FRV—F 4 VT VAT A 49-3
(1990. 12. T

GALAXYAMANRV=F 4 VY IRF LSBT BRETL X ORR

Pradeep K. Sinha WK HEH  ER ¥ N % W 5F

REKPEEE HERLR

ARV—=F A I IAFLOBRRE, 7V P FOZFHTTREBERNBFELD S,
HE, SROFITI 2 IV RATFLERCRBENIGRARV—F A VT I RXT LD
Be, TNE0ATI 2y FEY AT LEHCRAT S RN ERUTEREE? 5, &h
HIRIVRESEEEES, EMFTOYXF LR, 23—V — k> TXFHNEE ST
JrH bPERINTYY, HBEDOEHCE->TEOFT I Y FEFET LIS Y83, G
ALAXYIHWT, ZHORRLE, Co2—Y—KroTHhROONEFTT Y b
ERETIVRFLARCIYEYYTEILTCH B, KMORREB/HLHEMR TR DN
BRMEN—DTHY, RoTXOYRLBFMRY RS LLHEELETILOL R T, &
RXWE. GALAXYSHMANRV=F 4V ZIRAFLTOATI 2 b O&HIT LB
DEROBS L R eTRT 8, WK, HEHE., T8, BIr2—V—RETELER
HRREREOFRTHS,

Names and Name Resolution in the GALAXY Distributed Operating
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Naming plays an important role in the design of any operating system. Especially
in case of distributed operating systemns, where a large number of objects are distri-
buted all over the system, the need to assign global names to all the objcc‘ts makes
naming a more important issue. A naming system allows users to assign character-
string names to objects and subscquently use these names to refer to the corresponding -
objects. In GALAXY, name resolution is the process of mapping an object’s user-
defined name to its corresponding system-defined unique identifier. Name resolution is’
one of the most frequently used operations. Hence the efficiency and the reliability of
this operation is very critical for the entire system. In this paper we destribe the con-
cepts and mechanisms for object naming and name resolution in the GALAXY distri-

buted operating system. Efficiency, scalability, flexibility and user-definable reliability
are some of the salient features of our mechanisms.
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1. Introduction

This paper discusses the concepts and
mechanisms  for realizing  network-
transparent object naming in distributed
operating systems. Multiple global naming
contexts and descriptive naming based on
bierarchical names are used in - our
approach. These are desirable features of
names in distributed operating systems for
better efficiency, flexibility, and usability.
We also discuss our name resolution
mechanism which maps an object’s user
defined name to its system defined unique
identifier. Unlike the conventional mechan-
isms, this mechanism allows the users to
define their own reliability requirements for
the resolution of certain object names from
certain nodes of the system. In addition, a
hierarchical name cache is used for improv-
ing the efficiency of our name resolution
mechanism. Our ‘naming and name resolu-
tion mechanisms aim at transparency to
physical location and structure of objects.
This is one of the most important require-
ments in distributed operating systems. The
concepts and mechanisms proposed in this
paper are developed in the GALAXY [4, 11,
12] distributed operating system.

2. The Three Level Naming Scheme

The two basic classes of names widely
used in operating systems are: human-
oriented names and system-oriented names.
Human-oriented names are defined and used
by the users. For improved usability,
human-oriented names should be indepen-
dent of the physical location and structure
of objects which they designate and should
be flexible enough to allow a user to define
his own names rather than simply identify
the objects.

Human-oriented names are not unique
for a particular object and are variable in
length not only  for different objects but
even for the different names of the same
object. Hence they cannot be easily mani-

pulated, stored, and used by the machines
for identification purpose. Therefore in
addition to human-oriented names, which
are useful for users, system-oriented names
are needed to be used efficiently by the sys-
tem. They should be capable of uniquely
identifying the objects and should be gen-
crated automatically in a distributed manner.
They are basically meant for use by the sys-
tem but may also be used by the users.

Figure 1 shows a simple naming model
based on these two types of names. The
GALAXY distributed operating system is
designed based on the above naming model.
In GALAXY, human-oriented names are
called external names and system-oriented
names are called unique identifiers (ID in
short).

The simple naming model
human-oriented

———
name neme

Naming scheme of GALAXY

| Name Objost
External Rowslution Unique
Lo

Usor-Defined
Neming Contaxty

hierarchicel name Iystenrwide focationot
with sttribvtes object identifier replices

. Flgurel. ‘ll:g :xi:.:%l‘p ax:&xln{modal and the naming

3. Human-Oriented Object Naming
Network transparency is one of the

most important requirements of the naming

scheme in distributed operating systems. In

addition, efficiency and flexibility of use are

equally important. Basically, there are two

approaches to realize global naming in con-

ventional distributed operating systems:

(1) Using separate name space for each
node,

(2) Using a single global name space for
all nodes.
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Early network operating systems such
as  Newcastle Connection [2] and
COCANET (8] used the first approach of
global naming. They did not have the pro-
perty of location transparency because the
location of an object had to be explicitly
incorporated in its name. Many recent dis-
tributed file systems such as NFS [9] and
RFS [6] use the first approach along with a
method called remote mount for achieving
the goal of location transparency in naming.
The problem with these systems is that the
same object may have different absolute
names when viewed from different nodes.
Moreover, to take care of the transparency
issue in such systems, n2 mounts have to be
performed in a system having n nodes.
This makes the management very difficult.

Many recent distributed operating sys-
tems such as LOCUS {13], ANDREW (5],
V system [3], and Saguaro [1] use the
second approach for the transparent global
naming of objects. In these systems,
requests from all the nodes are served by
first searching this global name space.
Although many of these systems support
transparency to both the location of the
accessing object and the location of the
accessed object, the main problem with
these systems is the poor reliability,
efficiency, and scalability of their name
resolution mechanisms.

In order to take care of the tran-
sparency feature, GALAXY also uses a single
global name space for its user defined exter-
nal object names. However, to overcome
the limitations of the existing systems,
GALAXY supports an efficient and reliable
name resolution mechanism, the details of
which are given in Sections 5 and 6. In
addition to this, GALAXY also provides its
users with the flexibility to define contexts
and to assign attributes with external names
as described below.

3.1. Multiple Global Naming Contexts

To avoid the problems of inconveni-
ence of use and inefficient resolution of
long pathnames in case of single global
name space, the first step taken in GALAXY
is to provide the flexibility to the users to
define their own naming contexts. A con-
text is basically a pathname of the single
global name tree starting from its root. A
GALAXY user can define his own con-
textname for a particular pathname. For
cxample, a particular user may specify that
the pathname /userl/projectl/groupl be
designated as mycontext]. Now when the
user wants to use the object having path-
name /[userl/projectl/grouplifilel, instead
of specifying the complete pathname, he

~ can only specify the contextname mycon-

text] and the remaining components of the
object’s pathname which is filel in this
case. To facilitate this, the basic naming
syntax of an external name in GALAXY is:

[ContextnamelPathname

Thus GALAXY's external names may
be of two types: absolute and relative. In
its absolute form, an external name consists
of the complete pathname of the
corresponding object starting from its root.
On the other hand, in its relative form, an
external name consists of a contextname
and a pathname which is relative to the
given context.

For the purpose of managing the user
defined contextnames, we use the concept
of node groups in our approach In this
method, the entire system is hierarchically
partitioned into small groups of nodes.
Each node group has a group leader which
is responsible for maintaining the informa-
tion about the nodes belonging to its group.
For contextname management, the leader
node maintains a group context table which
is a mapping of all the contextnames and
the corresponding nodes belonging to its
group. Each node also has a local context
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table which contains the locally defined
contextnames and the system-wide

identifiers of the corresponding directory
files.

Now when a user specifies a con-
textname to be used, the searching process
for that contextname starts from the local
node and proceeds by searching the family
tree of the node groups in the order of their
relationship. That is, closer relatives are
first consulted as compared to distant rela-
tives. Note that the efficiency of this
scheme lies in the proper grouping of the
nodes.

3.2. Descriptive Naming

Flat names with attributes are widely
used in daily life. Names of people is a
typical example of this type of naming.
However, due to the problem of uniqueness
of name representation and difficulty in
address mapping, instead of flat name
spaces, hierarchical names are used. by most
operating systems — UNIX [7], NFS [9],
Sprite [14], LOCUS [13], V system [3] are
few examples of such systems. In hierarch-
ical names, it is easy to represent the
hierarchical . structure of objects and to
manage them as a group. But, hierarchical
names - cannot easily represent various rela-
tions among objects and require much over-
head to resolve. In order to incorporate the
advantages of hierarchical names and to
overcome their disadvantages, GALAXY uses
the hierarchical names as the basis and pro-
vides the facility for attaching naming attri-
butes with the links between two com-
ponents of a hierarchical name. Naming
attributes are the properties of the object
being named. Such properties are
represented as labels attached to the links
between directories. By linking names, it is
possible to define the semantic structure of
objects. .

4. System-oriented Object Names

Every object in GALAXY has a unique
identifier called Unique ID (ID in short). In
GALAXY, one object can have multiple
replicas. All replicas of an object use the
same ID irrespective of -their locations. An
ID identifies an object, but its structure and
management mechanism are irrelevant to
the contents, external name, or physical
addresses of the object’s replicas.

In order to guarantee the system-wide
uniqueness of each ID, the ID format con-
sists of two fields: time stamp (TS) field and
node number (NN) field. Each field consists
of 8 bytes. The TS field contains the time
stamp assigned to the ID by the node that
has created the ID. The NN field contains
the node number where the ID is created.
It may be observed that even if the unit of
time for incrementing the TS field is 1 ps,
the time period represented by the TS field
is 264 ps = 3x10° years. Obviously, this
time period is dominant over the life-time
of the system. Similarly, the NN field is
long enough to assign unique numbers to all
the nodes.

5. Name Resolution

As shown in Figure 1, an external
name is first mapped to its corresponding
ID which in turn is mapped to the physical
locations (node numbers) of the replicas of
the concerned object. In this paper, we
define name resolution as the process of
mapping an external name to its
corresponding ID and object locating as the
process of mapping an ID to the replica
locations of the concemed object. In this
section we will discuss about the name
resolution  mechanism  of  GALAXY.
GALAXY uses a direct object locating
mechanism which will be briefly discussed
in Section 5.1.2 because our name resolu-
tion mechanism is based on our object
locating mechanism.
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5.1. Data Structures

The two data structures used for our
basic name resolution mechanism are dis-
cussed below.

5.1.1. Directories

In GALAXY, each node of the single
global name tree represents an object.
Excluding the leaf nodes, all other nodes of
the name tree are directory objects. In con-
ventional operating systems, directories are
used to map an object’s name to its physi-
cal location. Thus in these systems, a
directory entry consists of a component
name and the corresponding object descrip-
tor pointer such as inodes in UNIX (7] and
vnodes in NFS [9]. Unlike these systems,
in GALAXY, a directory entry is a (com-
ponent name, ID) pair which maps a com-
ponent name of an object to its system-wide
unique ID. These directories are regular
GALAXY objects which are distributed
among the various nodes of the system and
can be replicated and migrated just like any
other object.

5.1.2. ID Table

For mapping of IDs to the physical
locations of replicas, all the IDs of the
entire system are stored in a system-wide
table called ID Table: An ID Table entry
(called IDTE) contains information about
the type of the object, access control list for
the object, locations of the object’s replicas
(replica list), and locations where the copies
of this IDTE exist (copy list). The replica
list helps in returning all the locations of
the desired object as a result of the object
locating operation. By the copy list, all
IDTEs of the same object are linked
together so that any modification can be
consistently made to all copies through this
link.

In a usual non-distributed system, the
ID Table can be managed in a centralized
manner. But in case of a distributed

multiple-host system such as GALAXY, it is
not efficient and reliable that some central
node keeps the entire ID Table. Conversely,
it is also not realistic for every node to have
a copy of the entirc ID Table. Thus, in
GALAXY, each node has a partial copy of
the ID Table. The copy of the ID Table of a
particular node contains entries for the fol-
lowing IDs:

(1) IDs that are contained in the direc-
tories on the node or in a name cache
of that node or the context IDs present
in the local context table of that node.
The presence of these IDTEs in the
local ID Table of a node is necessary
for the direct locating of the directory
file objects during the name resolution
process.

(2) IDs that are being used by the
processes running on the node. These
IDTEs are necessary in a node’s ID
Table for the direct locating of the
objects being used by the processes of
that node.

Availability of the entries for these two
categories of IDs in the copy of a particular
node’s ID Table ensures the direct locating
of any object from any node given the
object’s ID. Further details of ID Table
management and consistency control of
IDTEs are given in [12] and [4] respec-
tively.

5.2. The Basic Name Resolution Mechan-
ism ‘

There are two approaches to pathname
expansion (name resolution) in a distributed
environment {10]:

(a) Transparent pathname expansion and
(b) Remote pathname expansion.

Due to its advantage of low network traffic
for expansion of pathnames that contain
many directories all stored at a single node,

the method of remote pathname expansion
is used as the basic mechanism for name
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resolution in GALAXY.

To facilitate the use of the method of
remote pathname expansion, the root direc-
tory is replicated at all the nodes of
GALAXY. Now when a user requests for a
pathname expansion, the name resolution
process starts at the client node by first
* searching the local root directory for the
next component name of the pathname.
The corresponding ID is extracted from the
root directory and is searched in the local
ID Table to get the replica locations of the
corresponding object. This ID will certainly
be available in the local ID Table due to
our replication policy of IDTEs discussed
above. Now a message is sent to one of the
nodes in the replica list with the remaining
pathname components for further expansion.
The next component of the remaining path-
name is searched in the concerned directory
at the selected node. The name resolution
operation continues like this until all the
pathname components have been resolved
and the desired object’s ID has been
extracted.

The basic name resolution mechanism
discussed above is for the resolution of
absolute external names. In case of relative
external names, the basic name resolution
mechanism involves the following two
steps:

(a) The first step is to get the location of
the directory corresponding to the
specified contextname.

(b) And the second step is to expand the
specified pathname starting at the loca-
tion obtained in step (a).

Step (a), is carmried out by using the
hierarchical node group concept of Section
3.1. When the desired contextname has
been located, its corresponding ID is
extracted from the local context table of the
node on which it is found (say N;) and the
ID Table of node N; is searched to get the
replica locations of the directory object

corresponding to the specified contextname.
One of the replica nodes (say Nj) is
selected from the replica list and the path-
name of the external name is now for-
warded from node N; to node N; for expan-
sion. From now onwards, step (b) is car-
ried out by the method of remote pathname
expansion starting at node N;.

5.3. Name Cache for Name Resolution
Efficiency

The efficiency of the basic name reso-
lution mechanism is very poor especially
for those pathnames whose component
name directories are scattered on different
nodes of the system. To improve the
efficiency of name. resolution, in GALAXY
name caches are used at each node for
caching of necessary directory entries. At a
particular node, a separate name cache is
created for each context that corresponds to
an object’s relative external name cached on
that node. The root context also forms a
separate name cache at each node which is
used for the expansion of absolute external
names. Name cache structure is the same
as that of hierarchical directory structure of
the name space. A particular node’s name
cache consists of those directories and
directory entries which correspond to the
contextname and the component names of
the pathname of an object that was recently
used to access the object from the node.
Further details of name cache management
and name cache consistency control
mechanism are given in [12].

54. The Improved Name Resolution
Mechanism

In the improved mechanism, when an
object is accessed from a particular node by
using its external name, the pathname com-
ponents of the external name are searched
in the local name cache corresponding to
the context of the external name. It may be
noted here that the root directory acts as the
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context for absolute external names. The
pathname components are searched one-by-
one in the hierarchical name cache direc-
tories just as they are searched using regular
directories.

If the pathname of the desired object
consists of n component names out of
which n; components were found in the
local name cache, then for the remaining
(n—n ;) components, the searching has to be
continued somewhere outside the local
name cache. So the ID corresponding to
the last component name found in the local
name cache is extracted from the name
cache and is searched in the local ID Table
to get the locations of the corresponding
object. This ID will certainly be available
in the local ID Table due to our replication
policy of IDTEs at various nodes. Now a
message is sent to one of the nodes in the
replica list with the remaining (n—n ) path-
name components for further expansion.
The next component of the remaining path-
name is searched in the concerned directory
at the selected node. The name resolution
operation continues like this until all the
pathname components have been resolved
and the desired object’s ID has been
extracted.

In case of a complete miss, when a
name cache corresponding to the desired
object’s external name context is not found
on the client node, the hierarchical node
group method of Section 3.1 is used for
searching the node (say N;) on which the
ID corresponding to the concerned context
is stored. In this case, the name resolution
process starts from node N; instead of the
client node in a similar manner as discussed
above.

6. Reliability of Name
Mechanism

Resolution

The name resolution mechanism of a
distributed system can be called highly reli-
able if it is possible to satisfy all name

resolution requests generated from any node
of the system at any instance of time. To
achieve such a high degree of reliability of
the name resolution mechanism, all the
directories must be replicated at all the
nodes of the system. This may be prohibi-
tive in terms of space and time overheads.
Hence a better idea is to define a set of reli-
ability parameters and let a user choose and
specify through these parameters the
degrees of reliability desired for the (node,
external name) pairs for the various objects
and object names being used by him from
the specified node. This seems logical
because all the objects in a system are not
of equal importance to all the users and out
of all the nodes in.a large distributed sys-
tem, a particular user normally works at
only a few nodes of the system. By using
this approach, it is possible to satisfy the
degree of reliability of resolving various
names as desired by the users without
affecting the overall system efficiency to a
large extent.

6.1. Reliability Factors

Given an object’s pathname, the relia-
bility of resolving the pathname from a par-
ticular node is greatly influenced by the
locations of the directories or their replicas
which correspond to the given pathname
components. On the basis of the various
possibilities of the locations of the replicas
of the concerned directories, we define the
following factors that influence the reliabil-
ity of the name resolution operation.

6.1.1. Subpath reliability

For a (node, pathname) pair, the sub-
path reliability of the name resolution
operation is the presence of the necessary
directories on the client node (specified
node) for tracing the components of the
pathname up to the subpath right at the
client node without communicating with
any other node.
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6.1.2. m-stage reliability

A name resolution operation is said to
be m-stage reliable when m hops are
required during pathname expansion for
resolving the given pathname. In our
method of remote pathname expansion, a
hop is defined as the passing of the remain-
ing pathname components from one node to
another node which has the next
component’s directory when the remaining
components of the pathname cannot be
further resolved on the present node.

6.1.3. k-path reliability

A name resolution operation is said to
be k-path reliable when there are at least &
possible paths between any two contiguous
directories corresponding to the components
of the given pathname starting from its root
directory to- the last directory of the given
pathname. Note that the term path here
means the logical name resolution path
(path of the pathname from one directory to
another) and not the physical path of the
network.

Using the reliability parameters men-
tioned above, a user in GALAXY can specify
his reliability requirements for resolving
certain pathnames from certain nodes.
Depending upon the users’ specifications,
the system automatically replicates the
necessary directories at the proper nodes.

6.2. Applicability to Context Based Rela-
tive External Names

We have shown the usefulness of the

reliability parameters discussed above for
the resolution of our absolute external
names. However, as discussed before in
Section 5.2, in case of relative external
names, the name resolution process involves
the following two steps:

(a) Searching the contextname using our
hicrarchical node group concept to get
the location of the directory

corresponding to the specified con-
textname. This process may require
message transfers from one node to
another several times until the node
having the contextname in its local
context table is reached.

(b) Expanding the specified pathname
starting at the location obtained in step
(a). In this step, the message transfers
from one node to another is done
exactly in the same manner as the
resolution of absolute external names.

Thus in case of a relative external name,
not only the concerned directories
corresponding to the pathname of the -given
name but the comesponding contextname
entry is also replicated at a suitable node of
the system in order to satisfy the user-
defined subpath, m-stage, and k-path relia-
bility requirements for the (node, relative
external name) pair.

7. Evaluation and Conclusion

The naming mechanism discussed
above is reliable, flexible and efficient. We
have not come across any distributed sys-
tem in which the users have the flexibility
to define the reliability of the name resolu-
tion operation. In GALAXY, the user-
definable reliability: parameters provide the
flexibility to the users to choose and bal-
ance between their wide range of reliability
and efficiency requirements. Unlike several
other naming mechanisms, in our -naming
mechanism the unit of name resolution is an
object instead of a group of objects. Thus
individual objects can be migrated freely
from one node to another or from one
object manager to another with no change
of object’s name or no degradation of per-
formance. Due to the use of name cache
for caching the recently used object names,
the efficiency of our name resolution
mechanism is highly dependent. upon the
degree to which locality is exhibited in the
use of object names. Measurements made
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by Sheltzer [10] and Cheriton [3] clearly
show that a high degree of locality does
exist in the use of object names. In addi-
tion, unlike V system [3] and Sprite [14],
no broadcasting is used in GALAXY during
name resolution even if there is a cache
miss. This improves the scalability factor
of our design and makes our mechanism
suitable for both small and large networks.
We believe that the concepts presented in
this paper will be useful for the design of
other distributed systems.
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