HEBR7 -7 279+ 104—12

VAFAVT MY T &

ARVU—F v - varn 02712
(1994. 1. 28)

Oormal Framework for PDynamic Extension of Pistributed Systems
PBehaviors

Issam A. Hamid
Tohoku University of Art & Design
Department of Information Design
200 Kamisakurada, Yamagata, JAPAN

abstract:

The evolution of specifications is necessary to accommodate the evolution of requirements and design decisions
during the software development and maintenance process. Among the possible modifications, the addition of new
features is an important issue. The effort for adding features to telecommunication system, like adding new
functionalities to any large distributed software system might be tremendous. Each new features or added functionality
may interact with many existing features. Such interactions may lead to blocking situations (e.g., deadlock) or
system breakdown. In addition, for large long-lived distributed systems, it may be not possible to stop the entire
system to allow its extension. Therefore, an important and difficult problem is that of making modifications of
extensions dynamically, without interrupting the processing of those parts of the system which are not affected. we
describe a formal approach for extending specification behaviors, and a methodology for dynamic evolution of
specifications in the context of a reflective object-oriented specification language (RMondel).

DM AT ATV A FI v s EoldD0ERNLELEOFHAL

TAY AL AL NI

A=W LRREE

BRI A ER
W Bz E 2 0 0 Fih

HHEORREIL. LELGORBLY 7MY TRBL AV FFVATOLADOBOREHEEL AT
BIOILETHI, TREBEOHTHLWVW I A —Fr—0BIMN, EELMETHS, 7La3az
=V aVVATAITA—Fr—MABILEDODENE, 2FHVRECFTH YT I I 2T VAT
LATHLWEEEBINTA L) REZ. Ly b LAk, HADHLWT 4 —Fr— Tz
SNBSS DFELTVE 7 4 —F v — LRTHEIERAT 225 Lhkv, £0 X9 2AEHEIEH
B, ORI W, Ty Fav) YAFAMEERGTAILOHELELSSS Lk v, FRICIR TAR
WRREZSOFH AT AL 2T, ZOWRETTHRE T L0, EROVATARZIEDD I LT,
L, #hwz, BEETHLVEER, BEERIZENA2VIATAOMOESOMIEE FH§5 2 &
Lic, BIMICHEERDISIE2 T2 28 TH B, RAEBKE TS24 T7Y =27 MEEHESEE (RMondel)
WKBWT, ATHEEAT2200BRLOFERE, AFEES A 73 v 7 RRED /DO FENR % ik
T3,

1- ntroduction’

Distributed system may evelve through the addition of
new functionalities according to new requirements, or
through the modification of existing functionalities. New
functionalities added to given system may interfere with
the existing ones. The approach consists of building a new
behavior specification Spew by adding a new behavior
described by Sadded to a behavior specification Sold and
avoiding the feature interaction problem. Providing certain
the newly derived behavior
specification Spew extends Sold and S added.
long-lived distributed systems, it may be not possible to
stop the entire system to allow its extension. Therefore,
an important and difficult problem is that of making
modifications or

sufficient conditions,

For large

extensions dynamically, without
interrupting the processing of those parts of the system
which are not affected.

We have developed a new object-oriented specification
language, called Mondel [Boch 90], which has important
concepts as a specification language, for application in the
area of distributed systems. It has a formal semantics,
expressed by means of a translation into a labeled
transition system. The motivations behind Mondel are:
(a) writing system descriptions at the specification and
design level, (b) supporting concurrency as required for
distributed systems, (c) supporting persistent object and
transaction facilities, and (d) supporting the object
concept. In order to allow for the construction of
dynamically modifiable specifications, we need to have
access to, and be able to modify, specifications during
execution-time. We developed RMondel , a reflective
version of Mondel , which provides facilities for the
dynamic modification of specifications. It is necessary to
provide facilities for controlling changes in order to
preserve the specification consistency. The specification
consistency concerns both, behavior and structure. We use
a transaction based mechanism and a locking protocol to
ensure that the specification remains consistent after its
modification.

2. General framework

2.1. Dhe object model

In this section we briefly recall the fundamental
concepts of the object model which are relevant for our
discussion. An object oriented specification is described as
a collection of objects. An object has an identity, a certain

*#1 This reseach is supported by a grand from Ministry of

Education of Japan.

number of named attributes (i.e., each object instance will
have fixed references to other object instances, one for each
attribute), and acceptable operations which are externally
visible and represent actions that can be invoked by other
objects. An object is an instance of a type (called class)
that specifies the properties that are satisfied by all its
instances. These properties include the interface, that
is, the visible attributes and operations and their results
and parameter types, and the object behavior, which
defines the possible order of operation executions, related
internal state changes, and the results returned by operation
calls, if any. An important aspects of the object model is
the inheritance relationship. The inheritance relation
between type definitions of a specification leads to a type
lattice. A node in the lattice represents a type and an edge
between a pair of nodes represents the inheritance
relationship.

A very important principle in distributed system
specifications is communications. We assume that
objects interact by operation calls. An operation call is a
request for the called object to execute the appropriate
statements or procedures. The caller object explicitly
mentions the identifier of the called object and the
operation name with the appropriate parameters, if any.
The caller object blocks until the callee has returned an
answer. In our model, objects are running in parallel,
except during communication.

2.2. Constraints for modifications

We consider in this section several kinds of constraints
that may be imposed on modifications of the system
specification. These constraints are introduced in order to
ensure a kind of "property conservation”, namely that the
modified system conserves certain important properties
that are already verified for the original specification. We
therefore assume in the following that the modified system
specification is a kind of "specialization" of the original
one. We say that an object type C' specializes a type
C if an object instance of type C can be replaced, within
the overall system, by an instance of the type C' without
invalidating the important system properties. In the
following, we distinguish two kinds of constraints.

2.2.1. Consistency requirements

Any specification should satisfy certain consistency
requirements which depends on the specification language
and the nature of the specified system. We distinguish the
following two aspects:

They correspond to the
the

i) Static requirements:

syntax and semantic constraints imposed by

specification language. They usually are verified by the
compiler and may include type checking rules.

ii) dynamic requirements: They relate to the
dynamic properties of the system and define certain general
properties which should be satisfied by any system, such
as the absence of the deadlock.

2.2.2, Conformity constraints

Here we consider those constraints which the modified
specification must satisfied in order to conserve the
properties of the original specification. We consider for
this purpose the subtyping (inheritance) relation defined
for object-oriented specification, and impose that the
modified version of a type definition should be a subtype
of the original one. Since the object properties include
both, the interface and the object behavior, we distinguish
the following two aspects of conformity:

i) structural conformance: These constraints maintain
- interface compatibility between a type definition and its
modified version. For instance, the type T1 of an attribute
Al of a type definition T may be specialized to a type T1'".
In this case, the interface of type T1' should be a subtype
of type T1.)

ii) Behavioral conformance: It is important that certain
semantic constraints between a specification and its
extended version are preserved. These constraints ensure
that the behavior of the modified behavior
specialization of the original one [Boch 92]. In the

is an
following we consider in particular the case that "

specialization” means "extension". For instance, the
modified behavior B' must exhibit at least the behavior of
the original behavior B without introducing new
non-determinism, nor deadlocks.

2.3 Classification of Jype changes

For objects-oriented specifications to fulfill their

promise for fast prototyping, and easy modifications, a
well defined and consistent methodology for type
modification must be developed. We consider in the
following only changes that satisfy the conformity
constraint described above, that means, the modified
version T' of the original ‘type specification T should be a
subtype of T. Modifications of type definitions are
typically achieved by adding or removing attributes and/or
operations, modifying behaviors, rearranging inheritance
links within the type lattice, etc. We distinguish the
following two kinds of modifications:

2.3.1. Structural changes

It is important to note that the existing approuches deal

mainly with sequential systems and do not address

behavior modifications. An acute problem in designing a
methodology for type modification is how to bring
existing objects in line with a modified type. Structural
type updates may be classified into several categories. In
the following, we enumerate the most important update
operations:

(1) Modifications to the contents of a node (given type
definition) in the type lattice

(i) Modifications to an attribute of a type (1) Add on
attribute A to a type T , (2) Drop an existing astribute A
from atype T, (3)Change the type T of an antribute A.

(ii) Modification to an operation of a type: (1) Add the
operation O to the rype T, (2) Drop the existing operation
O from the type T, (3) Change the signature S of the
operation O.

(2) Modifications to an edge of the lattice

(i) make a type S a supertype of type T

(ii) Delete a parent S (supertype) of the type T
(3) Adding (or removing) a type definition to (from) the
type lattice

2.3.2 Behavior changes

The behavior changes may be related to the structural
changes described above. For instance, an extension in the
form of a new operation in the interface of a type
definition requires the definition of its semantics, which
implies an update of the behavior definition of the type.

In general, the modified type definition must be
obtained in some way during the software maintenance
process, usually through the intervention of the designer.
We consider in Sec.3 the particular case, where the
modified specification S' is obtained through the automatic
composition of the original specification S with another
additional specification S1, such that S' is the extension of
both, the specifications S and S1. This means that the
modified system provides the services of both, S and S1.

In the case that the approach of Sec. 3 is used for the
construction of the modified specification, the conformity
constraints are satisfied automatically, due to the nature of
the algorithm used for the construction of the modified
specification.

3. Extending distributed system specification

behavior

3.1 Communication model

In this section we are concemned with the comparison of
the extended behavior of the modified system with a
behavior of the original specification. We may consider
the following aspect of behaviors:

(a) Depending on the state of the object, which are the

operations that are acceptable, and for which input
parameters values?

(b) what is the result returned by an acceptable operation
call, depending on the state of the object and the input
parameters value?

(c) What is the new state of the object after the
execution of an operation, depending on the state of the
object and the input parameter values?

(@),

programming languages assume implicitly that each

Concerning point most object-oriented
operation is acceptable in each state of the object. In
" real-time applications, however, it is often important to
restrict the order in which operations may be called. This
kind of object communication can be modeled by so-called
rendezvous interactions which required not only the
readiness of the caller, but also of the callee, for the
execution of an interaction.

In this section, we consider a simplified rendezvous
communication which - ignores
parameters. We assume that the behavior of an object is
described by a labeled transition system. Each execution
of an operation call is modeled by transition of the
system, which, in general, leads to a new system state.
The returned result may either be included. in the same

transition or it may be modeled by a separate subsequent

“model interaction

transition.

3.2 qabeled QHransition systems

From an abstract point of view, the behavior of a

distributed system specification and the behavior of its
subsystem specifications can be seen as processes, which
‘are expressed by labeled transition systems(LTS for short).

An LTS is a graph in which nodes represent internal
state, and transitions represent action occurring during
state changes.

Definition 3.1

An LTS TS is aquadrable <S, L, T, So> , where S; is
a (countable) nonempty set of states. L; is a (countable)
set of observable actions. T: S x LU {t}— S is a
transition relation, where a transition from a state Si to
state Sj by an action p(p € L U({t}) is denoted by
Si-u—8j. T represents the internal, nonabservable action.
So is the initial state of TS. #

A finite LTS (FLTS for short) is an LTS in which S
and L are finite. We denote by Tr(Sj) for "traces", the set
of all sequences of observable actions that can be
performed starting in state Sj. The point (".") is used to
represent the concatenation of traces. We may also write
act (TS), instead of L, to denote the set of observable

actions of TS. The behavior specification.of a distributed
system may be considered as a composition of its
subsystem specification behaviors. A mong the possible
compositions, the parallel composition operator and the
action hiding operator are of special interest in this péper.
The parallel composition operator (B1 | {ly,.... Hn}B2)
allows to express the parallel execution of the behaviors
B1and B2. B1 and B2 synchronize on actions in {1, ...,
Un} and interleave with respect to other actions. The
hiding operator allows hiding of actions, which will occur
as internal actions. We write B/A to denote the hiding of
the actions in A in the behavior B. The environment of B
will not be able to synchronize with B on these actions.
Intuitively, different. LTSs may describe the same
observable behavior. Different equivalence relations have
been defined based on the notion of observable behavior.
The failure equivalence relation is finer than the trace
but than the
bisimulation equivalence. However, for our considerations
in respect to behavioral conformance (see Section 2.2.2),

equivalence relation, coarser strong

we do not need equivalence relations, but rather ordering
relationships. Among them, we have the redaction and
extension relations. These relations may serve different
purposes during the specification life cycle. The extension
relation is most appropriate for extending specification
behaviors. Informally, S1 extends S2, if and only if S1
may perform any trace that S2 may perform, and S1 can
not refuse what S2 can not refuse after a given trace of S2.

3.3. An approach for merging distributed

system specification behaviors

We consider distributed system specification behaviors,
which consist of a parallel composition of subsystem
specification behaviors. Such specifications have the
following from: S = (S1 IAS2) \B, where A and B
represent sets of actions. The subsystem specifications S1
and S2 may also have the same form as S and so on, until
a level where the specifications have no structure and are
defined directly in terms of some allowed ordering of
actions. These specifications are called basic components,
they may be nondeterministic, but are assumed to be finite
state. Given a distributed system specification behavior
Sold, which consists of a parallel compesition of
subsystem specification behaviors and so on until the
basic components, and a new behavior: Sadded to be added
to Sold.
Spew, such that Spew extends Sold, Spew extends Szxided.
and Spew preserves the structure of Sgld:

We assume that Spld and Sadded have an identical

We want to deduce a specification behavior

structure. In other words, the form of the expression Sold
is identical to the form of the expression Sadded. To every
subsystem specification in Sg]d corresponds a subsystem
specification in Sxidd and vice et versa. To every basic
component Cigld in Spld, corresponds to a basic
component Cigjded in Sadded and vice et versa. If Sgld and
Sadded consist of parallel composition of subsystem
specifications, but their structure are not identical, the
structure of Syjded can be transformed[Khen92b]. If S aided
is given in a high level form, without an internal
structure, it may be transformed into a structure identical
" to the Spjd structure using the transformation algorithms
described in [Lang90].

Before introducing the algorithm for merging system
behaviors, which consists of parallel combination of
subsystem behaviors, we' describe the basic algorithm for
merging behaviors described by simple FLTSs.

3.3.1 Qhe algorithm FUPS-merge

The algorithm FLTS-merge uses an intermediary
representation, the Acceptance Graphs (AG for short). The
AGs can be manipulated more easily than the LTSs, since
the nondeterminism is modeled in the labels of the states
and not in the labels of the transitions as for LATSs.

Defmttwn 3.2

An AG G is 5-tuple <Sg, L, Ac, Tg, Sgo>, where Sg
is a(countable) nonempty set of states. L is a (countable)
nonempty set of events. Ac: Sg—P (P (L)) is a mapping
from Sg to a set of subsets of L. '

Ac:(Sgy) is called the acceptance set of Sgj. Tg: Sg x L
— Sg is a transition function, where a transition from
state Sgj to state Sgj by an actiona @€ L) is denoted by
Sgi a—>Sgj. Sgo is the initial state of G. #

Given two FLTSs TS1 = <S1, L1, Slo> and TS2=
<S2, L2, T2, S20>, the algorithm FLTS-merge consists,
first, to transform the FLTSs TS1 and TS2 into the failure
equivalent FAGs G1 = <Sgl, L1, Acl, Tgl, Sglo> and
G2=<Sg2, L2, Ac2, Tg2, Sg2o>, respectively. The
transformation algorithm is very similar to the usual
algorithms for the transformation of a nondeterministic
automata to a deterministic one.

The FAGs G1 and G2 are then merged into the FAG G3
=<Sg3, L1" L2, Ac3, Tg3, <Sglo, Sg20>>, such that a
state Sgi in Sg3 can be a tuple <Sglj, Sg2j> consisting
of state Sglj from Sgl and Sg2j from Sg2 (as for the
initial state <Sglo, Sg20>) or simple state Sgli from
Sgl or Sg2j from Sg2. These states and the transitions
which reach them are added step by into Sg3 and Tg3,

respectively. Initially, Sg3 contains only the initial state
<Sglo, Sg20>.)

The definitions of the transitions from state <Sglj,
Sg2j>in Sg3 depends on the transitions from Sgli in Sgl
and from Sg2j in Sg2. For instance, for a given state
<Sgl;j, Sg2j>, if there is a transition Sglj - a—>Sglk in
Tgl and a transition Sg2j - a= Sg2m in Tg2, then the
state <Sglk, Sg2m> is added into Sg3 and the two
transitions are combined into “one transition <Sgli,
Sg2j>-a—<Sglk, Sg2m> in Tg3. This is the situation
when G1 and G2 have a common trace from their initial
state to Sgly and Sg2m, respectively. Another illustration
of this construction, if for a given state <Sglj, Sg2j>,
there exists a transition Sg1j-a—Sglk in Tgl, but there is
no transition labelled by a from Sg2j in Tg2, then the
state Sgly is added into Sg3 and the transition Sglj-a—
S1x in Tgl yields the transition <Sglj, Sg2j>—a—>Slk in
Tg3. The transitions from a simple state in Sg3, like state
Sglk, for instance, remain the same as defined in G1. The
states reached by these transitions are added into Sg3,
except for the initial state, which is replaéed by the initial
state <Sglo, Sg20> of G3.

The mapping Ac3 is defined as follows: For every state
Sgi in Sg3, if Sgi=<Sglj, Sg2j>, then Ac3(Sgi)={X1U
X2 | X1€ Acl(Sgli) and X2€ Ac2(Sg2p}, if Sgi=3gli,
with Sglj € Sgl1, then Ac3(Sgi)=Acl(Sgli), if Sgi =
Sg2j, with Sg2j € Sg2, then Ac3(Sgj) = Ac2(Sg2)).

3.3.2 Ohe algorithm for merging distributed
system specification behaviors
The algorithm for merging distributed system
specification béhaviors (merge) is recursive over the
structure of Sold and Sadded. It is based on the algorithm
FLTS_merge, which serves for the merging of the basic
components.
Begtn
merge(S1, §2) =
i,f S1=(S111A S12)/B, S2 =(821 Ic §22)\D,
then (merge(S11, S21) {AUC) merge
(S12, S22)\ BUD) '
else FLTS_merge(S1, S2) (* S1 and S
are basic components *)
Eond
Snew, obtained by merge(Sold. Sadded). has a structure
identical to the structure of Sgld and Sadded. As' basic
component, instead of Ciold, it has Cinew which results
from the merging of Ciold and Cigded by the algorithm
FLTS_merge. Unfortunately, Spew does not always

extend Sold and Sadded. Consider the counter example in
Fig.1, where Sold = (Cloid H{gl} C20ld/{g1}. Sadded =
(Stadded (g2} S2axdded)/{g2}. The structure of the
specification Spew is identical to the structure of Spld and
Sadded, but Snew does not extend Spld neither Sadded.

) ook o
|

Sold Satted § new
+gl
O lo ¢ g
gl *b gl i\
@)
Clod (o Claded Claddes Cloew

Fig.1 Counter Example ‘
Indeed, Spld never refuses the action b after trace a,
whereas Snew may refuse action b after trace a. The same
observation holds for action ¢ after trace a.

The trace a is common for Sgld and Sadded. It is
followed by a hidden action gl in Clgld and g2 in
Clajded. The merging of Clgld and Cladded leads to a
choice between the two hidden actions g1 and g2 after the
trace a, in Clnew. The components Clpew and C2pew
may, internally, choose to synchronize on action gl or g2,
after a trace a, and offer only action b or only action c.

In Theorem 1 , we have stated below the sufficient
conditions for Sgld and Sadded Such that Snew extends
Sold and also Sxided. We denote by HGgld the set of
hidden action names in Sgld, and by HGadded the set of
hidden action names in S aided -

Condition (a) says that the names of hidden actions in
Sadded should not conflict with the names of observable or
hidden actions in Sg]d. Reciprocally, the names of hidden
action in Sg)d should not conflict with the names of
observable or hidden actions in Saided. These actions may
be renamed without any observable effect, in order to
satisfy this condition.

Condition (b) says that there is no observable action of
Sold and Sadded shared by two (or ore) basic components
of Sold (respectively Sadded). A basic component Cigld
in Sold may have common observable actions only with
the corresponding basic component Ciaided in Sadded, and
reciprocally. Conditions (c) and (d) state that Solq should

not be able to perform an action from HGold before
interacting with the environment and Sadded also should
not be able to perform an action from HGqideq before
interacting with the environment, respectively.

al

Fig. 2. Illustration for Conditions e-3 and e-4

Condition (e-3) and condition (e-4) are introduced in
order to avoid the situations similar to the one shown in
Fig. 2. Assume that Sold= (Clold Hgl, g2} CZoldM gl
82} and S 439 = (Clyggeg 14 stop)\ ¢ . The merging
algorithm for structured specifications leads to Spew =
(Clnew 1{gl, g2} C2new)\{gl, g2}, where Clnew is
shown in Fig .3 and C2pew = C20)d. We have Clpew ext
Clold and Clpew ext Cladded as well as C2pew ext
C20ld and C2pew ext Czaddad; However, Spew does not
extend Sgld. For instance , after the trace f.a.b.c, Spew
refuses to perform action d, whereas Sq]d never refuses to
perform action d after trace f.a.b.c. - Spew refuses to
perform action d, whereas Sgld never refuses to perform
action d after trace f.a.b.c. This is due to the fact what we
have two traces 61 = agl.b and 63 = ag2.b in Cl old such
that 61 # 62, 61\HGg)d = 62\HGg]d, ol is cyclic, 02 is
not cyclic, 62.c is a trace in Clg]d, and c is-a trace in
Cladded. It is possible to characterize these situations with
weaker conditions than condition (e-3) and condition (e-4)
as explained in this example. However the verification of
such conditions may be complex, whereas condition (e-3)
and condition (e-4) can be checked very easily in the case
of FLTSs.

Theorem 1

Given S g in the required hierarchical structure with the
basic components Clyg, C2g1ds-» Cnglds and Sadded
with an identical structure and the basic components
Cladded: € addeds--Chadded, Snew=merge(Sold, Sadded),
and for i=1,...,n, Cipew=FLTS_merge(Ciold, Ciadded),

We have that Spew extend Sold and Spew extends
Sadded, i f the following conditions are satisfied:

(@) Vi, i=1,.....n, act(Ciold) HGadded= ¢), and

act(Ciaggded) HGold=¢)

(6) Vi, j, i #J, (act(Ciold) U act(Ciadded)) N

(ac(Cjold) U act(Cjadded)) M(act(Sold) Y act(Sadded) ¢ ,

(¢) 3 Cigld and Cjold, such for some g €EHGold, g€

Tr(Ciold) ad g € Tr(Cjold)

() 3 Ciadded and Cjadded, such for some g €HGaided,

g € Tr(Ciadded) and g € Tr(Cjadded),

{e) Vi,i=1,...,n,
(1) ¥ 6€ Tr(Ciold)- (€}, 36.x Tr(Ciold) with x €
HGaddd, (2) ¥V 6 €Tr(Ciadded) (€}, Jo.x Tr(Ciold)
with x € HGold, (3) V a€ act(Sold), if a €
Tr(Ciold), then 30.a € Tr(Ciadded), unless o is cyclic
in Ciadded, (4) Va2 € act(Sold), if a € Tr(Ciadded),
then 3o.a €Tr(Ciold), unless o is cyclic in Ciold. #

4. Pynamic modification in an
object-oriented environment
To make dynamic modifications to an executable
specification without interrupting the processing of those
parts of the specification which are not directly affected by
the change, we use the concept of transaction to provide
Modifications are performed
The transaction concept is well

fail-safe specifications.
within a transaction.

known for database systems. Transactions serve three
distinct purposes: i)
together operations comprising a complete task; ii) they
the
consistency of the system; iii) they are recovery units that

they are logical units that group

are atomic units whose execution preserves
ensure that either all the steps enclosed within them are
executed or none. The principle of transactions is that if
the system is in a consistent state before a transaction
starts execution, it will be in a consistent state when the
transaction terminates. In order to ensure the specification
consistency, we have defined a set of structural and
behavioral invariants. A transaction commits when the
invariants are satisfied after the modifications, or aborts
whenever these invariants are violated.
4.1. ocking Protocol

To isolate the parts of the specification which are
affected by the modifications, we define a locking
protocol. According to the updates of a type, its existing
instances must be converted accordingly. When a type has
to be updated, its instances must be locked until the type
If the updates do not
succeed, e.g., because of invariant violation, then the type
will be rolied back to its state before the updates, and the
instances will be released to pursue their behavior

modifications are accomplished.

progress. In the case where the type updates succeed, the
instances will be converted accordingly, and then released.
Each object can be active, passive or locked. The object
state/transitions are shown in Fig. 3. Object instances are
ready for conversion only when they enter their locked
state. Thus not only the instances of the modified

create

\

activate

passivate

unlock

update

J

Fig. 3 Objects state/transitions
types must be locked, but the instances of its subtypes as
well. The instances of a locked type will be locked until
their type becomes unlocked. Fig.3 shows the possible
states and transitions of an object w.r.t. modifications.
4.2. Pransaction Mechanism
requirements within a
The
following steps show how the different actions, involved

The user formulates his
transaction which consists of type update operations.

in a type updates can lead to a consistent specification.

Stcp 1: Transaction construction : the user formulates
a transaction specifying his requirements (i.e., in terms of
operations for type modifications).

Stcp Q: Checkpoint : This step consists of saving the
state of the type sublattice and all objects of those types in
the sublattice. Then, apply the locking protocol to prevent
inconsistent use of the type to be modified and of its
instances.

Step 3: Modifications performed : This step consists
of performing the changes as specified by the transaction.
The old definitions of the types involved in the change are
saved within the previous step. The modification are
performed on these types without changing their identities.

Step 4: Consistency Checking :

-Structural checking : the checking process consists of
maintaining the structural consistency, after the type
the invariants which
correspond mainly to the static semantic rules of the
language.
comply with those invariants, then the anomalies are

modifications, according to

If the structure of a specification does not

reported in order to inform the user which part of his
transaction does not satisfy the invariants. Then the user
has to modify his transaction (from step 1), in order to
make the specification comply with the invariants.

-Behavioral checking : This check deals with the

behavior specification of the system. The sufficient
conditions of theorem 1 introduced in Sec.3 are modeled as
invariants which must hold along the transaction. In the
case where an invariants are violated, one cannot deduce
that the new specification does not extend the original one.

Therefore, these two specifications may be ‘compared
using an approach such as the reachability = analysis
technique.)

Step &:
modification transaction succeeds, (i.e., the structural
consistency and the behavioral conformance relations hold)

Instances -conversion : when the type

" then the instances (locked previously) , must be converted
to remain conform with their modified type.

Step 6: Transaction Commit : In this step, the
transaction commits and the type sublattice and the
instances are unlocked, after their modifications, and enter
their passive state.

5. Reflective Framework

5.1. An overview of Mondel

We have developed Mondel ,
specification language with certain particular features, such

an object-oriented
as multiple inberitance, type - checking, rendezvous
communication between objects. Mondel is particularly
suitable for modeling and specifying = applications in
distributed systems. Mondel
which associates a meaning to the valid language

has a formal semantics

sentences. The Mondel formal semantics was the bases
for the verification of Mondel specifications, and has
been used for the construction of an interpreter.

Each Mondel object has an identity, a certain number
of named attributes and acceptable operations which are
externally visible and represent actions that can be invoked
by other objects. An object is an instance of a type
definition (called class in most object—orientéd languages)
that specifies the properties that are satisfied by all its
instances.

5.9. Q{Q&(ondc[facifities

To define a reflective architecture, one has to define the
nature of meta-objects and their structure and behavior. In
addition, one has to show how the handling of inter-object
communication and operation lookup are described at the
meta-level. Therefore, we developed RMondel, a reflective
version of Mondel . In RMondel , types are used for
structural description and interpreters are used for the
behavioral description of their associated objects called
referents. This approach shows many advantages:

The most important spect of reflection in Rmondel, is
that each object is an instance of a type, and types are

object instances of. a meta-type called Modifiable-Type
which is a subtype of the meta-type TYPE. Some aspects
of the TYPE and Modifiable-Type. definitions are given
in Fig.4. Another aspect is that the RMondel statements
and expressions are objects.

Since the type and behaviors are objects, a given
behavior ‘may be extended by -providing the additional
behavior as a parameter for the FLTS-merge operation as
shown in Fig.4. The FLTS-merge operation is. the
RMondel representation of the FLTSs merging algorithm
described in Sec. 3.3.1. When a type t accepts the
operation FLTS-merge, then the behavior of t defined by
the attribute Behaviore Def (see the definition of TYPE
in Fig.4) will be merged with the behavior object given as
a parameter of the FLTS-merge operation. The result will
be update of the Behavior Def of t according to the
extension accomplished by the FLTS-merge algorithm.

6. Conclusions :

We have developed a formal approach and mechanisms
for the dynamic extension of distributed system

specifications, object oriented system

specifications in the context of Mondel language. In this

especially,
paper, we have used the extension relation as a
formalization of the addition of new functionnalities to a
given specification. However, other relations may be
considered for behavior and extensibility. Mondel
been implemented on a sun workstation, and used for
simulating the specifications of the OSI directory system,
and personal communication services.
\

has

{ type TYPE = OBJECTwith
TypeName :string;
BehaviorDef :var[Statement];
SuperType :TYPE;
Attributes :set[AttributeDef]
Operations :set{Operation];
pProcedures :set[Procedure];
operation
addAttr (A: AttributeDef);
AddOper (O: Operation);
AddProc (P: Procedure):
addstat (S: Statement);
Invariant

“Invl" {attributes must have distin
names} ([Forall al, a2
AtrributeDefinition such that;
Attributes.contains(al) and
SuperType.Attributes.contains (a2}l
(al.AttrName <> a2.AttrName)
behavior
LookUpProc;
where
{The semantics definition of the

modification

operations.}
\:édtypeTYPE

Fig. 4 Type Object Speification

