HEEA FHROHEES RS
IPSJ SIG Technical Reports

2008 —SLDM—137 (2)
2008 / 11/ 17

An Integer Programming Formulation for Generating High Quality

Transition Tests

Tsuyoshi IWAGAKI' and Mineo KANEKO!

1 School of Information Science, Japan Advanced Institute of Science and Technology (JAIST)
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
E-mail: {{iwagaki,mkaneko}@jaist.ac.jp

Abstract This paper describes a test generation method to derive high quality transition tests for combinational

circuits. It is known that, for a transition fault, two-pattern tests which propagate the errors to all the primary

outputs reachable from the fault site can enhance the detectability of unmodeled defects. In this paper, to generate

high quality transition tests, the test generation problem is formulated as a problem of integer linear programming,

where a metric expressing the above fact is optimized. The proposed formulation guarantees that minimum two-pat-

tern tests for a transition fault are generated such that the errors are observed at all the primary outputs reachable

from the fault site.

Key words combinational circuit, test generation, high quality transition test, integer linear programming, min-

imum test set

1. Introduction

Fault coverage is a basic criterion to evaluate a given test
set under a target fault model. When a target fault model
is specified, test engineers try to generate tests with 100%
fault coverage under the fault model. Several fault mod-
els such as the stuck-at fault model and the transition fault
model are usually targeted during test generation phases.
Obtained test sets are then applied to actual circuits for de-
fect screening. However, some defective circuits can pass
the screening due to the presence of unmodeled defects even
though the fault coverage of the applied tests is 100%. One
way to avoid this undesirable situation is to develop a dedi-
cated fault model for such defects. However, since it is costly.
to do so in general, several alternatives which assume con-
ventional fault models have been discussed to enhance the
detectability of unmodeled defects [1]-[5].

Multiple-detection tests (1] have been shown to have an
ability of detecting unmodeled defects. In order to clarify
how effective multiple-detection tests are, some metrics were
discussed in [2]-[5]. This paper focuses on the metric in [2).
In[2], the authors considered a test set for transition faults
that propagates the errors of each transition fault to all the

primary outputs reachable from the fault site, and showed it

is effective in screening defective circuits compared to a con-
ventional test set. To derive such a test set, some test gen-
eration procedures have been proposed in [6],[7). The pro-
cedures in [6], [7] used a Boolean satisfiability technique with
some heuristics, and an existing test generation tool, respec-
tively. When we have a combinational circuit and a transi-
tion fault in the circuit, the following question can arise:

¢ What is the minimum number of two-pattern tests

that detect the fault at all the primary outputs reachable
from the fault site?
To the best of our knowledge, there has been no answer to
this question yet. One goal of this paper is to give an answer
to it. In this paper, we try to tackle this problem by using a
technique of integer linear programming (ILP).

The rest of this paper is organized as follows. Section 2
gives the concept of test generation using ILP, then, in Sec-
tion 3, an ILP formulation is presented to derive a minimum
test set for a transition fault that meets the above property.
Finally, Section 4 concludes the paper and describes our fu-

ture work.

2. Preliminaries

Our test generation method is based on integer linear pro-

gramming (ILP). In this section, we describe how to trans-

-7-

— Circuit —

— —>
_ N | .
— fault —
— —o»>

Translate

ILP constraints:

« Constraints for the fault-free circuit
* Constraints for the faulty circuit -

« Constraints for fault detection

(+ objective function)

| Solution: test pattern I

Figure 1: Concept of ILP-based test generation

late the test generation problem for a transition fault in a

combinational circuit into an ILP problem.
2.1 Concept of ILP-based test generation

ILP-based test generation has first been presented in [9).
Figure 1 represents the concept of ILP-based test generation.
In this framework, given a combinational circuit and a fault,
the circuit and the detection condition of the fault are first
translated into the corresponding constraints that consist of
inequalities and equalities with integer variables (especially
0-1 variables). Then, a feasible assignment to the variables
that meets the constraints is obtained by an ILP solver. The
assigned values of the variables that correspond to the cir-
cuit inputs form a test for the fault. If one wants to optimize
some property during test generation, one can add it as an
objective function to the ILP problem. In the following, we
explain how to translate the test generation problem for a
transition fault in a combinational circuit into an ILP prob-
lem by using some examples. More formal descriptions of

ILP-based test generation can be found in [9], [10].
2.2 Transition Test Generation Using ILP

A two-pattern test for a transition fault satisfies the fol-
lowing two conditions.
(1) The first vector sets an appropriate value to the fault
site.
(2) The second vector detects the corresponding stuck-
at fault.
Since there is no correlation between the first vector and the

second vector, they can be considered separately during test

Figure 2: ISCAS ’85 benchmark circuit c17

generation. Before describing how to generate a two-pattern
test for a transition fault, we first explain how to express the
circuit behavior by using ILP constraints.

Table 1 shows inequalities in ILP constraints to express
the behaviors of primitive gates with one or two inputs. In
the first column of the table, y represents a gate output and
each of z, z; and z; represents a gate input, where they
can take ‘0’ or ‘l.” A feasible assignment to the variables
of the inequalities for a gate corresponds to the behavior of
the gate. For example, a 2-input AND gate produces ‘0’ if at
least one input has ‘0.’ This behavior corresponds to the first
and second inequalities in Table 1. Indeed, if z, or z takes
‘0,’ ¥ has to be ‘0’ in those inequalities. Furthermore, if both
inputs take ‘1,” the AND gate has to produce ’1." This be-
havior is expressed as the last inequality in the table. In this
way, each gate in a combination circuit can be interpreted
as inequalities in ILP constraints. Given a combinational
circuit, we can obtain ILP constraints for the whole circuit
by replacing each gate with its corresponding inequalities re-
peatedly. Now, let us consider the circuit shown in Figure 2.

For example, we can obtain the following constraints for c17.

Guzi+zw021,z3+ 21021, -2 — T3 — T10 2 -2
G2 zz+zun 21,26 +211 21, ~23 —T6 — T11 2 —2
Ga: 22+ 216 2 1, z11 +T16 2 1, —%2 — T11 — T16 2 —2
Gezutzo2l,zr+T19 21, —211 — 27 — T19 2 -2
Gs: T10+ T22 2 1,Z16 + Ta2 2 1, —%10 — T16 — T2z 2 —2

Ge: T16+Z23 2 1,Z10 + 223 2 1, ~T16 — T19 — T2z 2 ~2

Any feasible assignment for these constraints simulates the
behavior of c17. In Figure 2, when we have £, = 1, z2 = 1,
z3 =0, z¢ = 1 and z7 = 1, the circuit behaves as follows:
T =1 211 =1, 216 =0, £19 = 0, 22 = 1 and z23 = 1.
These values satisfy the above constraints, and vice versa.
Given a combinational circuit C and a transition fault f
in C, the following tasks are performed to generate a two-

pattern test in this paper.

-8-

Table 1: Inequalities in ILP constraints expressing the behaviors of primitive gates

Gate types

Inequalities

y = AND(z1, x2)

21 —y20,z2-y20,-z1—z2+y 2 -1

y=NAND(z1,22) |1 +y 21, 22 +y 21, -z —z2 —y = -2

y = OR(z1,z2)

-z1+y20,—z2+y 20,21 4+22 -y 20

y = NOR(z1, z2)

—r1-y2-1,—zp—y2-l,z1+z2+y21

y = XOR(z1,z2)

Ty —T2+y20, -1 +224+y20,21+22—y20, -2 —T2—y =2

y = XNOR(z1,22) |21 — 22 —y 2

-1, -z14+ze—y2-lL,z1+z2+y21, -1 —T2+y 2 -1

y = NOT(z) z+y21l, —z—-y2-1

y=BUFFER(z) |z—-y20,-2z+y=20

(1) Extract the fanin cone C®' reachable to f and the
fanout cone C* reachable from f, from C.

(2) Copy C as C®=2,

(3) Translate C®!, C#2 and Cf into the corresponding
ILP constraints, and create additional constraints to express
the connection between C&2 and C.

(4) Create the constraints for detecting f.

(5) Apply an ILP solver to the above constraints.

Here, we consider Figure 2 and the slow-to-rise transition
fault on z1;. To generate a two-pattern test for the fault, we
first perform (1) and (2) of the above procedure. Figure 3
shows the obtained three circuits, and the corresponding ILP

constraints are as follows:
G o8 + 28 2 1,28 428 21, —af — 28 — g8l > -2
G 2P +255 21,28 + 28221, 2% — 282 282 > 2

GE: z8¥ 4282 21, z§2+z52 21,-28 — 8 82> 2

CF: 28+ 250 21,25 428221, 282 — 282 282> 2

GE: a4+ 05 21,28 428221, 252 — 28 282 > 9
GE: s +a8 > 1,e5 422 21, 2% — 52 — 282 > -2
GE: oo +2f 2 1,28+ 28 2 1, o — off — o 2 -2

Gi: zb+ale 21,20, +2fs 21, —2f — 2f; —zls 2 -2
£, .f £ £

Gi:zh+afo 21,2 +2lg21, -2}, —2f —2ly > 2
£, f £ f ¢ f £ £

Gs: Z10+ 222 2 1,216 + 20y 2 1, —2)o — zig — 752 2 2

£ f £ f £ f f f
Gg: 716 + 223 2 1,209 + 203 2 1, -z — zfg — zh3 2 -2

In (c) of Figure 3, since 5, z& and zf, are floating signals,

we must have the following constraints.
28 —zf =0
28—z =0
g2 f
Ty — Ti0 = 0
These constraints mean, whenever a vector is applied to the

circuit, the values of z5, z§ and zf, must be identical with

the values of the corresponding signals in (b) of Figure 3.
Now, we consider the detection conditions for the slow-to-
rise transition fault on z1,. According to (1) of the detection
conditions mentioned before, £11 must be set to ‘0’ under the
first vector of a two-pattern test. Hence, the following con-

straint is required.

gl _
T =

Moreover, according to (2) of the detection conditions, in
order to detect the corresponding stuck-at fault, we need to
differentiate the fault-free circuit from the faulty one. To
translate this condition into ILP constraints, we introduce

variables ez2, e23 and the following constraints.

z{1=0

g2 _
i1 =1

2 2

255 — 2l + e 20, 252 + zfy + €32 20,
2 | f 2 _f

T5, + Thy —e22 20, —x55 — x5 —e0 2 -2
2 f 2, . f

783 — T3 + €3 2 0, ~x53 + 253 + €23 2 0,

2, L f 2 f
T8 + Ths — €23 2 0, —x§; — Ths — €23 = —2
e +e321

The last constraint represents that the error must be propa-
gated to at least one primary output.
In this way, a two-pattern test can be generated by apply-

ing an ILP solver to all the above constraints.
3. Proposed Method

3.1 Our Test Generation Problem

We formally state our test generation problem as follows.

® Input: A combinational circuit C and a transition
fault f in C

® Output: A two-pattern test set Ty that propagates the
errors caused by f to its all reachable primary outputs

.9.

@)

(®)

(©)

Figure 3: Three circuits for fault detection: (a) Fault-free circuit
for generating the first vector of a two-pattern test; (b)
Fault-free circuit for generating the second vector of a
two-pattern test; and (c) Faulty circuit for generating
the second vector of a two-pattern test

ILP constraints for fin C,

L

ILP constraints for fin C,

i

identical copies

599

ILP constraints for fin ClO o ?

Figure 4: ILP model for generating a minimum test set

e Objective: Minimizing |T¥|

To solve this problem, we derive the following formulation.

3.2 ILP Formulation

The upper bound of |Ty| is |Oy|, where Oy represents all
the primary outputs rea;chable from f, because one test is
enough to propagate the error of f to each reachable pri-
mary output. We make use of this upper bound to formu-
late an ILP problem. Here, we prepare |Oy| copies of the
given circuit, and associate ILP constraints to detect f with
each copy (Figure 4). This implies that, for f, |O¢| tests can
be generated simultaneously. If we identify useless copies
of them as much as possible, we will finally obtain a mini-

mum test set for f. To achieve this, we consider additional

constraints in the following.

We introduce 0-1 variables e; j, where 1 < i £ |Oy| and
1 £ j £|Oy|. Variable e; ; takes 1 if the error of f is prop-
agated to the j-th primary output in C;, otherwise takes 0.
In general, there is a redundant primary output at which
the error of f is never observed. For such a primary output,
we prepare 0-1 variables r;, where 1 < j < |Oy|. Equation
r; = 1 indicates the error of f does not reach at the j-th
primary output of any copy, and r; = 0 indicates the error
of f reaches at the j-th primary output of at least one copy.
By using these variables, we have the following constraints
for all j.

1041

etz @

i=1

This means that, the j-th primary output of every copy is
redundant, or the error of f is propagated to the j-th pri-
mary output of at least one copy. Since e;; = r; = 1 never

happen for all 4, j, we also have the following constraints.
eij+7; <1 2)

Now, in order to identify useless copies, we introduce 0-1
variables €} ;, where 1 £ i £ |Oy| and 1 £ j £ |Oy|. For all

1 (or ¢ 2 2), j, the following constraints are defined.

€ —ei;20 (3

€fj—€i-1,;20 4)

In inequality (3), e;,; = 1 implies €} ; = 1. In inequality (4),
whenever efclj =1 for some k, all] ; take 1 for i > k.
‘We are now ready to identify which copy of the circuit not

to be needed. Variables u; are defined for all 7 2 2, j.

—ehj+ 1 20 (5)

€im1,j — €y +ui 20 (6)

Whenever the error of f reaches at the j-th primary output
of C; for the first time, i.e., the error does not reach at the
j-th primary output of Cx (k < 1), ui = 1.

Finally, we have to minimize the following equation.

1041 1051

ouHl0sl-Y ™
i=1 j=1

The first term counts the number of copies that are used for

propagating the errors to all the reachable primary outputs.

-10-

Table 2: Values of e;,;

j=1|j=2|j=38|i=4|j=5
i=1 0 1 0 0 0
=2 0 1 0 0 1
1=3 0 0 1 0 0
i=4 1 0 0 0 1
i=5 0 1 1 0 0

Table 3: Values of eg’ j

j=1|j=2|j=38|j=4|j=5
i=1 0 1 0 0 0
1=2 0 1 0 0 1
1=3 0 1 1 0 1
i=4 1 1 1 0 1
1=5 1 1 1 0 1

From inequality (1), it can be seen that r; can be set to 1
freely. In the second term of the above equation, to prevent
r; from being 1 freely, the term is multiplied by |Oy|. There-
fore, in the final solution, 7; = 1 if and only if the error of f
never reaches at the j-th primary output of the circuit.
The values of the primary inputs in the circuits whose u;

take 1 form a minimum test set for f.

3.3 Example

To clarify our ILP formulation, we give an example here.
We use a combinational circuit C with five primary outputs
as an example circuit. To generate a minimum test set for a
fault f in C, five copies C1,Cq,...,Cs of C need to be pre-
pared. Now, let us consider a situation where ILP constraints
for the test generation was provided for an ILP solver, and,
during solving the ILP problem, the temporal feasible as-
signment shown in Tables 2-5 was obtained.

Table 2 represents that the errors of f reach at the 2nd
primary output of Ci, at the 2nd and 4th primary outputs
of Cz, at the 3rd and 5th primary outputs of C3, at the 1st
and 5th primary outputs of Cs, and at the 2nd and 3rd pri-
mary outputs of Cs, respectively. From Table 4, we can see
that C;, Ca, C3 and Cy4 are used for fault detection at the
2nd, 5th, 3rd and 1st primary outputs, respectively. Note
that, it is possible for us to take 1. However, in the final
solution after solving the ILP problem, such an assignment

will be rejected.

3.4 Sizes of variables and constraints
Here, we estimate the sizes of variables and constraints in
our test generation problem. Let n be the number of signal

lines in a combinational circuit. It is enough to prepare 3n

Table 4: Values of u;

i=1]1

i=2|1
1=3T
i—4|1
i=57

Table 5: Values of 7
j=1|j=2|j=3|j=4|j=5
o oo 1]o

variables for fault detection (Figure 3). As mentioned in the
previous subsection, since |Oy| copies of the original circuit
are produced, totally 3n-|Oy| variables are required for fault
detection. The additional variables of r;, eﬁlj and u;, where
1<£i<|0f|and 1 £ j £ |Oy|, are used to derive a minimum
test set, totally |Of|2+2|Oy| variables are also needed. Thus,
we need to prepare at most 3n - |Of| + |Of|® + 2|O¢| vari-
ables. The number of constraints for fault detection and for
test set minimization can roughly be estimated as O(n-|O5|)

and O(JOf|?), respectively.

4. Conclusions and Future Work

In this paper, we presented an integer programming for-
mulation to generate high quality transition tests for combi-
national circuits. When a combinational circuit and a tran-
sition fault in the circuit are given, our method always gen-
erates a minimum test set that propagates the errors of the
fault to all the primary outputs reachable from the fault site.
In the future, we should evaluate the proposed method for
several benchmark circuits.

Acknowledgments

This work was supported in part by the research promoting
expenses for assistant professors of JAIST.

References

[1] S.C. Ma, P. Franco and E. J. McCluskey, “An experimen-
tal chip to evaluate test techniques: experimental results,”
Proc. International Test Conference, pp. 663—672, 1995.

[2] C.-W. Tseng and E. J. McCluskey, “Multiple-output propa-
gation transition fault test,” Proc. International Test Con-
ference, pp. 358-366, 2001.

[3] B. Benware, C. Schuermyer, N. Tamarapalli, K.-H. Tsai, S.
Ranganathan, R. Madge, J. Rajski and P. Krishnamurthy,
“Impact of multiple-detect test patterns on product qual-
ity,” Proc. International Test Conference, pp. 1031-1040,
2003.

[4] H. Tang, G. Chen, S. M. Reddy, C. Wang, J. Rajski and
1. Pomeranz, “Devect aware test patterns,” Proc. Design,
Automation and Test in Europe, pp. 450-455, 2005.

[5] T.Hosokawa and K. Yamazaki, “An n-detection test gener-
ation method to increase fault sensitization coverage,” IE-

-11-

ICE Transactions on Information Systems (Jap Edi-
tion), Vol. J90-D, No. 6, pp. 1474-1482, June 2007.

[6] B. Vaidya and M. B. Tahoori, “Delay testing based on tran-
sition faults propagated to all reachable outputs,” Proc. In-
ternational Workshop on Defect Based Testing, pp. 67-75
2004.

[7] L Park, A. Al-Yamani and E. J. McCluskey, “Effective
TARO pattern generation,” Proc. VLSI Test Symposium,
pp. 161-166 2005.

[8] N. K. Jha and S. Gupta, Testing of digital systems, Cam-
bridge University Press, 2003.

[9] J. P. M. Silva, “Integer programming models for optimiza-
tion problems in test generation,” Proc. Asia and South
Pacific Design Automation Conference, pp. 481-487, 1998.

[10] P. F. Flores, H. C. Neto and J. P. M. Silva, “An exact so-
lution to the minimum size test pattern problem,” ACM
Transactions on Design Automation of Electronic Systems,
Vol. 6, Issue 4, pp. 629-644, Oct. 2001.

-12-

