RE S Q- k3558845

ARV —F 4T VRT L 261
(1985 3 1)

— A2 X — 2 O HEBEEFiN

A DDB YPelﬂf01wnarlce Evaluation by RESQ.

ik 548
Yoshinobu Yamamura .
HEPA - ¥— -« LABRRHE HPATYR AV RT 4 Fa—F
tit

IBM Japan Science Ins

1.0 INTRODUCTION

Data processing requirements have
grown so rapidly that no single computer
system can offer efficient data accessi-
bility and thus good overall performance.
That is, if one host computer contains all
of the enterprise databases, then the com-
puter failure will seriously affect the
daily work of the enterprise and no one
can have an access to that database until
it is recovered. Furthermore the growth
rate of data processing requirements has
cutgrown the capacity. of any single com-
puter system.

The above circumstances naturally
force most companies to install multiple
sets of computer systems which are
expected to solve the above problems.
Usually these computers are coupled
together to ‘provide database sharing
capability. Without the aids of distrib-

uted database management concept, howev-.

er, this coupling does not seem to 'solve
data accessibility problem but only'helps
to deal with increased transaction vol-
umes.

Geographically distributed database
systems are classified into various cate-
gories from the viewpoint of how.database
copies are held, and the method of con=
trolling of concurrent updating. For
instance, a distributed concurrent system
with full replication of the database can
ensure high data accessibility easily but
the many functions to sustain data integ-
rity in inter—-node communication tends to
lower performance [THOM79, ROTH801. Whi-
le centralized concurrent control system
with shared single copy of database and
distributed concurrent control _system
with dynamic replication can guarantee

both data integrity and performance well.

but not do excell in data accessibility
[STRI82, DANIS83].))

itute

2.6 - SYSTEM

The domain considered here is.one .of
large commercial database svstems such as
banking applications since the require-
ments as described in "™Introduction™ are
the most demanding in this area:.

2.1 DESIGN APPROACH

The design requires large number of
transaction volumes and the improvement
of data accessibility. Also required is
to be transparent to existing application
programs which run on traditional data-
base management systems; to assure
acceptable performance to end users; and
to guarantee data integrity. Data integ-
rity, data accessibility, and performance
are interdependent characteristics with
respect to managing DB.

The key words used in this paper are
defined as follows:

Data Integrity Consistency among
data entities in a
system

Data Accessibility Ability to continue
processing .even if
some node fails

Performance Response time. It is
equivalent to the
time. period during

which the terminal is
dedicated to the
transaction.

The design approach taken here is as
follows. First, based on a traditional
database management system, data accessi-
bility is added by the use of backup copy
at backup node. Second, parallel process-—
ing of the response to user and the main-
tenance of the backup copy is carried out

‘by the use of .a cluster controller to

assure performance.

1

2.2 SYSTEM COMPONENTS AND FUNCTIONS

A system consists of host nodes,
cluster nodes, and networks. Each host
node . consists of a Transaction Manager
with DBTAB, Data Manager with DB, and
Backup DM with Backup DB. An example of a
system configuration is illustrated in
Figure 1. In this example three host
nodes are in the system: Tokyo, Nagoyva,
and Osaka. Every terminal is connected to
one primary host node and one backup host
node. The leftmost name in Figure 1 shows
the primary host node of that terminal.
In each host node there are two types of
databases, primary and backup. The Tokvo
host node has the Tokyvo primary database
and the Osaka back up database for Osaka.
If one of the host node, say Osaka, goes
down the Tokyo host node is then to serve
every terminal connected to Osaka host
node by use of the Osaka backup database.

2.2.1 Host Node

Each host node consists of Trans-
action Manager with DBTAB, Data Manager
with DB, and Backup DM with Backup DB as
illustrated in Figure 1.

TM = Transaction Manager:
Manager Manages all of
within the host node:

Transaction
communication

. Manages interface between users and
host node
Manages interface between each node
Recognizes 1location of requested DB
entity by looking at DBTAB

. Sends entity allocation request to
DM/BDM

. Include TP access method such as
ACF/VTAM

DBTAB - Data Base Table:
. Entity Key Number

. Node-Id of primary DB
L]
L]

Node-Id of backup DB
status such as live or dead

DM - Primary Database Manager

. Manages local primary database
DB - Primary Database

BDM - Backup Database Manager

Manages ‘local backup database
. Simulates failed DM

BDB - Backup database

TOKYO —{ DM H DB ITOKYD
‘ CLUSTER T '
CONTROL M '

TOKYO —! —LBDM H BDB |OSAKA
NAGOYA —I DM H DB |NAGOYA
CLUSTER |— T
CONTROL M
* NAGOYA —I:nn H BDB |TOKYD
GSAKA N —| DM |—-| DB IUSAKA

CLUSTER T |
CONTROL M
0SAKA —| BDM H BDB |NAGDYA

Figure 1.
host nodes, cluster

terminals,

System Configuration: A system consists of
nodes
and communication networks.

with several

Each

host node consists of Transaction Manager with

DBTAB,
Backup DB.

Data Manager with DB, and Backup DM with

2.2.2 Cluster

The cluster consists of cluster con-
troller and terminals. The cluster con-
troller is a special purpose small
processor which contains a hard disk drive
and a sufficient processor power. It man-
ages receiving transactions from termi-
nals, communicating with host node, and
storing sufficient information of each
transaction profile which is necessary
for recovery procedure as described in
"Recovery".

2.2.3 Network

communi-
and communi-

consists of
modems »

The network
cation controllers,
cation links.

2.3 SYSTEM BEHAVIOR

Take next transaction as an example a
system behavior is explained.

2.3.1 Description of Example
. Normal processing mode is assumed.
. The primary database is located at the

host node 1 named HOST.

. The backup database is located at the
host node 2 named BACKUP.

. Each system component is suffixed to
identity the host eg., TM2 means TM at
host node 2, HOST.

2.3.2 Behavior

The illustration of this example is in
Figure 2, and the description of this
example is as follows,

1. A user generates a transaction. The

cluster controller records the trans-

action profile and send the trans-
action itself to the host node via
network.

2. TM1 sends back the acknowledgement
message to the cluster,

3. and consult the DBTAB to identify the
location of requested database enti-
ty. In this example, since DMl is the
owner TM1 sends a processing request
to DM1.

CLUSTER HOST BACKUP
TRANSACTION 1—>-1 -
' DM
v V—,3
‘|
s []
AT] |
I Y11 som
1ST. RESPONSE <—tV V
E
V
9

e
n
11 r

2ND. RESPONSE <—tV
| ¢+ PROCESS TIME
v
Figure 2. A Transaction Life
Example: This is an
example of single entity
request. A message
received node has an
acquired production
entity.

DM1 allocates all resources to exe-
cute and does update processing for
the primary database. At the same time
it updates the sequence number of the
target entity. After processing it
releases resources and pass the con-
trol to TM1.

TM1 sends the first response to the
cluster, and

consults the DBTAB to identify the
location of the corresponding backup
database entity. In this example
since the host node 2, BACKUP, is the
owner TM1 generates a transaction for
backup maintenance and sends it to
TM2.

7. The cluster controller
that the update completed.
the status and sends a response to the
user. At this time it releases the
terminal for that +transaction. It

“means that terminal is ready for the
~next transaction.

8. When TM2 receives a backup mainte-

. nance transaction it sends a process-—
ing request to BDM2. DM2 then updates

recognizes
It records

the corresponding backup database
entity as indicated update sequence
number.

9. After completion of the update BDM2
" notifies TM2 and TM2 sends a response

- to TM1
10. After receiving the response from
TM2, TM1l completes the backup mainte-

nance transaction and sends the sec-
ond response to the cluster.

When the cluster receives the second
response, ie., the final response, it
storés all of status information of
the transaction to its hard disk, and
completes the transaction.

11.

3.0 RECOVERY

"Two Phase Lock (2PL)"™ protocol by
Eswaran [ESWA76] is a starting point of
this discussion. All transactions in this
system are supposed to take the 2PL proto-
col. "Two Phase Commit (2PC)"™ protocol by
Gray [GRAY79]1 and "Majority Consensus
Approach™ by Thomas [THOM79] 1look very
elegant. However, communication delay
due to voting may become unacceptable in a
commercial DB application since the above
approaches do not permit any responses to
the - transaction originator (a user)
unléss the DBMS decides OK or not. "Fault
and atomic actions™ by Randell [RAND79]
and "Atomic action's unitary property"™ by
Lampson [LAMP83] are good milestones for
reliability issues. This paper extends
those two by use of Gray's logging archi-
tecture [GRAY791].

3.1 THE RECOVERY MODEL

The model simply takes - a 1logging
strategy to redo or undo some failed tran-
sactions. General terms used 'in this
paper are defined as follows:

host nodes and cluster . :nodes

[YAMA83 and YAMA8GA]

cluster log: done when a response is sent
back to the user [YAMA84A]

information in hands: cluster 1log,

node'

host

log, and pending transactions
in live nodes [YAMA83 and
YAMA84GA]

recovepry action: REDO and UNDO [GRAY79]

3.2 SINGLE PROCESSOR SINGLE DB (SPSD)
RECOVERY

In a traditional SPSD system, the
recovery strategy becomes simple
[YAMAB4B]. The transaction and the host
log are defined as: L

transaction: a. series of actions: READ,
WRITE, LOCK, and UNLOCK
[LAMP83] '

host log: commit point by 1og write— ahead
[GRAY791

As a transaction goes from start to
end, each status corresponds to this tran-
saction phase as illustrated in Figure 3.
In Figure 3, "START"™ phase transaction,
which corresponds a period between gener-
ation of transaction in a cluster node and
before locking, produces "PENDING"™ status
in the cluster node. "LOCK™ ar "UNLOCK™
phase transaction produces nothing. "UP-
DATE"™ phase transaction produces one of
the two states: "PRE_COMMIT LOG"™ in the
host log or ™POST_COMMIT LQG"™ in .one.
"END"™ phase +transaction, which corre-—
sponds a period between ™UNLOCK" and a
response to the user, produces "CLUS-
TER_LOG™ in the cluster log and "RELEASE"
the previously set "PENDING"™ status in the
cluster.

The vital information to guarantee
consistency in the SPSD environment is
matching between user's view and the DB
entity. .Since our assumption about the
available . information comprlses "CLUS-
TER"™, "HOST", and “PENDING" status, we can
easily transform the combination of those
into the transaction phase, then we. can
take appropriate recovery action.

TRANS |DB CLUST |HOST |PEND
START cLuST
Lock

|pre
UPDATE |UPDATE

|posT
UNLOCK
END CL_LOG REL

Transaction Phéses in- a SPSD

Figure 3.

3.3 MULTIPLE PROCESSOR MULTIPLE DB
- (MPMD) RECOVERY i '

The treatment for a MPMD recovery
becomes more complicated [YAMA84B]. The
definitions of the transaction and the
host log are changed as follows:

transaction: parallel actions: READ,
WRITE, LOCK» and UNLOCK »
defined as in SPSD (primary

transaction) Non-primary ones
are kicked by the primary one
(mirror transactions). [YAMAS83
and YAMA8GA]

commit point by log-write-ahead
in each DB, i.e., primary and
backups [YAMA83 and YAMA84A]

host log:

By analogy of the SPSD recovery, same
kind of transformation can be carried out
for MPMD recovery. Important situations
related directly to consistency among
user's view, primary DB entity, and backup
DB entities are summarized in Figure 4.
Again, similar discussion can be applied
here for the MPMD environment. The impor-
tant thing is that, by the aid of the
available information, we can easily take
an appropriate recovery action.

TRANS CLUSTER HOST LOG

START |NONE NONE

LocK

UPDATE | NONE PRIMARY DB LOG &

OR 0 TO N BDB LOG

UNLOCK

OR cL_LOG PRIMARY DB LOG &

END 0 TO N BDB LOG
CL_LOG ALL LOG

Figure 4. Transaction Phases in a MPMD

4.0 PERFORMANCE MODEL

The objective of this evaluation is
to assess whether this system's perform-
ance is acceptable or not. We take
response time as acceptability measure
because it represents a . performance meas—
ure from the viewpoint of users. We need
to construct a model to reflect the trans-
action life exactly since we do not know
dominant effect of each componet to the
response time at this point of time. This
enforces us to use a simulation model.

4.1 SIMULATION

The reasons why simulation is used
instead of analytic models are as follows,

Fork process at network
Process synchronization
Passive queue such as lock

4.1.1 Fork process at network

A transaction (a Jjob)
several processes in the system.

generates

4.1.2 Process synchronization

The way of handling a transaction by a DM
(Primary Database Manager) is as follows:

1. Schedule an application region for
the transaction.

2. Process the transaction in the appli-
cation region. This includes DBs read
activity.

3. Send response to the user.

4. Process the backup activity (logging)
in a DM region.

5. Process the OTHREAD
another DM region.
the DBs.

activity in
This is to write

Activity 3, 4, and 5 run concurrent-
ly, and activity 4 and 5 must be synchro-
nized.

4.1.3 Passive queue such as lock

The number of the backup process is
limited since the physical number of log-
ging device is limited. This means that
more than one transaction use the same
backup process. To ensure mutual exclu-
sion, we have to provide the locking for
the backup process.

4.2 RUNNING ENVIRONMENT

We use the Research Queueing Package
(RESQ) [SAUES82] as a simulation langauge
since RESQ well copes with the above prob-
lem. The parameters used in the run are
listed in Figure 5.

5.0 RESULT

The result is obtained in Figure 6.

6.0 CONCLUSION

Data integrity, data accessibility,
and acceptable performance are mandatory
for a large commercial database system.
In this paper, a system which satisfies
the above requirements are proposed.

7.0 REFERENCES

configuration:
3 host nodes
10 comm. ctl. per node
5 comm. links per comm. ctl.
48 K BPS full duplex line
parameters:
10 MIPS per processor
25 mili sec for each DB 1,0
5 DB I/0s per each appl. pgm.
25 mili sec for comm. ctl.
service time

Figure 5. Modeling Parameters

RESPONSE
TIME
(SEC)

. . .

1 1 1 L 1
10 20 30 40 50

TRANSACTION RATE (/SEC)

Figure 6. First Response Time VS
Final One: '.': First,
*%': Final.

DANI83

ESWA76

GRAY79

LAMP83

RAND79
ROTH80

SAUES82

STRI82

THOM79

YAMAS83

YAMABGA

YAMA84B

Daniel R.C. et al., "Dynamic
Replication, an overview"™, Pro-
ceedings . of NCC, (1983),
219-227.

Eswaran, K. P., et. al., "The
Notions of Consistency and
Predicate. Locks in a Database
System™, Comm. ACM 19, 11,
(Nov. 19763, 6264-633.

Gray, J. N., "Notes on Data Base
Operating Systems", Operating
Systems - An_ Advanced Course,
Springer, (1979), 393-481.
Lampson, B. W., "Atomic Trans-
actions™, Distributed Systems -
Architecture and. Implementa-—
tion, Springer, (1983,
246~265.

Randell, B., "Reliable Comput-—
ing Systems", Operating Systems
= An Advanced Course, Springer,
(1979), 282-391.

Rothnie J.B. et al., "Introduc-
tion to a System for Distrib-
uted Databases (SDD-1)", ACM
T0DS, 5, 1, (March 1980), 1-17.
Sauer C.H., et al., "The
Research Queueing Package Ver-
sion 2: CMS Users Guide"™, IBM
Research Center, Research
Report, RA-139, April, (1982).
Strickland J.P. et al.,
"IMS/VS: An Evolving System",
IBM Systems Journal, 21, 4,
(1982), 490-510.

Thomas R.H., "A Majority Con-
sensus Approach to Concurrency
Control for Multiple Copy Data-
bases™, ACM TODS, 4, 2, (June
1979), 180-209.

Yamamura Y., "A Parallel Proc-
essing in a DDB System™, Pro-
ceedings of the “IPSJ
Semi-Annual Conf. 27, (1983),
6K3.

Yamamura Y., "A Multiple Backup
Strategy for a DDB Syatem",
Proceedings of the IPSJ
Semi-Annual Conf. 28, (1984),
6E6.

Yamamura Y., ™A Note on Data
Integrity for a DDB Syatem",
Proceedings of the IPSJ
Semi-Annual Conf. 29, (1984),
6F3.)

