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APPROXIMATIONS FOR A GENERAL TOKEN RING SYSTEM WITH PRIORITY
CLASSES OF MESSAGES

George KIMURA
NTT Communication Switching Laboratories

3-9-11, Midoricho, Musashino-shi, Tokyo, 180 Japan

This paper presents new approximation methods for evaluating the
performance of a token ring system with limited service, where two priority
classes of messages are offered in batches at each station. In order to
obtain performance measures, the system is regarded as multiqueue model with
the nonpreemptive priority. Our model can. handle general batch input
streams. The performance measures are derived using the queueing theory and
the diffusion approximation technique. The proposed approximations are
numerically validated by comparing them with simulation results.



1. INTRODUCTION

Token ring systems are commonly used in local area networks (LANs) 1],
(2)]. This paper presents a method for evaluating the performance of a token
ring system with limited service offering two priority classes of messages.
In this system, there are N stations in the ring and a token is passed in
cyclic order (see (31, 41, 157).

Recently, the importance of priority functions in LANs is increasing (67,
Therefore, several priority schemes for token ring systems have been proposed
f6l, (7). This paper deals with message-based priority which means that
priority is assigned to the message. Namely, we assume priority classes of
messages will be offered to a token ring system.

There has been much interest in token ring systems with message-based
priorities. Yamamoto et al. [8] and Shen et al. 9] have proposed priority
schemes. In their performance models, the gated policy is adopted and the
message buffer (queue) capacity in each station is assumed to be only one
message. Their approach cannot be extended to a model which allows infinite
buffer capacity. Nishida et al. [10] have proposed another priority scheme
and analyzed it under the conditions of mixed exhaustive and limited policies,
and infinite buffer capacity in each station. However, according to Sethi et
al, (11], '"the current trend in the token ring system is moving toward a
round-robin system." A round-robin system is another term for the limited
policy. Karvelas et al. [12) have treated the token ring system with two
priority classes of messages and analyzed it under the conditions of batch
Poisson inputs and limited service. They applied their results to the
analysis of integrated packet voice/data systems. However, it is well known
that the voice packet arrival stream cannot be modeled as batch Poisson input
13). The problem is lack of a method that allows general batch input. The
goal of this paper is to resolve the problem by presenting new approximations
that are capable of handling general batch input.

2. MODEL DESCRIPTION

In order to evaluate performance measures for a token ring system with
limited service and message-based priority, a multiqueue model is proposed.
In queueing terminology, the token is the server, messages or packets are the
customers, and the overhead associated with sending a token from one station
to the next is the walking time. A symmetric multiqueue model means that the
arrival process, the service time and the walking time distributions at each
queue are identical.

The multiqueue model considered here <can be characterized by the
following assumptions:

1) The single server walks around among N queues (LAN stations);

2) When the server arrives at the i-th queue and finds no waiting customers,
it moves to the subsequent (i+1)-th queue. If the server finds waiting
customers, it serves the first customer in the queue and then moves on to the
subsequent (itl)-th queue, 1<i<N (when the server is in the N-th queue, it
moves on to the first queue);

3) There are two priority classes of customers, ! and 2. Class 1 has
priority over class 2. Interarrival times of batches (messages) for class j
customers at the 1i-th queue are independently and identically distributed

(iid) random variables with a mean of in_l, and a variance of o Batch

2
) Aji °
sizes for class j (the number of customers in arriving class j batches) are
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iid random variables with a mean of bji and a variance of GBJi (1<i<N; 3=1,2).

(2) be the second moment of the batch size, b 2)_ +b 2
R Bji ji°

4)  The priority rule is of the non-preemptive [12] or the head-of-the line.

Namely, class 2 customers can be served only when the arriving server at the

i-th queue finds no waiting class 1 customers. Once a class 2 customer

receives his service, class 1 customers cannot interrupt the service of class

2 customers even if the class 1 customers arrive at the i-th queue during the

service time.

5) The customers are served individually, based on FIFO (first-in first-out)

rule among arrival batches and on SIRO (service in random order) rule within a

batch.

6) The service times for class j customers arriving at the i-th queue are

By letting bJ

. 2
iid random variables with a mean of h, 1’ a variance of “Hii’ and the second

moment h (2), 1<i<N. .
7) The walking times from the i-th queue to the (i+l)-th queue are iid

. . . 2 .
random variables with a mean of ug and a variance of o .7, 1<i<N.

Ui
Remarks: 1) 1f Xl =0 or X21=0 (no priority classes), then the model
considered here is reduced to that of Kimura et al. (14] and Kuehn [15].
2., 2, 2 . .
2) If Xll "Ald =] and XZi A2i =1 (batch Poisson inputs), then the model is

consistent with that of Karvelas et al. [12].
The follow1ng notations are needed to sketch the analysis,

Co—E Ui , Pi Eh,;b“hu , Po =§Zp; .

.,): mean v1rtual waiting time of class j customers in the i-th

i1 queue,
E(Wji): mean actual waiting time of class j customers in the i-th
queue,

E(WB,.,): mean actual waiting time of a class j customer in the i-th
queue whose position is the first in its batch,
E(Q..): mean queue length of class j customers in the i-th queue,

E(WW,.): mean virtual waiting time for a‘GIFX]/G/l ordinary queue with

3t arrival rate in and mean service time eji’
E(ﬁéji): mean actual waiting time of a customer whose position is the
first in its batch for a GIrX]/G/I ordinary queue with arrival rate
A,, and mean service time €.,
ji ji
ct mean cycle time which is known that ¢ =l
1-po’
ci(z): second moment of cycle time which is given approximately by
Kuehn{15],
A s R . .
c,i: mean conditional cycle time assuming that a class j customer of the
J i-th queue contributes to the service time of the cycle, given by
A cot+hyi
* 1—po +pi
3,.(2): second moment of conditional cycle time assuming that a class
ji

j customer of the i-th queue contributes to the service time of the
cycle, given approximately by Kuehnfl157,
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C (2) Z O'Uk2 + E(aldkhlk( )—ale2h1k2)+ THsi +CJA
k#x

A
éi: mean conditional cycle time assuming that no customer of the i-th
queue contributes to the service time of the cycle, given by
A Co
A (2) G T T=%o ¥p1 "
éi : second moment of conditional cycle time assuming that no customer of
the i-th queue contributes to the service time of the cycle, given
approximately by Kuehnf15],
c @ = 2 ouk® + E(a;khik(z)'alkzh kz)"'c
where i
A A A b )A,
arsk= (Mixbix + Makbax)Csi, 8ik= (Mixbix + Aaxbar)Ci,
ari = Aibiic, a2i = Azibzic, ai= (M1ibii + Azibaidc,
3. ANALYSIS

In  this section, two approximation methods are proposed. In
approximation 1, individual mean waiting times for the high and low priority
classes are obtained from the virtual waiting times. In approximation 2, the
total virtual load in each queue is approximated by a diffusion process in
almost the same manner as Ref.l14]. The mean waiting time for the high
priority class is derived in the same manner as in approximation 1. The mean
waiting time for the low priority class is obtained using a relationship
between the virtual load and the waiting time.

3.1 Approximation 1

Consider the virtual waiting time for class 1, E(lei)' E(lei) is given
by the sum of E(Qli)-éli and the mean forward recurrence time of the cycle

time. This produces

A 2
2  Car ¢ 44 @
E(lex) _E(le)clx "'al.xc‘::l Z%x az:.c: ZXZ *(1'ali'a2x)'g' ex . (1)
From Little's formula,
EQis)=M1:b:E(Wis) | (2
The relationship between E(wli) and E(WBli) is represented by
@,
E(W) =E(MB,) + 2ibaig,, @
2b1s
Substituting (2) and (3) into (1), it follows that
@ i 6@ 8, ¢ % C;m
E(WL0)=AyibyiCes {E(WBy ) + bl—'zr‘b—cn} ancé ;{1;‘ *azi%“;/:\. "(1"811‘a2x) C

@

Now assume that the difference between E(VW ) and E(WB ) equals that between

E(lei) and E(WBli) for a GIrX]/G/l ordlnarv queue; i.e.,
E(Wes) ~EMB1) =E(W.) —E@..) ®)
By applying the diffusion approximation technique, the right-hand side of (5)
rie}

can be evaluated. E(vﬁli) and E(WB ) are given by’
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E(Wu) =%‘i‘ {(bs; @b, )12 +byiCrs @)

A1ibyi€is® _(/C\u @ _¢,;2) }
3ot B

2 2 20y,
+m{>»u2 Gari®b1i?+ oari®+bas E (6)
~ AT | (é‘ i(2)_3 :2)
E(WB’u) = E(z'»l‘l_:——b}ifm{?»uz Ta1i?bri?+ ap1i¥+bai _..1_6‘17‘__}. )

By substituting (4), (6) and (7) into (5), E(WBlj) can be obtained. Then
using (3), the mean waiting time for class 1, E(wli)’ is derived.
The mean waiting time for class 2 can be obtained in the same manner as

for class 1. The virtual waiting time for class 2, E(VWZi)’ is obtained by

E(W2i)= MaibzilziE(Wai) + A1ibiiCiE(WB2:) + AribriCriE(Wi:)

AA @ A R @ ()

€13 C1i Ca; Cai PPN o 3 21
+g, Sl +az; +(1-21:-821) w 8
ari < 2611 az2i c zlc\z1 ( 1i i ¢ ﬁi ( )

The following relationship between E(WZi) and E(WBZi) can be shown:

A
Cai by @ -bi;

E(W2i) =E(WB2:) + T—NiibriCai 2by; ‘ &)

Making the same assumption for the difference between the virtual waiting time
and the actual waiting time results in

E(Was) —EMBo0) =E(Wai) —E@Ba) . (10)
E(GWZi) and E(ﬁﬁZi) are given by diffusion approximation in the same manner.
Using (8), (9) and (10), the mean waiting time for class 2, E(WZi) is
obtained.

2 2 2 2
H i i 2 = =

Remark: In the case of batch Poisson inputs ( 11 “Ali 1 and xZi Tpoi 1),
our approximate formulas are consistent with the results of Karvelas et al.
[(1i21.

3.2 Approximation 2

Assume that the service time distribution is independent of priority
class, i.e., hii=hei=hi, omii?= On2i®= ow? .
Consider the i-th queue and fix the time point t. Let VLi(t) denote the

total virtual load of queue i at time t. The range of VLi(t)fis then a
half-open interval [0,«). VLi(t) can then be regarded as a diffusion process
with pdf fi(x,t), i.e.,

fi(x,dx = Pr{ x= VLi(t) < x+dx} . an

Let Li(t) be the work load arriving at the queue in (0,t]. Let Yi(t) be

the number of times that the server has visited the queue in (0,t], and Zi(t)
be the Yi(t)—th convolution of the service time. Let us define VL;(t) as
follows:

VLI = Li(t)-Zi()+VL: (0) . (12)
The stochastic process VL;(t) is referred to as an unrestricted process (see

e.g. 17]) and its range is the open interval (-=,®).
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For approximating the stochastic process (in this case, the virtual load)
by diffusion processes, a boundary condition is necessary. We set the
elementary return boundary at the origin (x=0). This paper will approximate
the sojourn time distribution at the origin by an exponential distribution as
in Ref.l16]. Let "iO be the probability that a diffusion particle sojourns at

the origin and qi(x) be the pdf for jump amounts from the origin. A jump

amount corresponds to a work load that is carried in the i-th queue by the
first arriving batch after the queue becomes empty (see also Ref.l141 and
f161). The following set of equations must be satisfied by fi(x,t):

—g%——a, ax‘+i gxz‘ + (Mt A2) mior) (13)
. i 9f;
—q—%ﬁ—) = (AMit A2i) ®iolt) +[-O¢1f1*%‘"a—x_ x=0" 14)
lim fi(x,t)= limn fi(x,t) =0, 19
x>0 e r16]
where ai, Pi are the diffusion parameters given by :
o = lin ECLI(D)/t = (Mribas +Azibai ) hi— hs /Ci (16)
—+00
and I
Bi = lin Var‘(VL:(t))/t = {Aib1i®+op1:iD+Aai (Mei® Taih2i®+0s2i®)= T3 )hi?
t—oco ¢i

+ (Aibii + Azibes ——%—i—) oui? . an

Solving the diffusion equation (13) under the conditions (14) and (15), the

mean virtual load E(VL, ) is obtained bvnﬂ

E(VL.) = zle{(b“ —bsdhe+bschy @ —EL i) (18)

The mean waiting time for class 1 is obtained in the same manner as in
approximation 1.

The mean waiting time for class 2 is derived as follows. The
relationship between the virtual load and the waiting time for the multiqueue
problem is given by

A 2> bji&)"bji A
E(VL1)=5?;‘4 [A5ibsihiE(WBs )+ Ajibsihy e Asihici 1, (19)

Equation (19) is derived by using Brumelle's theorem (18] (see also Ref.[8]).
The mean waiting time E(WBZi) is then obtained as follows:

2 Asib bsji -bsi
E(WB21) = 1 [E(VLi) — AsibsihiE(WB1s) +",§( _'2'_& hy @+ o AsihiCs )1.(20)

A2ibzih;

The mean waiting time for an arbitrary class 2 customer E(WZi) is
obtained in the same manner as section 3.1:

ba; ‘¥ -bai &
E(W21) =E(WB2:) + quzi 2 T-Niibiits (21)

Let E(jS) be the mean number of class j customers in the i-th queue for

1<i<KN; j=1,2. Applying the well-known Little's formula, we have

E(Qs1) = Asibs:E(Ws:) 4 3=1,2., @2
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4, NUMERICAL EXAMPLES

The proposed approximation results are numerically validated by
comparing them with simulation results. Throughout the following examples,
it is assumed that N=10, ui=0.1, and dUi=0 (1<i<N). This situation, for
example, corresponds to a token ring system with a distance between adjacent

stations of 200 (m), a signal propagation velocity of 2 108 (m/s), a

transmission rate of 100 (Mb/s), and a mean packet length of 1000 (bits).
Figure 1 shows the results of the mean waiting times vs. a, for a

Fx] %] 2_ 2_

2 2 /D/1 multiqueue (hli 921" =1, %u11 =%m2i =0). Here, (x]

represents the batch size distribution. The batch sizes for both classes are

assumed to be identical and have a unit distribution (bli=b2i=4,
2

”B112=GB2i =0). It can be seen from the figures that the mean waiting time

approximation for the high priority class (class 1) is very accurate.
Concerning the accuracy of the mean waiting time approximation for the low
priority class (class 2), approximation 2 is better

symmetric E

than approximation 1. o’ N=10 symmetric ;
Figure 2 shows the results of the mean waiting E» ™ B, ™1 /D/1 system 4
time vs. ay for a nonsymmetric (pl=1002, 02='°'=010) Approx.1
2 2 o |~ " Approx.2
5oE /D/l multiqueue (hli 21 =1, H1i ~CHo24 =0). It £1¢ E(Rar) x//
is seen that our results are suffciently accurate g =
for class 1, and both approximationms, 1 and 2, show 7§ _ e
good results for class 2, except for station 1. g E(W13)
Figure 3 shows the result of the mean waiting £ 10 . .
time vs. ay for a symmetric HZ E?/DI’DZ/I nultiqueue ii51mﬂam?"
(h,,=0.5, h,.=1, 0. 2=n_ 2=0). The accuracy of (95% conf idence
147777 M247 “Hig TTH2i interval)
approximation 1 seems sufficient for the different Bo 5 ; 5 : o

service time model. . - .
Traffic intensity in station i, a;

Fig.1 Mean waiting time in the symmetric
Ez ™7 ,E2 ™*7/D/1 system.

10° - 10° - 10° :
N=10 nonsymmetric N=10 nonsymmetric N=10 symmetric
Hz2,E2/D/1 system Ha,E2/D/1 system Ha,E2/D1,D2/1 systen
p1=10p2, p2=*+*=pi0 pi=10p2, P2=***=P 10
Approx.1 Approx.1 Approx.1
g 10°} ——-—- Approx.2 g 10 ———_ Approx.2 g 10 E(¥11)
s E(Wa1) s =
E A g g <
it Rt = E(W.:)
g g S
g 10 g 10 g 1
E(Wi1) t# Simulation
Simulation Simulation (?5% confidence
(95% confidence g5y confidence interval)
] interval) 1 interval) 107 . ) . )
2 4 6 8 1.0 2 4 6 8 1.0 00 2 4 6 B 1.0
Traffic intensity in station 1, a Traffic intensity in station 1, a; Traffic intensity in station i, a:
(a) Station 1. (b) Station 2-10. Fig.3 Mean waiting time in the
. ‘e L . symmetric Hz,E2/D1,D2/1
Fig.2 Mean waiting time in the nonsymmetric Hz,E2/D/1 system. .
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5. CONCLUSION

This paper presented approximations for a token ring system with limited
service where two priority classes of messages were offered in batches and
nonpreemptive priority was considered. The proposed approximate formulas are
very simple for an arbitrary number of queues and any traffic pattern. The
accuracy of the approximation is validated through numerical examples. In
consequence, it is clear that the accuracy of this approximation is sufficient
for practical use.

The following topics remain for further study:

(1) Derivation of the n-th moment of the waiting time and the number of
customers in the queues, n>2.

(2) An expansion to a general model which allows an arbitrary maximum number
of customers from any queue that can be served per cycle.

ACKNOWLEDGEMENTS The author would like to thank Yoshitaka Takahsahi for his
variable comments and helpful suggestions to this work.

REFERENCES

1] Bux, W., Local area subnetworks: A performance comparison, IEEE Trans. Commun., COM-29, 10,
pp.1465-1473 (1981).

21 Neilson, W.J. and Maydell, V.M., A surveyv of current LAN technology and performance, INFOR,
23, 3, pp.215-247 (1984).

f3) Hashida, 0., Analysis of multiqueue, Rev. ECL, NTT, 20, pp.189-199 (1972).

l4] Ferguson, M.J. and Aminetzah, Y.J., Exact results for non-symmetric token ring systems, IEEE
Trans. Commun., COM-33, 3, pp.223-231 (1985).

5] Takagi, H., Analysis of Polling Systems (The MIT Press, Cambridge, 1986).

6] Rom, R. and Tobagi, F.A., Message~based priority functions 1in local multiaccess
communication systems, Computer Networks, 5, pp.273-286 (1981).

[71 Manfield, D.R., Analysis of a priority polling system for two way traffic, IEEE Trans.
Commun., COM-33, 9, pp.1001-1006 (1985).
f81 Yamamoto, T., Okada, H. and Nakanishi, Y., Analysis of token-passing ring networks with

transmission priority, Trans. IECE Japan, J67-D, 9, pp.989-996 (1984), (in Japanese).
931 Shen, Z., Masuyama, S., Muro, S. and Hasegawa, T., Performance evaluation of prioritized

token ring protocols, in : Akiyama, M. ed., Teletraffic Issues, ITC 11, pp.648&—654
(North-Holland, Amsterdam, 1985).
f10] Nishida, T., Murata, M., Miyahara, H. and Takashima, K., An approximate analysis of a

prioritized token passing method in ring-shaped local area networks, Trans. IECE Japan, FE69,
1, pp.29-39 (1986).

11} Sethi, A.S. and Saydam, T., Performance analysis of token ring local area networks, Computer
Networks and ISDN Systems, 9, pp.191-200 (1985).

f12] Karvelas, D., and Leon-Garcia, A., Performance of integrated packet voice/data token passing
ring, IEEE J. Selected Areas in Communications, SAC-4, 6, pp.823-832 (1986).

13] Sriram, K. and Whitt, W., Characterizing superposition arrival processes in packet
multiplexers for voice and data, IEEE J. Selected Areas in Communications, SAC-4, 6,
pp.833-846 (1986).

[14]) Kimura, G. and Takahashi Y., Diffusion approximation for a token-passing system with
non-exhaustive service, IEEE J. Selected Areas in Communications, SAC-4, 6, pp.794-801
(1986).

F15) Kuehn, P.J., Multiqueue systems with non-exhaustive cyvclic service, Bell Syst. Tech, J., 58,
3, pp.671-698 (1979).

l'16] Takahashi, Y., Diffusion approximation for the single server system with batch arrivals of
multi-class calls, Trans. IECE Japan, J69-A, 3, pp.317-324 (1986), (in Japanese).
717) Whitt, W., Refining diffusion approximations for queues, Oper. Res. Letters, 1, 5,

pp.165-169 (1982).

F18) Brumelle, S.L., On the relation between customer and time averages in queues, J. Appl.
Prob., 8, 5, pp.508-520 (1971). )

F19] Burke, P.J., Delays in single-server queues with batch input, Oper. Res., 23, 4, pp.830-833
(1975).

201 Kimura, G. and Takahashi Y., An approximation for a token ring system with priority classes
of messages, J. Information Processing, 10, 2, pp.86~91 (1987).

<8>



