FRU—F 4 VI e VAT A 48—-9
(1990. 9. 7)

Galaxy#HHOSKCHY3XLRAF« LY FYVEHE

WO R MB Mk NSE RN W

NWRA¥EES WENEH

EMITR, CALAXYHMARL=F 1V + Y7 LOXY b 7— 2 BAREN
{10 LIRS DMV THNS, GALAXYTH, 1D Table LIRS
KRR F -2 R—2ENMLT, 2OBHWIIL—ERXY PTI—s S —FlbRY
BILIY, ATIY POFETIURMEEBERD S LHHMTH B, KR TR
ERIB)—~EH¥H2ID Tablenab— (VL7Yh) OBEHH>BRBEOMRL
~REMI oL THEXB, ID TabledRREAALT, LHHOWVARET

MHWEITES o FRTOMME —KBITXY b T2 ORBNET BT LMTED

ID Table Mechanism for Object Naming and Locating
in the GALAXY Distributed Operating System
Xiaohua Jia, Hir@hikb Nakano, Kentaro Shimizu and Mamoru Maekawa
~ Department of Information Science -
Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-Ku Tokyo, 113 Japan ~

ABSTRACT

This paper discusses. a . network- transparent naming and direct

object locating mechanism by means of ID table in GALAXY system.

It also presents a new efficient way of consistency control of replicated
ID table entries, By taking the advantages of special characteristics of

ID table, the algorithm of ID management achieves high degree of con-

currency and efficiency of accessing IDTE replicas. The algorithm can

survive from both node failures and network failures.

ID Table Mechanism for Object Naming and Locating
in the GALAXY Distributed Operating System

Xiaohua Jia, Hirohiko Nakano, Kentaro Shimizu and Mamoru Maekawa

Department of Information Science
Faculty of Science, University of Tokyo
7-3-1 Hongo, Bunkyo-Ku Tokyo, 113 Japan

ABSTRACT

This paper discusses a network
transparent naming and direct object
locating mechanism by means of ID
table in GALAXY system. It also
presents a new efficient way of con-
sistency control of replicated ID table
entries, By taking the advantages of
special characteristics of ID table, the
algorithm of ID management achieves
high degree of concurrency and
efficiency of accessing IDTE replicas.
The algorithm can survive from both
node failures and network failures.

1. Introduction

Naming plays an important role in the
design of any operating system. Especially in
case of distributed operating systems, where a
large number of objects are distributed all
over the system, the need to assign global
-.names to all the objects makes naming a more
important issue. Object locating is an impor-
tant function of naming - mechanisms.
Because the naming mechanism supports
references to objects, it directly. influences
both the ease with which users refer to
objects, and efficiency of locating objects.

Object identifiers (ID for short) are com-
monly used to uniquely identify objects in
distributed systems. ID Table is a structure
consisting of many ID table entries (IDTE for
short). Each IDTE contains the location
information of each object in the system.

Because accesses to objects can be requested
from many nodes, ID table entries need to be
replicated for faster access and higher reliabil-
ity. This replication can be further compli-
cated by the replication of file themselves. It
is' important to design a fully distributed
management of ID table with: fast access, high
concurrency and fault tolerancy.

This paper discusses the mechanism for
realizing network-transparent object naming
and locating in the GALAXY distributed
operating system; We also propose an
approach for concurrency and consistency
control of ID table management. This
approach takes advantage of special charac-
teristics of ID table, and thus achieves high
degree of concurrency and efficiency of ID
table access.

2. Objéct Manager

In GALAXY, there are following basic
types of objects: processes, files, storages,
devices, nodes and users. - Any type of basic
objects is managed by a special module dedi-
cated to the type. We call such a module by
a general term object manager. For example,
process objects are managed by a Process
Manager, file objects are managed by a File
Manager, and so on. :

Object Managers reside on all the nodes
where the objects of that type exist; each
manages a subset of the objects on the node,
and they all cooperatively manage all the
objects of the type. When an operation invo-
cation message is issued to an object, the
corresponding object manager is invoked.

Each object is assigned a system-wide
unique ID." In order to guarantee the unique-
ness of each ID, the ID format consists’ of
two fields: time stamp (TS) field and node
number (NN) field. Each field consists of 8
bytes. The TS field contains the time stamp
assigned ' to ‘the ID by ‘the node that has
created the ID. The NN field contains "the
node number where the ID is created. For
better performance, we define an eight-byte
(two-word) short-format 1D which is only
effective in each local node. The short-
format ID is a real-time time stamp and'it has
a remote bit to indicate whether the object is
in local node. B

3. Three-Level Noming Schenﬁe

- Names are used to designate or refer to
objects at all levels of the system architecture.
They have various purposes, forms and pro-
perties depending on the levels at which they
are defined. However an informal distinction
can be made between two basic classes of
names widely used in operating systems:
human-oriented names and system-oriented
names.

Human-oriented names are required to
meet the needs of human users for their own
mnemonic names, and to assist ‘them in
organizing, relating, and sharing objects.
Therefore human-oriented names should be
flexible enough to allow a user to define
his/her own names rather than simply identify
the. object, and they should be independent of
the physical location .and structure of objects
which they designate. System-oriented names
are automatically generated by the system and
they are used cither by the users or by the
system. In many cases, system-oriented names
are uniquely defined ‘and have the uniform
format for the management purpose 'Both the
hurnan-oriented ‘name and the’ system-onented
name 'are resolved w1thin a global and dlstn-
buted contcxt Cope e

The GALAXY system is designed based
on the above naming model. In GALAXY,
human-oriented names are called external
names. The basic structure of external names
is hierarchical but attributes can be attached
to it for representing the semantic relations
among objects. An external name is com-
pletely independent of the physncal location
and structure of objects. It is translated by
the user-defined naming contexts. The nam-
ing contexts may be global and there may be
multiple naming contexts in the system. The
intentions to allow multiple naming contexts
are flexibility and efficiency[11]. :

As for system-oriented = names, in
GALAXY, every object has an unique ID.-
The context of IDs is global and unique in the
system. An ID identifies an object, but its
structure and management mechanism are
irrelevant to the contcnts; external name, or
physical addresses of the object’s rephcas In
GALAXY, one object can have multiple
replicas. All replicas of an object use the
same ID irrespective of their locations.

4. ID Based Object Locating

The IDs of all the objects in the system
are stored in.a system-wide table called ID
Table. The ID Table contains all: the informa-
tion necessary for accessing the corresponding
objects. It consists of many IDTEs. Each
IDTE contains the a list of node numbers that
indicate the locations of object replicas. It is
not cfﬁcxent and reliable to let some central
node keeps the entire ID Table. Conversely, it
is also not realistic for every node to have a
copy of the entire ID Table. Thus, in
GALAXY, each node has a partial copy of
the ID Table. The copy of the ID Table of a
pamcular node contams cnmcs for the follow-
ing IDs:

(1) IDs that are contained in the nammg
contexts (directory files) on the node.
This is necessary because when an exter-
nal name is resolved to an ID, that ID

must be available in the node otherwise
further operations for locating that object
cannot be carried out.

(2) IDs that are used by the processes run-
ning on the node. The necessity of these

IDs at this node is obvious.

Avallabl_hty of the entries for these two
categories of IDs in the copy of a particular
node’s ID Table ensures the direct locating of
any object from any node.

At each node, a separate local object
table is maintained for each type of object
that resides on that node. The actual physical
location- of an object within a node is main-
tained in the local object table. Each entry of
an.object table consists, of:

(1) short-format ID
(2) physical address of an ébject
(3) access control information =

The format of a physical address varies
according to the type of an object. For exam-
ple, it contains the. device number(s) and
block number(s) for file objects.

Locating objects . is divided into two
steps:

1. to get the number of the node where the:

object exists

2. to get the phys1cal address where the
object exists

Step (1) is realized by the ID Table whlch:

contains the number of the node where the
object exits. Note that due to the specific
replication criteria of IDTEs at different
nodes, this method does not require any net-
work communication and’ the object_ locating
process is performed locally for all objects.
In step (2), each Ob_]CCl manager perforrns the
locating operation in a local node by usmg
the ‘object table[] l]

5. Model of ID Table Management

5.1. Definition

In GALAXY system, IDTE is replicated
for faster object locating. Furthermore, object
may be replicated for better access efficiency
and reliability. Each IDTE has three fields:
(1) Unique ID. : S
(2) Object replication list, a list of node
numbers that indicate the locations of object
replicas, denoted as IDTE (id).objs .

(3) IDTE replication list, a list of node
numbers that indicate the locations of IDTE
replicas, denoted as IDTE (id).ids ,

The location information in an IDTE
should be updated as Teplicas are 'created,
deleted or: migrated. The ID manager is to
maintain the. consistency of the replicas of
IDTEs when one of the replica is updated. - -

Assume that the sysitem consists- of n
nodes, Ny, N,,,,N,, in the network. Each
nede- can communicate ‘with each other.
IDTE (id)y, denotes the IDTE replica of id
residing at N;. OBJ (id)y, denotes the object
repllca of id res1dmg at N;.

D manager res1des in each node as a
system server. It serves both local users and
remote D managers

ID _manager provides the following

operations:

(1) ‘read (id .f buffer) it returns the buffer
with the conténts of IDTE (id).f , where
f is a field in the IDTE structure, f
€ (ids ;objs }. g

(2) insert(id .f ,newnode),

-+ IDTE (id).f = IDTE (id).f +{newnode]

(3) delete (id f ,oldnode),
- IDTE (ld) f = IDTE (ld) f {oldnbde }.

~The migration of an. ob]ect replrca can
be 1mplememed by creating a new replica at
the destination node and by deleting the old
replica at the source node. In the remaining
discussion, we assume the following:

(1) An insert(id f ,newnode) operation can
only be issued by the node who creates a
replica of the IDTE or the object at the
newnode; Here we call the original replica
the parent and the created replica a child.

(2) A delete(id f ,oldnode) can be invoked
only by the oldnode. That means only the
node from which a IDTE or an object is
deleted has the authority to rssne a delete
operation.

. These assumpuons do not lose gencrahty of
our approach.

5.2. Serialization Control _
From the above discussion, update

operations defined on an IDTE are two incre-

mental operations: insert(id .f ,mem) “and

delete (id .f ,mem).

When they are performed on the same
member mem of a field f, they should be
serialized ‘in exactly the same order as t,hey
are invoked. ‘
Two operanons opi and opj, if their execu-
tions ‘are required to be serialized, are called
serialized operations, denoted by opl - op 2,
as shown in Table 1. .

insert(id,f,mem) | delete(id,f,mem) |..

insert(id,f,mem) | . = No . :: -

delete(id,f,mem) = —_ : : ‘No
Table 1. Sermlrzatlon Requtrements

, Thc "No“ in the table means thc case

does not occur. Since the ID manager of a
node docs not allow any othcr nodc to make a
rcphca at its node whrle the same replrca sull
exists locally.
Serialization Control: Two operations op
and opé, if op; — op, holds, then at‘any
node in IDTE (ld)lds, op, shou}d be exc-
cuted prior to 0p,.

6. Data Structures and Algorithm of ID
Management '

6.1. Necessary Information and Data

structures » '
Each node, say N, maintains the follow-

ing information and data structures for IDTE

operations:

Local Clock :

N, maintains a local clock denoted by Ch,.

CN,('), is the value of CN, at physical time .

Local clocks need not be synchronized to

each other in the system.

IDTE structure
An IDTE of ob_|ect id in node N, comams

two lists, IDTE (id).ids and IDTE (id).objs .

IDTE(id).ids ~is a list of 3_tuples
(N; ,Np ,CN ()} 1nd1catmg that a IDTE replica
of ‘the object resides at N;, N,_is the creator
of the replica and Cy,(¢) is the time ‘when the
node N; learns its existence. IDTE (id).objs is
a list of pairs (N;,N, s mdlcatmg that replica
OBJ (id I, is created by N,.

Dal res for ID ,M_

(1) Request record

Request record is an array Req_rec[n] of size
n. An entry Req_rec[N;], corresponding to
node N,, contains the requests sent to N; but
have not been acknowledged by N;. Each ele-
ment in Req_rec[N;] is a pair (op CM(t))

consisting of an operation and a local times-
tamp indicating when the operation is issued.
The elements are sorted by their trmestamps ’

(2) Service record -

Service record is an array Sv_rec (n1 of size
n, an entry Sv rec[N 1 vcorrespondmg to
node N,, is a timestamp Cy, of the last
request operation that the node N, has served,
for N;. . ,

-71—

(3) Match queue

Match queue is a queue Mch _que[n] of size
n, an entry Mch_que[N;], correspondmg to
node. N;, contains the serialized operations
that arrive at N; too early and wait for the
arrivals of matching operatlons of their
partners from N

6.2. Basic Approach
We first define the following:

Definitionl. A completion state: For any node
N;, i=1,2,,,n, all operations requested by
N; have been acknowledged and N; does not
issue any new updating operation at this time.

Definition2. Consistency: IDTEs in the system
are said to be consistent if all the replicas of
an IDTE have the same contents when the
system is in a completion state.

To guarantee the consistency of all the
replicas of a particular IDTE, we design the
approach defined by the follow:ng four rules:

A1l The request operatlons coming from a
node: are executed in the same order as they
are issued at that node.

A2 An updating operation op (id) requested

by a node will be executed exactly once at all
the nodes in IDTE (id).ids .

A3 If two operations op and op, are opy —
op,, then at any node, opl should be exe-
cuted prior to op,.

A 4.1 Node N, recelves msert (id ,ids ,N,) from

N,:

. blllld a descendant set of N; in the IDTE
Child =
AN V(N N; ,CN,(t))eIDTE(zd)zds} :
1nmally, Descend = (N},

for any N;eDescend,
Chzld uDescend

Descend ‘

e for any NjeDescend, Ni sends to Nd the’
op (id)s that arrive at N after N has created:

a copy at N; and that have not yet been sent
to Nd'

A4.2 Node N,
from N;:
e N; makes N;’s children as the children of
its parent N, 's:

suppose (N NpiCy, (1)) € IDTE (id) ids,

for any N; that

(N;.N; ,CM(t)) € IDTE (id). tds'
make it into (V; N ,CN,(t))
A proof that A1,A2,A3 and A4 guarantec’
the consistency is given in [7].

receives delete (id ,ids ,N,-‘)

6.3. Algorithm

The algorithm is designed to imple-
~ment the above rules A1 ~ A4 deﬁned in
Subsection 6.2.

Parameters
In the followmg descnptton, the fol-
lowing parameters are used:
_N;: local node;
N, : remote node; .

N,: the parent of IDTE(id)y, or
OBJ (id)y,; '

t.ow: Current physical time;

f : name of a field in an IDTE, f
. € (ids,objs)

id: unique ID of an object, an index to the

IDTE.

Rules A1 and A2

For implementing A1, we .take the
sending-history policy to send requests, i.e.
each time we send a request, we send all the’
requests that have not been acknowledged
For example, if a locally generatcd request is
going to be sent to N,, the request is first put ;
into Req rec. [N], then all ‘the’ requests in
Req_rec [N,] are sent toN together ' :

_ Local Server:

(D Get an operanon request from local
mtcrface
(2) Send the request together thh the
request history to all replicas. -

At the other side, the remote server of an
ID - manager is waiting for any arriving
request message. Because of our sending-
history policy, an operation may be contained
in more than one: arriving ‘message. To avoid
re-executing the same operation, i.e. for A2,
the service record is used to trace on the last
request operation it has ‘served for each node.
In order to ensure that the messages arrive at
remote node in the same order as they are
sent out, any acknowledge is sent together
- with the request history, in the same way as a
request.

Remote Server:

(1) Receive a request message from a
‘remote node.

(2) Execute the operations that have not
been executed before.

(3) Record the tlmestamp of the last opera-
tion it served.

(4) Acknowledge the request with that
timestamp. ' '

Rules A 3and A4

Two procedures. Do_Insert = and
Do_Delete are the implementations of A4.1
and A4.2 respectively. They are called by
the remote server when a Temote insert or
delete request is executed. For ensuring the
serialized operan()ns to be executed in a
correct order, ie. for A3, they first. check
"whether the coming insert or delete request
arrives too late or too early accordmg to the
serialization requirements. If it is too early,
enqueue the request waiting for the arrival of
its partner of senahzatlon If it is too late,
‘dequeue the rcqucst “The enqueue and
dequeue conditions are as follows f ‘

If a request insert (na f Ne) arrives, while N,
-still exists. in .IDTE (id).f , then enqueue the
insert (id .f ,Ni).in Mch_que [Ng]. .

“If ‘a ‘request delete (id ;f N) arrives, but Ny is
not in IDTE(id).f, suppose ‘that- N, is the
parent of Ng’s: IDTE (id) or OBJ (1d), then
-enqueue < the delete(id fN,) -
Mch_que[N,).

If a request insert(id f ,Ni), comes from N;,
and delete (id f N) € Mch_que[N;] -then,
the : first delete (id f,N;) from the head -of
Mc¢h_que{N;] exactly matches with the com-
ing insert (id .f N); the same thing happens’
if a delete(id f Ny) comes from N, and
insert (id ,f ,N,) € Mch_que [N,). o

In dealing with the insertion or deletion
of an IDTE replica, a special care should be
taken. Do_Insert sends to the newly inserted
IDTE (id) and its descendants the operations
they have missed; Do_Delete makes the chil-
dren of the deleted IDTE (id) as the children
of its parent’s and from the Req_rec delete
the requests still being tried to be sent to the
deleted replica.

6.4. Fault Detection and Recovery

In the approach described above, each
node holds the requests to the other nodes
until it makes sure that the requests have been
properly executed. - This mechanism makes
the fault recovery very easy. Since every
modification is invoked by the request mes-,
sage in the system, if a node is recovering
from a failure, so long as it receives all the
request messages that it had missed during its
failure, it would recover to the consistent state
with others.

Both node failure and network failure
are discussed here. To make the information
of Req_rec at each node survive from failure,
a copy of Reqg.rec is always kept in a per-
manent storage.” We assume that the node
failure does not destroy the information. in the
permanent storage.

‘For "a node failure, we consider two
cases, one is a proper shutdown, and the other
is an accidental crash. In both cases, the sys-
tem will invoke a recovery procedure when it
is recovering. In order not to affect other
nodes’ recoveries, before a node commits a
shutdown, it. moves its Req_rec: to. the leader
of its group or-a safe node. . But the system
suffered from the accidental crash cannot do

this operation. We assume that the physical
recovery of any accidental crash will be con-
ducted soon. The recovery procedure of a
node, say N;, requests all the other nodes for

the missing request messages, . and the node:

which receives this request sends its local
Req_rec[N;] as a reply.

, To detect a network failure and to
recover the failure as soon as possible, each
node periodically sends test messages to. the
nodes from which it has not received a shut-
" down message but. cannot commumcate with.
As soon as the communication becomes avail-
able, the testing node sends the saved _Tequests
to the nodes which have suffered from a net-
work fault to bring them to the most .recent
state.

7 Appllcablhty of]D Management

The IDTEs may be in transient states
dunng the system s running, and the replicas
of an IDTE may not be consistent. We will
show that in spite of this, by using the mfor-
mation obtamed from the. local IDTE, the sys-
tem can propcrly locate any object entity or
rephcas of the ObJCCl

_First we see how to locate an object in
the -case of object migration. - Assume an
object Obj(id) with identifier id - has. been
migrated from N, to Ng v, t0 Ng, (N; # N;,
1S i,j <f), and a process P at N, wants to

access Obj(id), but the local IDTE (id).objs .

is -stil Ny.. That is; N, does not get the
operation of ‘migrating Obj(id) out of N,.
According .- . - to: - - our .

Reg_rec[Ny] in Ny. When a N.’s request
arrives at Ny, N, ﬁnds .that Obj(id) is
migrated to N,, then N; goes to.N,, going on
in this way, N, will finally.find Obj(id) at
Nf' 5 . N

efficiency,” and fault tolerancy.

“blocked or aborted by others.
jmechamsms such as two-phasc lockmg[l 2],
nmestamp
'ing(4,9,10], allow ‘at most ‘one of the

algorithm,
{insert(id ,obj N ,), delete (id,obj Ny)) -~ «

~A file system can use .the ‘local IDTE
information of a' file “object ‘to' find -the ‘total
number of rephcas and their locauons in the'

system, so as to maintain the consistency of
file replicas. The .consistency control on
replicated files can ‘be independent of the
scheme used on IDTE replicas. For generality,
the weighted voting mechanism is assumed to
be used for consistency control on replicated
files. . An algorithm using the local IDTE
locating information to maintain ‘the con-
sistency of rephcated files is given in [7].

8. Evaluatlon and Conclusnon

+ ~.The ‘three-level naming mechanism in
GALAXY system provides a network tran-
sparent naming facility to users. The multiple
naming context in the mechanism -makes it

achieving better flexibility, scalability and

usability. The.locating mechanism allows to
locate any object in the system right at an
accessing node without inquiring from remote
nodes, which makes the locatmg mechanism

-very fast and also improves the overall system

performance by reducing the network traffic.

The ID manager has the following
advantages: high degree of concurrency and
In the ID
management, updating operations can be
issued concurrently with no need of synchron-
1zmg to each’ other, and’ their executlons can
be - procceded to the end without being
Distributed
‘ ordermg[3 6], wexghted vot-

conﬂlctmg update operanons to proceed to the
end:" ‘

The efﬁc:cncy of access IDTE is hlgh
In our approach, read’ operations aré ‘always
performed on the local rephca and an update
operation is issuéd in a non- synchronous ‘way

-and’ sént to other nodes: with no neéd‘to reach

a consensus‘in advance. The blocking time
of.a read-and -update operation .is' much :less

sthan those., with n.e'tworkjwide synchroniza-

tions, such as global locking, timestamp ord-
ering, voting, and so. on. The network-wide

massage passing of updates in out algorithm
is also low.

Fault tolerancy is another advantage of
our ID management. Our approach works as
long as there is at least one node running
properly in the system. It can recover the
nodes from both node and network failures
with fairly less message passing in the net-
work, A global locking mechanism cannot
work if one node is in failure. A voting[9,10]
mechanism requires that at least max(r.w)
" nodes are in running and can communicate to
each other. Available copies[8] can survive
as long as one node is running, but it cannot
work at the presence of network partition.
Virtual network partition[5] can tolerate both,
node and network failures, but it at most
allows the nodes in one partition to access the
replicas of data.

Comparing with other consistency con-
trol mechanisms on data replication, our algo-
rithm of ID management achieves better per-
formance in managing replicated IDTEs.

References

1. Philip A.Bemstein, Vassos Hadzilacos
and Nathan Goodman, Concurrency Con-
trol and Recovery in Database System.
P289-307, Addison_Wesley. 1987.

2. Philip A.Bernstein and Nathan Good-
man. An Algorithm for Concurrency
Control and Recovery in Replicated Dis-
tributed Databases. ACM Trans. on
Database System, Vol.9,No.4, Dec.1984,
P596-615.

3 J.B.Rothnie, P.A Bemstein,
N.Goodman,etc. System for Distributed
Database (SDD-1). ACM Trans. on
Database System, Vol.5,No.1,Mar. 1980,
P1-17.

4. D.K.Gifford. Weighted Voting for Repli-
cated Data. Proc. Seventh ACM Sympo-

sium on Operating System Principles,
1979. ‘

*®

10

11

A.E.Abbadi, D.Skeen and F.Cristian. An
Efficient, Fault-Tolerant Protocol for
Replicated Data Management. Proc. of
the 4th ACM symp. on PODC.1985,

P215-229.

A.Demers, D.Greene, etc. Epidemic
Algorithms for Replicated Database
Maintenance. Proc. of the 6th ACM

Symp. on PODC, 1987. P1-12.

X.Jia, H.Nakano, *K.Shimizu and
M.Maekawa. Highly Concurrent Direc-
tory Management in the GALAXY Dis-
tributed System. ICDCS, 1990.

J.L.Carroll, D.D.E.Long, J.Paris. Block-
Level Consistency of Replicated Files.
Proc. of ICDCS. 1988. P146-153. -

D.Barbara, H.Garcia-Molina and
A.Spauster. Policies for Dynamic Vote
Reassignment. Proc. of ICDCS. May
1986. P37-43.

S.Sarin, R.Floyd, and N.Phadnis. A Flex-
ible Algorithm for Replicated Directory
Management. Proc. of ICDCS. 1989.
P456-464.

PXK.Sinha, K.Shimizu, N.Utsunomiya,
H.Nakano and M.Maekawa, Network-
Transparant Object Naming and Locating
in GALAXY Distributed Operating Sys-
tem. Submitted to Journal of Information
Processing, Japan.

