoid bidirectional shifts when we implement
it as a circuit. This algorithm computes (A(z) + B(z)) - ™ in the
first for-loop, and computes A(z) <+ B(z) by dividing the result of
the first for-loop by z™ in the second for-loop. Thus, the critical
path delay of the circuit is smaller than that of the circuit based on
Algorithm BCH, although its latency is 3m clock cycles. Guo and
Wang’s algorithm is as follows.

[Algorithm GW]
(Guo and Wang's Division Algorithm)

1: R(z) := B(z); S(z) := G(z);

2. U(z) := A(z); V(z):=0;

3 6:=0;

4: fori=1to2mdo

s:  ifrp, =0then

6 R(z) := R(z) X z;

7 U(z) :=U(z) - z;

8 §:=0+1;

9: else
10: S(z) := (S(z) — sm A R(z)) X z;
1 V(z) := (V(z) — sm AU(2)) - z;
12: if 6 = 0 then :

5 R(z) - S(z) | .
’ S| |R@)|’

. U(z) - V(z)|
' v  |(ve|’
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15 §:=6+1;

16: else

17: §:=0-1;
18: end if

19:  endif

20: end for

21: fori =1tomdo

2: U(z):=U(z) +z;
23: end for

24: output U(x) as the result.

In Algorithm GW, by allowing J to be negative, shift registers
can be reduced as[6], [9], when implementing the algorithm as a
sequential circuit. The modified algorithm is as follows, where the
notation SEL(flag, A(x), B(z)) denotes

A(@) ifflag=1
B(z) otherwise ’

SEL(flag, A(z), B(z)) =

and SGN (a) denotes

1 ifa<0
son@=1{" T°

0 otherwise

Note that swap is the variable employed as a flag for deciding
whether the algorithm assigns R(z) to S(z).

[Algorithm MGW]

(Modified Version of Guo and Wang’s Division Algorithm)
1: R(z) := B(z); S(z) := G(z);

: U(z) := A(z); V(z):=0;

§:=0;

: fori=1to2mdo

swap := SGN(8)Arm;

. R(z)| | (R(z)—rmAS(z))xz
" |S@)| | SEL(swap, R(z), S(z))

. [U(z)] _{ U(z)=rmAV(2)) -z ]

LB

)

V(z) SEL(swap,U(z),V(z))
8  §:=(-1)"™"P§-1;

9: end for

10: fori =1tomdo

1n:  V(z):=V(z)+z;
12: end for

13: output V (z) as the result.
[m
Figure 1 shows an example of division by Algorithm MGW,
where m = 4, A(z) = z* + z, B(z) = z° + 7, and G(z) =
+z+l
Next, we describe the algorithm to be proposed using Algorithm

% R S U v é
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01110
11100
10000
11000
01000
10000
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10011
10011
10100
10100

0110 0000 O
1100 0000 -1
1011 1100 O
0101 1100 -1
11100 0001 0101 O
11100 1000 0101 -1
11000 1001 1000 O
11000 0001 1000 -1
10000 0001 0001 O

1001

1101

1111

1110
Example of Division by Algorithm MGW (m = 4,A(z) =
z? +z,B(z) =28 +2,G(x) =zt +x+ 1)

1st for-loop

2nd for-loop

AW N =00 N O U R W N

Fig. 1

MGW. We start with merging the second for-loop of Algorithm
MGW into its first for-loop. Since the operation in line 7 of Al-
gorithm MGW is performed exactly 2m times, we can perform this
merger by replacing m arbitrary chosen operations out of the 2m
operations in line 7 with

U@)| | U@-rmAV() |
V(z) o SEL(swap,U(z),V(z)) + = e

For this purpose, we modify the algorithm so that it performs the
operations of two iterations in one iteration of the first for-loop, and
replace one of the two operations that update U(z) and V (z) with
the above expression.

By the above modification, the operations for U(z) and V'(z) in
one iteration of the merged algorithm can be represented as

[U’(z)] _ [ (U(z)-rmAV(2)) -z ]

’

V'(z)| | SEL(swap,U(z),V(z))

Uz)| _ U (z) =1 m AV (z)) .

V(z) - SEL(swap’,U'(z), V' (z)) + z|
Note that, in the above operations, two modular reductions are per-
formed sequentially, where U’(z) and V' (z) are intermediate vari-
ables for U(z) and V (z), respectively, and r,,, and swap’ are ob-
tained from the result of the first operation as

Tm = Tm-1 ® ('m A Sm-1)
swap’ := SGN ((=1)*"§ — 1) ATi,.
Finally, we modify the timing of polynomial reduction in the
above operations as
U'(z)| | (U@)—rmAV(z))xz
V()| | SEL(swap, U(z), V(z))
U(z)| _|(U'(z)—r'mAV’(z)) mod G(z)
V)| | SEL(swap',U’(z),V'(z)) + =

)
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i R s v’ \4 & R S U Vv ¢

01010 10011 0110 0000 O
1 10100 10011 01100 0000 -1 01110 10100 1100 0110 O
2 11100 10100 11000 0110 -1 10000 11100 1101 1100 O
3 11000 11100 00010 1160 -1 01000 11000 1110 0001 O
4 10000 11000 11100 0001 -1 10000 10000 1110 1110 O

Fig.2
44z +1)

so that the two polynomial reductions are performed in parallel.
Note that, since the constant term of U’(z) and m-th coefficient
of V'(z) will always be zero, modular reductions of the above ex-
pressions are performed as

)= ujm1 © (Tm AUj_1);

v} := SEL (swap, u;, v;)
ui=u; @ (um A g;) © (rm AV);

v 1= SEL (swap', uj11,vi41 ® (V0 A git1))

@

where uj, v}, and g; denote the j-th coefficients of U’(z), V'(z),
and G(z), respectively. The proposed hardware algorithm is as fol-
lows.

[Algorithm DEEA]
(Proposed Division Algorithm)
1: R(z) := B(z); S(z) := G(z);
2: U(z) := A(z); V(z):=0;
3 §:=0;
4: fori=1tomdo
5. swap := SGN(8)Arm;
R'(z)| | (R(@)—rmAS(z))xz |
S'(z)|" | SEL (swap, R(z), S(x)) |
. [U'(z):l (U(z)—rmAV(z)) Xz
V'(z)
8 &= (=1)"™P§-1;

[SEL (swap, U(z), V(z))];

9 swap’ := SGN(&)AT' m;

o |B@| _| (R@-r'mAS'@)xz |
" |8(=)| | SEL (swap’, R(z),8'(z)) |

0 U(z) — (U'(2)—r"mAV'(2)) mod G(z) |
" |v@)| | SEL(swap',U'(z),V'(z)) >z |’

122 8= (=1)™'§ —1;
13: end for
14: output V (x) as the result.
]
Figure 2 shows an example of division by the proposed algo-
rithm, where m = 4, A(z) = 2% + z, B(z) = z® + z, and
Giz)=z'+z+1.

Example of Division by Algorithm DEEA (m = 4, A(z) = 22 + z, B(z) = 23 +2,G(z) =

4. Circuit Based on the Proposed Algorithm and
Its Evaluation

We have designed a sequential circuit that performs the opera-
tions in one iteration of the proposed algorithm in a cycle. Figure 3
shows a block diagram of the circuit. Figures 4-6 show basic cells
in the circuit. Reg-R, Reg-S, Reg-U, Reg-V, Reg-G, Reg-A, and
Reg-sgn are registers for storing R(z), S(z), U(z), V(z), G(z),
218l and the sign of &, respectively. Figure 7 shows the con-
troller of the circuit. Note that, in order to accelerate the circuit,
we employ 1-hot counter for § that consists of Reg-A, which holds
A = 2™ 1%l instead of &, and Reg-sgn, which holds 1 if § is neg-
ative. RS-calc is the part that updates the polynomials R(z) and
S(z) as

5 :=1i1® (Tm A 8j-1);
s := SEL (swap,7;,85);
=T, ® (rﬁ,. A 3;-_1) ;

8j = SEL (3wap,v T;" 33) 5

and consists of (m + 1) RS-cells. UV-calc is the part that updates
the polynomials U(z) and V/(z) according to expressions (1) and
consists of m UV-cells and one UV-celi2 at the extreme left of the
figure. A-calc is the part that updates A and consists of (m + 1)
A-cells.

The control signals of the circuit, swap, swap’, shiftl, and
shift2, are computed as

swap := 8gn N Tm

awap' = sgn' AT
shiftl := (6m A3gT) V (3gn A Tm)
shift2 := (5;,. Asgn’) vV (sgn' A ﬁ') .

The value of sgn’ is the same as that of shift1, and the value of sgn
in the next iteration is the same as that of shift2.

‘We compared the circuit based on the proposed algorithm with
two previously proposed circuits designed as sequential circuits. Ta-
ble 1 shows a comparison of the circuits. The critical path delay of
the circuit based on this algorithm is larger by the delay of a 2-input
XOR gate compared to that of the circuit reported in [10]. The cir-
cuit based on the proposed algorithm has m clock cycle latency,
which is almost half of that of the previously proposed circuits.
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Table 1 Comparison of the Circuits

Brunner et al. [3] Kimetal.[10]  Proposed
Latency [clock cycle] 2m 2m -1 m

Critical Path Delay 2T s +2Tx + 2Tm 2TA +2Tx 2T4 +3Tx

Register Size [bit] 4m + 2 + [logy(m + 1)) 5m + 2 5m +4

# of Gates for Basic Cells

2-input AND gate 3m+1 3m 6m +3

2-input XOR gate 3m+1 3m 6m + 3

2:1 MUX 8m+1 3m 6m + 4

Table 2 Estimations of the Circuits

Ta: the delay of a 2-input AND gate
Tx: the delay of a 2-input XOR gate
Tr: the delay of a 2:1 MUX

Area [mm?] Critical path delay [ns] #ofcycle Comp. time [ns]

m Circuit
163 Kim et al. [10] 0.1150 1.30 325 422.5
Proposed 0.1576 1.67 163 272.2
Kim et al. 0.1648 1.33 465 618.5
233 Proposed 0.2266 1.67 233 389.1
Kim et al. 0.2000 1.34 565 757.1
283 Proposed 0.2707 1.71 283 483.9
409 Kim et al. 0.2869 1.38 816 1127.5
Proposed 0.3782 1.78 409 728.0
Kim et al. 0.3936 1.42 1141 1620.2
s Proposed 0.5585 1.73 571 987.8
r r
T S

controller

Fig. 3 Block Diagram of the Circuit Based on Algorithm DEEA

We synthesized the two circuits with Synopsys Design Compiler
using Rohm 0.18sm CMOS standard cell library provided by VLSI
Design and Education Center (VDEC), the University of Tokyo.
One is the circuit described in this section and the other is the circuit
proposed in [10], Table 2 shows the synthesis results. We set 0 as
area constraint and various values as critical path delay constraints.

Fig.4 RS-cell

The figures in the table are the best AT-product ones obtained with
the synthesis. The area of the proposed circuit is 40% or less larger
than that of the circuit proposed in[10]. The computation time of
the proposed circuit is over 35% shorter than that of the circuit pro-
posed in[10]. '

5. Concluding Remarks

We have proposed a fast hardware algorithm for division in
GF(2™). It is based on the extended Euclid’s algorithm, and re-
quires only one iteration to perform the operations that require two
iterations in previously reported division algorithms with parallel
execution of modular reductions.

We have designed a circuit based on the proposed algorithm. The
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circuit has m clock cycle latency, which is almost half of that of
the previously proposed circuits. It has almost the same critical
path delay as previously proposed circuits because of its parallelism.
Therefore, it can compute division in GF(2™) much faster than the
previously proposed circuits. The computation time of the proposed
circuit is over 35% shorter than that of the circuit proposed in [10].

In order to reduce the area of the circuit, we can employ a two-
level 1-hot counter[9] for storing the value of ||. It consists of
6r-bit and &;-bit 1-hot counters, where m + 1 < & - & and
on = & ~ /m. Thus, we can reduce the register size and the
number of 2:1 multiplexer significantly without a high cost for crit-
ical path delay.
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