ARV —F 4 v T VAT A 51— 3
(1991 7. 18)

MACH 7/ — 2 WVIZ BT 5 < VT 7 at v ¥ RO EAT

ZREHHRAEL HRE e

Joe Uemura, WA, HEX

BRI VFTaty T, OSH—FVOEERE~NDT 7 L ABHEPERICKELEELS X 5,

FOT, SO S o, H—FF— A0 rAKFETHE SN ZMACHE V365 B0 E 4 o
WA % A 4 CPUN Y A 7 A L CAT % o 720 MACHTHEA &7 7 £ AFA W LERER O v v 7 ##1E %
JAVHID R TOEFIET 21T o T b AT TR BICOB/ BFIOSTEEL 254 v £— IR
BeATUEHOBEICER L, BTEN Loy s HREFE RO T RS, T R AHUE B
AR, SR BR BT Ln, TORR, BEERIEETH D I Lk ENERITHL PR 7%

An Empirical Investigation of Multiprocessor
Synchronization Mechanisms in the MACH Kernel

Joe A. Uemura, Takashi Sakakura & Takashi Kan

Mitsubishi Electric Co.
Computer & Information Systems Laboratory
5-1-1 Ofuna
Kamakura, Kanagawa

Mach is a distributed multiprocessor operating system developed at Carnegie Mellon University. In this paper,
we evaluate the multiprocessor synchronization mechanisms used internally in the MACH kernel on a four-cpu
multiprocessor. The MACH core kernel provides parallel execution by using locks to encapsulate shared resources
in critical regions. We wrote two programs to evaluate how those locks behave. These programs stress message
handling and virtual memory management, two key kernel functions for building client-server type of
applications. Our examination focused on lock contention and activity issues; our results show that most locks

have low contention (around 1%), and there is no substantial waiting time when contention occurs.

1. Introduction

MACH is a distributed multiprocessor operating
system developed at Carnegie Mellon University
(CMU) [Tevanian87] [Accetta86]. MACH has been
widely used as a research vehicle for experimenting
with new architectures for multiprocessors and
distributed systems. MACH has undergone several
revisions, and been distributed in various different
forms. Notably, the Open Software Foundation has
based OSF/1, their operating system component, on
MACH technology, and Carnegie Mellon University
has recently released a new version of MACH,
version 3.0, entirely based on a microkernel
architecture. We have ported MACH Version 2.5
obtained from CMU to an experimental four RISC,
shared-memory, symmetric multiprocessor system.
The work described in this paper was conducted
using this multiprocessor.

Generally speaking, MACH Version 2.5 has two
main parts: the MACH core kernel, made of native
code which provides new functionality developed at
CMU, and the 4.3BSD compatibility code. The
MACH core kernel provides only generic primitive
services such as virtual memory management,
interprocess communication, and process scheduling.
This core kernel forms the basis of the microkernel
architecture currently being developed at CMU. This
kernel was developed from scratch and has been fully
parallelized mainly using locks as synchronization
mechanisms. This code executes correctly on
multiprocessors while providing fine-grained parallel
kernel execution.

The UNIX! compatibility code is made mostly of
4.3BSD code. As such, this code was not originally
designed to run on multiprocessors. MACH resolves
this problem by simply forcing this code to be
executed on a single processor known as the unix
master processor.

This paper first introduces the multiprocessor
synchronization mechanisms used in the core kernel,
and describes how the unix master mechanism
ensures proper execution of the UNIX compatibility
code. It then reports on the experiments we
conducted to investigate the synchronization
mechanisms running behavior. Finally, it concludes
by presenting several observations based on the

Developed and Licensed by UNIX System Laboratories, Inc.

results of the experiments.

2. Multiprocessor Synchronization
Mechanisms in the MACH Kernel

2.1. Multiprocessor
MACH Core kernel

Support in the

The MACH core kernel is a multithreaded kernel. A
multithreaded kernel allows multiple threads to
execute concurrently in the operating system. In
order to provide this type of parallelism, kernel data
structures must be protected from uncontrolled access
to ensure that kernel resources are kept in a
consistent state, Bach{Bach84] and several others
[Sinkewicz88] [Campbell91] have described the need
to provide synchronization mechanisms for correct
kernel execution in the presence of multiprocessors.
MACH main synchronization mechanisms are based
on lock variables.

Lock variables are used to implement critical
sections. Critical sections restrict access to shared
data by providing atomicity of operations performed
inside of those sections. Before a thread can enter a
critical section and access shared data, it must first
acquire the lock protecting the section. This
synchronizes threads executing on multiple
processors, and ensures that shared data is kept in a
consistent state.

MACH implementation of locks is divided into two
types: simple locks and complex locks. Simple locks
are implemented using a simple spinlock. The
spinlock is implemented using a variable which
indicates if the lock is idle (unlocked) or busy
(locked). If the lock is busy, a thread will spin
waiting until the lock becomes idle and can be
acquired. All threads trying to acquire a lock will
compete for the lock. On shared-memory bus based
machines, this requires some form of hardware
support to guarantee atomic memory accesses via a
memory bus locking protocol.

Simple locks are mutually exclusive locks. Mutually
exclusive locks restrict access to a critical section to a
single thread. This is true regardless if a thread has
intention to modify the data or not. A thread, once
having acquired the lock, has exclusive access, and is
free to read or write the shared data without any
competing access.

Complex locks can, on the other hand, be used to
implement both exclusive and non-exclusive locks.

" Consider the scenario where a thread only wants to
read a shared data. As long as all threads concurrently
accessing the data are not modifying it, there is no
need to have mutually exclusive access - all readers
of the data can concurrently read it without causing
consistency problems.

Another basic difference between complex locks and
simple locks is that complex locks can be both
blocking and non-blocking. Blocking locks, unlike
spin locks, will cause the thread trying to acquire the
lock to block instead of busy waiting until the lock is
free.

Mach Locks

Simple Locks / Complex Locks
Exclusive 7clusive\ Non-exclusive
Non-blocking Blocking Non-blocking Blocking Non-blocking

2.2. Multiprocessor Support in the UNIX
Compatibility Code

MACH provides 4.3BSD UNIX binary compatibility
by leveraging code as released by UC-Berkeley. Most
of this code has been integrated unmodified to the
MACH core kernel; only few places required
changes. Since this code was not originally designed
to run on multiprocessors, some form of
multiprocessor control was necessary. The strategy
adopted by MACH 2.5 is to limit execution of this
code to a single processor - the master processor.

The implementation of this strategy is accomplished
by inserting calls to an internal function called
unix_master before executing BSD code. This
function checks if the processor trying to execute
unparallelized BSD code is already the master
processor. If that is not the case, it forces a context
switch to the master processor. After the BSD code
finishes, a call is made to another internal function,
unix_release, to allow execution to continue on any
available processor.

Applications

Figure 1.
MACH2.5 Kemnel has two main components: the fully
paralielized core kemncl, and the BSD compatibility code.
Multiprocessor execution is supported in the core kernel
using locks as synchronization mechanisms whereas
exccution of BSD code is limited to a single masler
Pprocessor.

It is interesting to note that the issue of parallelizing
the compatibility code has been addressed in
[Boykin89). OSF has leveraged this code in their OS
component, OSF/1. We look forward to conduct a
similar investigation as described in this paper on
OSF/1.

3. Investigation of Multiprocessor
Synchronization Mechanisms

Our investigation had several motivations. Our
interests focused on finding out what these
synchronization mechanisms were, and how. they
were being used. We also wanted to determine their
effectiveness and limitations since they should give a
good indication of the multiprocessors execution
behavior. This was done by examining how stressed
the locks were. Finally, we wanted to explore how
the locks implementation addressed performance
issues.

We decided to focus on the MACH core kernel since
it fully supports fine-grained parallel execution. This
decision was quite obvious since the compatibility
UNIX code in our MACH release is not parallelized.
Furthermore, the core kernel forms the basis of the
microkernel version of MACH. The restructuring of
traditional monolithic operating systems into several
servers running as user tasks on top of a microkernel
is a recent trend in the operating system research
community [Guillemont91] [Golub90]

[Tanenbaum90]. Our examination should give some
insight of how the microkernel MACH handles
multiprocessors.

As explained above, the core kernel enforces proper
multiprocessor execution by protecting critical shared
data with lock variables. We decided to concentrate
on three main characteristics concerning these locks.
We focused our examination on the following issues:

* activity issues

We wanted to find out how active a lock was
during a certain load. This was accomplished
by measuring how many times a lock was
acquired during a given period of time. This
should allow us to estimate the overhead
incurred due to locks.

« contention issues

We wanted to find out how "hot" a lock was
by measuring how many times there were
contentions when trying to acquire the lock.
We measured the ratio of contention vs. lock
acquisition.

« latency/granularity issues

Once there was a contention, we wanted to
determine the latency incurred until the lock
was finally acquired. This should be basically
determined by the granularity, ie. the size, of
the area protected by the lock. This
measurement was accomplished by
monitoring the amount of spins a non-
blocking lock spent until acquiring the lock.
On a blocking lock, we collected the time
elapsed between trying to grab the lock and
the actual lock acquisition.

To simplify data gathering and provide a higher view
of lock behavior, we collected data on a lock class
basis. Instead of gathering information about each
instance of a lock in the system, we divided the locks
into classes according to their semantic function. For
example, all the locks protecting a certain table were
put together on a class, and their behavior monitored
collectively. Thus, instead of having to deal with a
multitude of lock information - in our system, the
number of initialized locks at any given time was in
the order of several thousands - we had a much more
manageable and identifiable set of data. We divided
the locks into fifty two classes of simple locks, and

nine classes of complex locks. Several of these
classes only have a single lock instance, while others
have multiple instances within the same class.

To generate lock data, we wrote two simple
programs. We were careful to make sure that the
programs produced meaningful data about the core
kernel. We did not want to write programs which
would spend most of the time in the unix_master,
and yet we wanted programs that represented a load
which would likely to occur in real usage.

The first program we wrote simulated a load typical
of client-server style of applications. This should
stress the system ability to provide efficient
interprocess communication (IPC) on
multiprocessors. On a message passing based
microkernel architecture such as MACH, the core
kernel only provides the basic services such as
support for message handling. Since most of the
functions available in traditional operating systems
run in user-state servers, the core kernel ability to
efficiently handle message passing is essential to
performance. This message-passing program is made
of n clients which issue request to a single server.
The server receives each request and replies back to
the client issuing the request. Since we wanted to
measure kernel load, we made the requests null,
meaning that all the server does upon receiving a
request is to immediately send a reply to the client.
This should stress the kernel’s ability to handle a high
volume of IPCs typical of this type of application.

The other program was designed to stress virtual
memory management, another core kernel
functionality. The program has several tasks which
share a region set copy-on-write. As long as the tasks
only read this region, the kernel does not get
involved. However, as soon as a task tries to modify
the shared data, a page fault occurs, and the kernel
has to allocate a new page for the task to modify.
The test program was designed so the tasks will
actively modify the shared data, thus stressing the
virtual memory subsystem.

3.1. Investigation of Simple Locks

From all fifty two simple lock classes, about twenty
to thirty percent encountered contention while
running both the message passing program and the
VM program. Besides illustrating this relationship,

Figure 2 also shows the number of active? classes
on both programs.

|-spin--|{
Loak Class ins grab oonfli co/gr max ave
—— —— — —
1. CPU_LIS?_CLASS 74 822000 55232 0.067 414 7
2. LONE_CLASS 33 839412 27019 0.032 613 1]
3. OBJ_LOCK CLASS 445 1849730 15016 0.008 286 11
4. VM_PAGEQ_CLASS 1 360563 10258 0.028 1635 18
5. VM_PAGE BUCKET 1 300674 7883 0.026 35 5
€. VM_CACHR_CLASS 1 240300 €808 0.028 430 3
7. VM PAGEQ FRER_ 1 120280 1642 0.014 24 8
8. PMAP_CLASS 73 514778 %79 0.002 44 11
9. MESSAGRQ CLASS 445 320540 381 0.001 220 18
10, THREAD LOCK CL 81 562419 209 0.000 14 8
11. GLOBAL RUNQ CL 1 138987 172 0.001 23 8
12. VM_OBJECT_CLAS 764 958663 25 0.000 2299 440
13. KERNEL_PMAP_CL 1 137228 18 0.000 39 23
14. QUANTUM_ADJ_CL 1 34 12 0.383 38 21
15. LOCAL RUNQ CLA 128 9 1 0.010 10 10
16~52. OTHER CLASS --- 1625552 0 0.000 ~=w= =
— o— o —
" T0TAL --- 8791258 125655 0.014 =-== —mn
Table 1.

Table 1 illustrates simple lock behavior running the
message passing program on four processors. As can be
seen, the contention/grab ratio is fairly low. Those locks
which have high contention/grab ratio seem to have low

Figure 2 max and average spin times. On the other hand, those with
high max & average spin times seems to have low
The labels numbered 0~60 represent the number of classes, conflict/grab ratios.

Tables 1 & 2 illustrate the behavior of simple locks
running each test program respectively on four

processors. The data has been sorted by the number Lock Class ins grab confli co/gr mep e
of conflicts occurred during the program. Only those - —_———
1 1 i 1 1. VM_PAGEQ CLASS 1 4125 96 0.023 156 29
locks which experienced cc?nﬂxcts during the test Y O Lier s 13 i 96 0.023 136 29
programs are comp]etely depxcted, 3. VM_OBJRCT_CLAS 127 7366 21 0.003 885 261
4, VM_PACE_BUCKRT 1 3961 15 0.004 945 68
5. OBJ_LOCK_CLASS 153 890 8 0.00% 38 19
. . 6. VM_CACHR S 1 1573 7 0.004 435 101
The table lists the class to which the lock belongs, the 7. KERNEL PMAP CL 1 1327 € 0.005 40 19
. g . . FRRE 5 .
number of instances within the class, how many S, oML poMRcT 1 224 ey n o
: . 10. PMAP_CLASS 1is 1827 1 0.001 54 5S4
times the lock was grabbed during the program, how 1. e sPacz cta 1 13 loooe s s
many conflicts and the ratio of conflict/grab, and the 12-52. OTHER CLASS -——- 12138 0 9.000 -
maximum and average spin counts.
TOTAL -— 37134 203 0.005 ~=== ==~
A quick look at this data shows that the overall ratio
of conflict to grabs is fairly low3. Furthermore, by Table 2
looking at the maximum and average number of The VM program runs for a l'}l]s;\ch shogg pc{iod LL\an lhs
spins, it shows that those locks which have some contlicis feflect this, | gavr?e'\'re[, iienr‘ﬁo conllict/grab and
contention do not appear to have to wait very long to max and average spin have similar characteristics as the

acquire the lock. This is important since the worst
scenario would be to have a lock with both high
contention/grab ratio and high acquisition latency.
To further probe the simple locks behavior, we
monitored how the presence of a different
2A class was considered active whenever at least one lock within the f aff d th . £
class was acquired during the monitored program. numb.er o pI'OCCSSOI'§ ecte € ratio O
3By low, we mean <= 1%. conflict to grabs. Figure 3 illustrates this

Figure 2

The conflict:grab ratio measured running the
message passing program on 2~ 4 processors.

| === write conflict=~w==w==m- | lread conflict|
|conc~-re} |-wait--| {—-wait--|
Lock Class ins w-grab r-grab sle writ read max ave max ave conf max ave

=== === Smmm Ssmn SEom ST SSST TSSs Smmm S ==

VM_MAP_CLASS 81 365772 123021 yes 8 5 1 1 8729 4358 3 15532 9283
PMAP_SYSTEM CL 1 248871 61837 no 7 9266 2 1 13 1 4416 2 1

Table 3
Measurements of complex locks running the message passing program on four processors

fom——— write conflict--—-==== | Iread conflict]

|conc~-re| |-wait--| | ==wait~~|

Lock Class ins w-grab r-grab sle writ read max ave max ave conf max ave

VM _MAP_CLASS 26 4025 1229 yes 16 8 1 1 5204 1543 0 0 0

PMAP_SYSTEM CL 1 5258 297 no 0 3 1 1 25 9 3 1 1
Table 4

Measurements of complex locks running the VM program on four processors

Data displayed are: lock class name, number of instances in class, number of grabs for read, number of grabs for
write, sleep (blocking) lock, write conflicts, and read conflicts. Write conflict data is further broken down by the
cause for the conflict: (a) conflict due to another active writer, or (b) conflict because of other reader(s). In case
of readers, the numbers show the maximum and average number of concurrent readers. The maximum and
average wait times are shown; for blocking locks, these are internal clock units where one unit==250ns.

relationship when running the message passing
program. As can be seen, the conflict:grab ratio
- seems to remain rather low when running the
program on two processors. On three processors,
there seems to be some more activity. This
activity seems to peak at four processors.
Fortunetely, even at four processors, most of the
locks still show a rather low ratio; only few
experience a ratio higher than 0.01, or 1%.

3.2. Investigation of Complex Locks

Tables 3 & 4 illustrate the behavior of complex locks
running both tests programs on four processors. As
with simple locks, we only display those locks which
were active and experienced contention during the
test programs. As shown, only two classes of
complex locks had conflicts during our test programs.
One lock was non-blocking meaning that the lock
span when there was a conflict. The other lock was a
blocking lock; whenever a thread failed to acquire the
lock, it blocked itself until the lock was released.

Both locks were read/write locks. Read/write locks,
unlike simple locks, are non-exclusive locks on reads,
but exclusive on writes. This means that there can
possibly be several threads concurrently reading the
data as long as there is not an active writer. This
generates extra parallelism by having concurrent
non-exclusive access to data. On the other hand, an
active writer implies that no reader can be
concurrently accessing the data.

This generates several possible scenarios which result
in contention when trying to acquire the lock. First
of all, the lock can be acquired for read or for write.
If a thread is trying to acquire the lock for read, a
conflict would occur if there is an active writer, or
there is a registered intention to acquire the lock for
write (see below). The thread would have to either
spin wait (non-blocking lock) or suspend itself
(blocking lock) until the writer finishes modifying the
data and the lock can be acquired.

If a thread wants to modify the protected data, it has
to acquire the lock for write. There are two possible
scenarios which would lead to a conflict:

« there is at least one active reader currently
accessing the data, or

 there is another active writer currently

modifying the data

In the first scenario, MACH, in order to avoid
indeterminate wait in case other readers keep arriving
and gaining access to the lock, allows the thread to
register its intention to acquire the lock for write
before waiting/blocking. Any reader arriving after
this intention has been declared will wait until the
writer gets a chance to modify the data. In the
second scenario, the thread will also declare its
intention to modify the data, and then block/wait until
the current writer finishes.

Tables 3 & 4 display several information collected on
complex locks while running the test programs on
four processors. As can be seen, the number of grabs
for read is quite higher than the number of grabs for
write, thus showing the effectiveness of read/write
locks. Without read/write locks, all those accesses
would be serialized yielding a lower degree of
parallelism.

When examining the wait times, we were particularly
interested in the number of spins in the non-blocking
lock. One of the guidelines for choosing blocking vs.
non-blocking locks is the amount of time, or the
number of spins, a lock experiences in case of
contention. The trade-off is the cost of context
switching vs. wasting processor power. If the lock
were to spin a large number of times, it would be
better to block the thread and let the processor do
something more useful than simply spin. However, if
the number is not high enough to justify the context
switch costs required to dispatch the processor to
another thread, spinning becomes a more plausible
alternative. The non-blocking pmap_system lock
displays low spin times which seems to justify the
choice of making this a non-blocking lock.

4, Conclusion

MACH support for multiprocessor is based on using
locks to provide fine-grained parallel
execution. We have examined the behavior of these
synchronization mechanisms. Our investigation
focused on lock activity and contention issues. We
examined both simple and complex locks. The simple
lock examination shows that from all the identified
lock classes, about 60% were active - grabbed the

kernel

lock at least once - during our test programs. Among
the active locks, about 45% experienced contention.
The ratio of contention per number of grabs was
fairly low - under 1% - for most locks. Another issue
considered was how long it took until a lock could
finally be acquired whenever there was contention.
This wait period also showed to be generally low for
most locks. Those locks which did have high wait
times fortunately had a low ratio of contention/grab.
If both the ratio of contention/grab and the latency
had been high, this would imply the presence of a
possible software bottleneck yielding a lower degree
of parallel kernel execution.

The complex lock observation demonstrated that
there was a 3:1 to 4:1 rate of reads to writes. This
high rate suggests that using read/write locks result in
a higher degree of parallel execution due to non-
exclusive concurrent access to shared data on reads.
" Also, one lock was a complex non-blocking lock.
Our measurements confirmed that this lock displays
low wait times thus not justifying the cost involved to
block the thread in case of contention.

S. Acknowledgments

Masato Takahashi has provided valuable input on
how to conduct our experiments. Porting MACH to
our prototype multiprocessor was, of course, a team
effort. We would like to thank all those who
participated in the porting.

6. References

[Accetta86] M. Accetta, R. Baron, D. Gollub, R.
Rashid, A. Tevanian, M. Young. MACH: A
New Kernel Foundation for UNIX
Development.. Proc. Summer 1986- Usenix
Technical Conference, 1986.

[Bach84] M.J. Bach, S.J. Buroff. Multiprocessor
UNIX Systems. AT&T Bell Laboratories
Technical Journal, Vol.63-8, Part 2, 1984,

[Boykin89] J.Boykin, A. Langerman. The
Parallelization of Mach/4.3 BSD: Design
Philosophy and Performance Analysis. Proc.

Distribute & Multiprocessor ~ Systems

Workshop 1989, 1989.

[Campbell91] M. Campbell, R. Barton, J. Browing,
D. Cervenka, B. Curry, T. Davis, T. Edmonds,
R. Holt, J. Slice, T. Smith, R. Wescott. The
Parallelization of UNIX System V Release
4.0. Proc. Winter 91 Usenix Technical
Conference, 1991.

[Golub90] D.Golub, R. Dean, A. Forin, R. Rashid.
UNIX as an Application Program. Proc.
Summer 1990 Usenix Technical Conference,
1990.

[Guillemont91] M. Guillemont, J. Lipkis, D. Orr, M.
Rozier. A Second Generation Micro-Kernel
Based UNIX; Lessons in Performance and
Compatibility. Proc. Winter 91 Usenix
Technical Conference, 1991.

[Sinkewicz88] U. Sinkewicz. A Strategy for SMP
Ultrix. Proc. Summer 1988 Usenix Technical
Conference, 1988.

[Tanenbaum90] A. S. Tanenbaum, R. Renesse, H.
Staveren, G. Sharp, S. Mullender, J. Jansen, G.
Rossum. Experience with the Amoeba
Distributed Operating System.
Communications of the ACM, Dec.1990.

[Tevanian87] A. Tevanian, R. Rashid, MACH: A
Basis for Future UNIX Development,
Technical Report (CMU-CS-87-139), Carnegie
Mellon University, 1987.

