SEB Y 27 A O E I
(1980 6 6)

9 -1

SPECIFYING THE UNDERLYING CONTROL STRUCTURES OF
PROGRAMMING LANGUAGES IN THEIR DENOTATIONAL SEMANTICS

Masakl Nakagawa
Tokyo University of Agriculture and Technology
Koganei, Tokyo, Japan

The denotational semantics of a programming language specifies the meaning of programs in

that language.

Generally it is designed to be implementation free,

However, current archi-

tectures require special techniques to implement block structured programming languages such
as stacks and activation records, by which their underlying control structures are realized.
A domain M such that M 2 V > N x V x M, where N: names, V:values, is claimed to be suitable
for specifying the required implementation techniques for the underlying control structures

in a denotational semantics.

We hope this kind of semantics, together with the syntax, pro-

vides sufficient specification of block structured programming languages to enable us to

automate generation of their compilers.

1. INTRODUCTION

There are several motivations in providing a
mathematical semantics of a programming langu-
age. We can design the semantics to provide
implementers of the language with a precise
description from which to produce a correct
compiler; or to offer programmers in that lan-
guage a reference standard on which to specify
the behaviour of their programs; or tc be com-
posed of a small number of fundamental con-
structs for language designers to make a clean,
mathematically neat programming language.

Although a great deal of progress has been made
by D. Scott, C. Strachey, and other people in
this discipline [1], [2], [3], there remains a
considerable amount of work to be done in the
development and application of their research
towards the full achievement of the goals stat-
ed above. 1In this paper we are investigating
the design of a semantics to help implementers
of block structured languages.

As a starting point, we shall consider the se-
mantics of an extremely simple programming lan-
guage BREF (Block structured programming langu-
age with Recursive Functions). This language
includes problems common to block structured
programming languages such as ALGOL-~60, -68,
PASCAL, etc. The problem we will address is
how to describe the underlying control struc-
tures of these languages in their denotational
semantics. The semantics must specify stack
mechanism but should not impose or imply much
of the implementation detail for a particular
computer, since the language could be imple-
mented on various machines. Therefore, another
goal of this sort of semantics is in revealing
underlying control structures more rigorously
than any other means without specifying too
many fine details.

2, A BRIEF DESCRIPTION OF BREF

We now give a brief informal description of the
BREF language.

2,1 Syntax

Syntactic domains

i€ ID (identifiers)
e € Exp (expressions)
n € Nml (numerals)

The small letters i, e and n are to be used op-
tionally with primes or subscripts as variables
over the domains of identifiers, expressions
and numerals, respectively.

Production

e::=n | i | lambda 1. e | if e; then e, else e;|
e;; e; | while e; do e |
let i = e; in begin e, end f
let rec i = e; in begin e, end | (e) |
ej(e;) | refe | val i | i:=e
arithmetic predicates such as n > 1 etc, |
arithmetic expressions such as n - 1 etc.

Fig. 1. The Syntax of BREF

2.2 An Informal Description of the Semantics

BREF is a simple example of common block struc-
tured programming languages. It would be a
subset of any such language, so the reader who
is familiar with them may soon learn how to
write programs in this language without much
explanation. However, we shall point out some
important semantic features of this language.

(1) BREF is an expression language. An ex-~
pression may have side-effects, otherwise

e, ; ep", "while e; do ey" and "i :=e" lose
their raisons d'étre.

(ii) The usual scope rules for block struc-
tured languages apply in BREF.

(iii) The binding mechanism is static.

An expression is evaluated in the presence of
an environment whose purpose is to bind each
identifier to a value. The environment is the
conceptualization of a symbol table constructed
and referred to during a compilation.

(iv) BREF requires the notion of states, i.e.,
a mapping from locations into storable values.

(v) Only call-by-value is allowed for the
function application.

The application of a function to an argument is
performed by the expression: ej(ez). It is
evaluated in the same way as in PASCAL, etc.

(vi) BREF is a stack oriented language.

The underlying control structures of many block
structured programming languages can be model-
led by a system of activation records which are
allocated on a stack (in ALGOL-60, -68, etc.)
or in a heap (in SIMULA-67 {4], GEDANKEN [5],
etc.). Compared with many low level languages
and some high level languages, such as FORTRAN,
the computational structures in the above lan-
guages are less transparent from a text of a
program. It is extremely difficult to under-
stand how recursion, coroutines or quasi-para-
llel processes are realized in a computer with-
out knowledge of their underlying control
structures. For example, the declarations of
recursive functions (procedures) can be very
brief and concise in a program, but their eval-
uation is realized by the rather complicated
activation record allocation and deallocation
mechanism on a stack. The concept of activa-
tion records is sufficient in order for BREF,
ALGOL-60 and ~68 to allow recursive functions
(procedures) and for SIMULA~67, GEDANKEN to in-
corporate coroutines and quasi-parallel process-
es, We shall describe the underlying control
structure of BREF algorithmically and illus-
trate the point by using an example., A fuller
explanation is presented in [6], [7].

As mentioned above, the computational structure
of BREF is considerably different to the struc-
ture of a program text. Therefore, the com-
piler has to produce extra code by which the
underlying control structure is realized at
run-time. Consequently, our brief description
of the underlying control structure is divided
into two parts: one is about the action at
compile~time, while the other is about that at
run-time.

At compile-time

A template for an activation record of a block
or a function (procedure) is created. It has a
pointer to the compiled code; its binding slot
for local variables is filled in with declared
bindings for that block/function (but lambda
parameters are not bound to any values); its
static~link points to the template for the ac-
tivation record of the block/function which
textually includes this block/function f#f; its
dynamic~link points to the above activation
record if this. activation record is for a block,
but it .is not filled in at compile~time if the
activation record is for a function.

#The right side of a recursive function is
evaluated in the environment created by itself
as well as preceding bindings. This cyclic en-
vironment is conceptually realized by the cy-
clic structure created between the activation
record of the recursive function and that of a
block/function for which the recursive function
is declared. I.e., the static-link in the for-
mer points to the latter, while in the local
binding slot of the latter, the name of the re-
cursive function points to the former., This is
illustrated in fig. 2.

Dynamic~links of functions are filled in at
run-time since the control must be returned to
the point immediately following a function call
in a program.

At _run-time

The template for the activation record of the
outermost block is copied onto the stack. The
computation follows the compiled code.

When an inner block is about to be evaluated,
the template for its activation record is

copied onto the top of the stack, the computa-
tion with the activation record of the outer
block is suspended and the code of the top acti-
vation record is executed, When execution of
this code is completed, the activation record

is relinquished from the stack, and the computa-
tion of the outer block is resumed. (This is
what we call stack discipline.)

If a function (either recursive or nonrecursive)
is about to be evaluated, the template for its
activation record is copied onto the top of the
stack and its dynamic-link is filled in by a
pointer to the activation record to which the
control must be returned after the function
call. After the completion of the code, the
activation record is relinquished, and the code
of the activation record pointed to by the dy-
namic-link in the function is resumed. Evalu-
ating a recursive function sequentially creates
and sequentially relinquishes several activa-
tion records of the same template with their
lambda parameters bound to separate arguments.

The following example illustrates the above pro-
cess. Consider the program Pr:

let N=3
in begin . -
let rec fact=lambda i. if i=1 then ﬂ
else i*fact(i~1)
in begin
fact(N)] block B
end
end -

block A

At compile-time of Pr

The following three templates for the activa-
tion records of block A, the recursive function
"fact" and block B are created:

Z-» the code of block A

code pointer
binding slot N=3
static-link NIL
dynamic~link

the template for the activation record of block A
(abbreviated as AR.A)

----- > the code of the recursive function "fact"

the template for the activation record of the recursive function
"fact" (abbreviated as AR.fact)

: the code of block B
=AR,fact

the template for the activation record of block B
(abbreviated as AR.B)

Fig. 2. The three Templates for
the Activation Records

At run-time of Pr

1)
(2)
3

%)

A copy of AR.A is placed on the stack.

A copy of AR.B is stacked.

The execution eventually starts from the
code of AR.B.

When the function application fact(N) is
evaluated, AR.fact is copied onto the
stack. The value of N is fetched from
AR.A along its static-link and finally the
code is executed with the lambda parameter
i bound to 3.

When fact(3-1) is evaluated, the computa-
tion with the above activation record is
suspended, another copy of AR.fact is
placed on top of the stack, and the code
is executed with i bound to 2.

Evaluating fact(2) entails the evaluation
of fact(l). The similar step to (5) is
taken. But, in this case, fact(l) yields
the answer 1. This answer is returned to
the activation record which is pointed to
by the dynamic-link of the activation
record for fact(l).

The completed activation record is relin-
quished and the computation with the
activation record pointed to by the former
activation record is resumed. This action
is repeated until the answer fact(3) is
returned as the value of block A.

€)]

(6)

@

The denotational semantics of BREF presented in
section 4 rigorously specifies all of the above
features, but the main emphasis is placed on
the specification of the feature (vi), i.e.,
the underlying control structure.

3. MODULES AND COMPUTATION BY MODULES

In the Scott-Strachey approach, the meaning of
a program is, fundamentally, a function from
states to states. So we are not given, nor
should we expect, any explicit indication of
how a language is to be implemented from this.
We may be able to gain, implicitly, some ideas
as to what an implementation might look like
from the text denoting the function, but this
would only be fortuitous.

For our purpose, then, functions do not seem to
be adequate. Our model of underlying control
structures is a system of activation records
which obeys the stack discipline or unrestrict-
ed allocation mechanism in a heap. As describ-
ed above, each activation record behaves as an
automaton. It takes an input from scme automa-
ton and returns a value to another and changes
its state into a renewal state, Its behaviour
is not just the computation of a mathematical
function of its input. Rather it has a body
where input values are processed. Therefore

we have to ask what are the suitable semantic
constructs which correspond to functions in the
Scott-Strachey approach.

3.1 Definition of Modules

Consider the following recursive domain equa-
tion:

MEV->NxVsxM

where N is a domain of names for modules and V
is that of values., (This will be specifled
later.) Whether domains are complete lattices
[8] or cpo's [9], [10], it can be proved that

there exists a domain M which satisfies the
above equation and that the domain M and that
of automata are isomorphic [1l1}, [12]. An ele-
ment of the domain M is termed a module. A
module m € M takes an input v € V and returns
an output v' € V to a name n € N and also a
renewal module m' € M, This domain was first
considered by R. Milner to provide a denota-
tional semantics of a non-deterministic pro-
gramming language. [11], [13]. But, since it
can describe the behaviour of automata denota-
tionally, it enables us to specify the under-
lying control structure of BREF in its denota-
tional semantics.

A value which a module receives is either a
state, or a state with some information for the
module. But, the former case can be considered
as a special case of the latter such that the
information received is just the control, i.e.,
the message "start your computation'. We as-
sume that the special symbol "cc'" denoting the
control is in the domain of basic values, which
are not further specified.

The domain V is formally defined as follows:

B (basic values) with cc € B

T (Boolean values)

N (integers)

€ N (names of modules)

B+WN+T+M+ (N+T)x N (information)
states)

n
I
S
\Y I x S (values)

"~

3.2 Computation by Modules

Computation by modules is realized by internal
computation by the modules and external commu-
nications between them. The computation by a
module m where m = Av.<n(v), v'(v), m'(v)> is
performed by the application v'(v). If m'(v) =

(bottom or undefined), the module is to be
relinquished or garbage collected. If m'(v)=m
for Vy, the module m is a pure reentrant module
and it is not l_as in the Scott-Strachey -ap~
proach,

The communications between modules have now to
be formalized. Suppose there is a module m,
such that m; = Av.<n(v), v'(v), m'(v)>. If the
name n(v) is that of a module m;, the module

mp must be applied to the output value v'(v).
As the module m; sends its output value to
another module and so on, the communications
"proceed". If there are many modules, to de=~
scribe all at every snapshot of communications
is troublesome and unnecessary, because only
one module will be active at any one time,
Therefore, we describe such a module and ignore
all others. The proceeding of communications
among modules is described by the notation:

Avie<ny (vy), vi'(vi), m'(vi)> v
Ava.<na(va), va'(va), ma'(va)> vy'(v)
= .

where n;(v) is the name of the second module.

When we wish to skip the finer detail such as
€2, €3 In ¢c; => ¢z, C2 => c3, C3 => cy, we
write ¢y .. => ¢y,

4, A DENOTATIONAL SEMANTICS OF BREF

To define a denotational semantics of BREF,

the notion of states and environment must be
formalized., The simplest idea is that a state
is a mapping from locations (references) into
storable values, while the environment is a
mapping from identifiers into denotable values.
Since it is not our aim to have their detailed
models, we adopt the above idea. R. Milne and
C. Strachey consider such models [2].

L (locations)

Vs =N + T (storable values)

Vd =N + T + L + M (denotable values)
o0& S =1L->Vs (states)

p € Env = ID » Vd (environment)

The extension of the environment p with x
bound to v is expressed as p[v/x]. The Greek
letters o, p and u, optionally with primes or
subscripts, are variables over S, Env, and N
respectively.

We assume all domains are complete lattices
and define continuous functions on them. As
mentioned before, however, we may assume them
to be cpo's. In that case, we only have to
ignore the augmented top, T, of each domain
which is added to make it a complete lattice.

(1)

Useful functions and operators

(1) injection X in I
injection from X (B, W, T, M, Vs x N) into I
(2) projection |B, |N, |T, |M, |(Vs x N)
e.g.
Tyatv=Ty
viB= < bif v=>bin I for b € B
lB otherwise
However, we are not rigorous in our use
of injection and projection functions.
(3) Cartesian product functions < ..., >
(4) selection x @ 1
selects the ith element from a tuple x
(5) conditional functions
Condp: (A x A) = (T » A)
a if t = true € T
a' if t = false € T
Condp(a,a')t =
_]_Aif C=_[_T
Ty if € =Ty
(6) equality functions =p: A x A>T
== ' =
T& if a TA or a TA
ampa’ - lr if a =] ora' =],
true if a and a' are identical
false otherwise
(7) fixed point operators

Yan: (&% + A™) » A"

For the last three, we omit the subscript A
when it is clear from the context.

(i1) Auxiliary functions

Before proceeding to the semantic definition
of BREF, auxiliary functions are introduced.

(1) new: S - L "new'" returns a new location
given a state 0.
(2) name: M » N

For a newly created module m, name returns
a new name, Or, less abstractly, name(m)
may be considered as a (base) address of
the new module.

(iii) Semantics of BREF

The semantic function for BREF £ has function-
ality:

Exp » (Env > (N + M)). The third argument N

is similar to the continuation in the Scott-
Strachey approach. Because, £[[e]]py which
is a module has to know the module to which it
sends its output value. The brackets [[]] are
used to emphasize that the argument enclosed by
[[1] is a syntactic object, and is not part of
the metalanguage for the semantic specification.

ellnll,, = Av.<u, <alln]], vé2>, L>

We shall not specify the interpretation of
numerals. A semantic function o: Nml -+ N is
assumed.

£[[1]]p, = Ave<u, <plli]], ve2>, | >

g[[lambda 1. e]]pu =

Av.<u,<Av'.§[{e]]p.u.<cc in I,v'@2>in V,v@2>,]>
ol{v'er[(Vs x N)}eL/i],

{v'@l] (vs x N)}@2

where p' =
L

u' o=

Given a pair consisting of information and a
state, it returns to the module named u, to-
gether with a state, the module which is to
receive the value for '"i" and the name of a
module (dynamic=-link).
£[[if e; then e, else e3]]pu =m
where m=)v,<name(m;), <cc,v@2>,
Av'.<Cond (name (m3), (name (m3))v'@L|T,
<cc,v'@2>,
Av'o<u,v'", i}>>
m=g[[e;]]
mp=£[[ez]]
m3=g[[es]]

pname (m)
oname (m)
pname (m)

Or more formally:

m= (YyA<m,m,mz, m3>.<the above definition of m,
gller]]
gl[e2]]
glles]]

pname (m)’
pname(m)*
)>)@1

pname{m

But, we prefer to use the former.

gller; e2]l,, = m
where m=Av.<name(m;), <cc,v@2>,
Av'.<name(m;), <cc,v'@2>,
AV'o<u, v, o>
m=£[[e1]]) hame (m)

m2=£{{ez]]p name (m)

£[[while e; do ez]]pu =mq
where m=Av.<name(m;), <cc,v@2>,
Av'.Cond(<name(mz), <cc,V'@2>, m>,
<u, <ce,v'@2>, |»)v'@l|T>
m=g[[e;]]pname(m)
m2=E[[e2]]) name (m)
Elflet i =

where m=Av.<name(m;), <cc,v@2>,

e; in begin ey end]]mJ =m

Av'.<name(my), v'
S »
Awcp, v, >

my=¢[[e;]]pname(m)

mo=Av'"". g[[ez]] fcc,v"@2>

p [v"'@l! Vd/4i]name (m

g[[let rec i = e; in begin e; end]]pu =m

where m=Av.<name(m;), <cc,v@2>,
Av'.<name(my), v',

AV o<p,v", i?>>
m1=€[[91]]p.name(m)
m2=XVm-€[[ez]]p.name(m)
where p'=p[v'"'@L |Vd/i]

<ce, v'"'@2>

Note that "e;" is evaluated in the same envir-
onment as "e,", hence the module m; feels the
environment which the module m is creating.

E[[(e))]pu =Ellell

5[[31(62)]]"“=m
where m=Av.<name(m;), <cc,v@2>,
Av'.<name(m;y), <cc,v'@2>,
Av".<name(v'@1|M),
<<v"@L|Vs,p>in I,v"@2>,|>>>
m=E£[{{e;]]
mz=¢[[ez]]

p name (m)
p name (m)
The module m; should return a module as its
output information, and the module m, should
return an argument. The former is applied to
the latter by the renewal of the module m.
f =
gllre e]]pu m
where m=Av.<name(m'), <cc,v@2>,
Av' o<y, <new(v'@2),0'>, | >>
where ¢'=A1.Cond(v'@l,v'@2(1))(1l=new(v'@2))
1= =
Elf e]]pu m
where m=Av.<name(m'), <cc,v@2>,
Av'.<u,<v'@l, Ns>, | >>>
where Ns=Al.Cond(v'@l,v'@2(1)) (1=p[[1]])

For the above two, m' = E[Ie]]pname(m)

Ellval 111 = Av.<u, <v@2(p[[i]]]L), ve2>, |>
We do not specify the semantics for all the
arithmetic predicates and expressions. They
are all similar to the examples given:
Eller ~ ez}l =m
where m=Av.<name(m;), <cc,v@2>,

Av'.<name(my), <cc,v'@2>,

AV <u, <v'@1-v"@1,v"@2>, | >>>

gller > ez]]p“ =m
where m=Av.<name(m;), <cc,v@2>,
Av' . <name(m,), <cc,v'@2>,
Av".<u,<(v'@l>v"@l),v"@2>,l>>>

For the above two,

ml:g[[elllpname(m)’ me=£{{e2]]) name (m)

5. A SPECIMEN EVALUATION

Consider the semantics of the program Pr, i.e.,
5[[Pr]]pouo<cc,co> where o045, po and y, denote
an initial state, an initial environment and
the name of an initial module respectively,

o can be considered to be the name of the
module Av.<ee, v, |>, where the symbol "ee"
denotes the name of a display (terminal) module.

?[[Pr]]pouo<c0.00>

=> g[[inside of block A]]
where m=Av.<ugy,v, |>
P1=po[3/N]

=mj<cc,0y>

o [3/N] name(m)“¢€»90>

where m;=Av.<name(m;),<cc,v@2>,
av'.<name(m;), v',
Av".<name(m), v", |[>>>
m2=£[[factbody]]pzname(ml)
my=(Av"'.E[[inside of block B]]
<cc,v'"' @2>
p2=p1 [v"'@1|M/fact]
factbody=lambda i, if i=1 then 1
else i*fact(i-1)

o:name(mx))

;> (Av.g[[fact(N)]]

where
Vm=Av'.£[[factbody]]

p2=p1[Vm/fact]

=€[[faCt(N)]]ogname(ml)
Note that m;=Av".<name(m), v", |> now.

> >
pzname(m1)<°c’v@2)<Vm,0q

Dz[V'@l@l/i]v'@1@2<CC,V'@2>

<ce,09>

=>(Av'.£[[factbody]]pz[v,@1@l/i]v,@l@2tcc,v'@2>)

<<3,name(m;)>,0¢>

=f£[[factbody]] <cc,00>

pz2 [3/1]name (my)

=my<cc, 9>
where m,=\v.<name(ms),<cc,v@2>,
Av'.<Cond (name (mg) ,name (my))v'@L|T,
<ce,v'@2>,

AV". <name (m;) ,v",|>>>
ms=£[[i=1]]
ms=€[[1]]p3name(mu)
my=g [[i*fact (1~1)]]
p3=p2[3/1]

=> ms<CC,0p>

P3 name (my)

p3name (my)

.
B

=> my<false € T,0¢> where my is the first re-

newal of the above
=> my<cc,0p>
Note that my=Av'".<name(m;),v", |> now.
=mg<cC,00>
where mg=Av.<name(mg),<cc,v@2>,
Av'.<name(m; o), <cc,v'@2>,
Av'".<name (my),
<v'@L#v'"eL,v"@2>, [>>>

m9=€[[i]]p3name(me)

m]0=g[[fact(i‘1)]]pgname(ms)

:

=> Mg<CC,0¢”>

- => mg<3,0p> where mg is the first renewal of

the above
=> myp<cc,0p>
Note that mg=Av".<name(m,),<3*v"@l,v"@2>, |> now.
=£{[fact(i~-1)]]

<ce,0p>
piname(mg) ° °

=> g[[factbody]]pa[Z/i]name<ma)<cc,oo>
pu=p3[2/1]

=> myp<CC,0p>
where myp=g[[1*fact(i-1

12=E[[()]]p“name(m11)
my 1=Av'" . <name (mg),v", |>

<cc,00>
pyname (mj3) ce,00

where my3=Av'.<name (m;,),<2%v"@L,v"@2>, |>

=> g[[fact(i-1)]] <CC,00>

pyname (my3)
=>

£[[factbody]] <ce,o9>

py [1/1]name(m,3)

=> my3<l,00>

= my1<2,00>
mg <2,00>
my <6,00>
my <6,00>
m < 6,00>
Hp <6,00>
<ee,<6,00>, i}

The above series of communications can be re-
garded as a rigorous specification of the

underlying control structure when the program
Pr is evaluated.

ACKNOWLEDGEMENT

The author would like to thank Mr, Phil Collier,
Dr. R. Turner, Dr. P, Hayes at the University
of Essex, Prof. E. Goto, Prof. N. Yoneda at the
University of Tokyo and Prof, N.E. Takahashi

at Tokyo University of Agriculture and Technol-~
ogy for their valuable comments and encourage-
ment. Thanks are also due to the editor,
reviewers and Miss Kristine K. Olson whose com-
ments, criticisms and suggestions improved the
presentation and content of this paper.
REFERENCES

[1] D. Scott and C. Strachey, Towards a mathe-
matical semantics for computer languages,
Proc. Symposium on Computers and Automata,
Polytechnic Institute of Brooklyn, 1971,
19-46.

R. Milne and C. Strachey, A theory of
programming language semantics, Chapman
and Hall, London, 1976.

J. Stoy, The Scott-Strachey approach to
the mathematical semantics of programming
languages, MIT Press, Cambridge, MIT,

Dec. 1977,

G. Birtwistle, L. Enderin, M, Ohlin and

J. Palme, DEC. SYSTEM-10 STMULA language
handbook, part 1, Swedish National Defence
Research Institute and the Norwegian
Computing Center, Stockholm

J.C. Reynolds, GEDANKEN-A simple typeless
language based on the principle of com-
pleteness and the reference concept,
Communications of the ACM, Vol, 13, No. 5,
May 1970, 308-319.

R. Bornat and B.J. Wielinga, Does AL
programming really have to be like knit~
ting with spaghetti, Proc. AISB Al Summer
School, 1976.

C. Hewitt, Viewing control structures as
patterns of passing messages, Artificial
Intelligence, Vol. 8, No. 3, June 1977,
323-364.

[8] D. Scott, Continuous lattices, Proc,
Dalhousie Conference, Springer Lecture
Notes Series, No. 274 Springer-Verlag,
Heidelberg, 1972.

G. Plotkin, A powerdomain construction,
SIAM J. on Computing, Vol. 5, No. 3, Sep.
1976, 452-487.

[10] M. Smyth, Powerdomains, J., of Computer and
System Science, Vol. 16, 1978, 23-36.

R. Milner, Processes: a mathematical model
of computing agents, Logic Colloguium ‘73,
North-Holland, Amsterdam, 1975, 157-174.
M. Nakagawa, Mathematical semantics for
parallel computation, M. Sc. dissertatiom,
Univ. of Essex, Dec. 1978,

R. Milner, An approach to the semantics

of parallel programs, Proc. Convegno

di Informatica Teorica, Istituto di
Elaborazione della Informazione, Pisa,
1973.

(2}

[31

[4]

(5]

f6]

{71

{91

[11]

[12]

(13]

