VATLEAVTZ7 Vo =T & 68— 4
ARV =F 4 V7« YZF A
(1995. 3. 24)

Codeset Independent Full Multilingual Operating System:
Principle, Model and Optimal Architecture

Yutaka Kataoka*, Tadao Tanakat, Tomoko Kataoka*,
Kazutomo Uezonot, Shoichiro Yamanishit and Hiroyoshi Oharat

* Centre for Informatics, Waseda University
T Ohara Laboratory, School of Science and Engineering,
Waseda University

Abstract

Localization based on POSIX Locale Model does not satisfy the Internationalization (I18N) and
has inhibited computability, interoperability and information exchangeability. An I18N
environment not only satisfies ISO 2022 and ISO 6429 but also permits mixing all character code
sets including thier extensions for /O and Text Manipulation/Communication without
dependending on any orthography of a language. Thus, it is clear that 118N must be realized as a
Muliilingual system. To realize the system, all writing scripts and their orthographies were
analyzed, and essential informations were discovered for defining Character Set and Final Glyph
Set, and for specifying Final Glyphs. And beyond ISO specifications, extensions of character
codepoints were generalized. By using those informations, Global IOTMC Model that ensures
computability, interoperability and information exchangeability was established. Then, Meta
Converter System that was designed and coded optimally realized generalized/unified mechanism
of the Multilingual System.)

R dae, b ORRE AR B, BB —Me I E—BRt ANR Rt

* RIREAY WHEEMARE L 5 —
} RREARFEAFER B TEMAR
t REREKSE B ITER

nE

POSIX Locale {2#-7 € Localizationit, ER{LISHHEET . {FHATRTAEM: L STETEEMEEZ L
FHET 5, EIBRMERBE L 3. BICIS02022%1S0 6429 % R T2 DA %2 5 ¥, BAEDIELYSD
REFBKRAF SRS T RAES Y, 2EBOEEERIEETAIZ L, ABS - 74X M
- 70t AH@EE T WEE L T % Multilingual SystemTd 5 = L 3 ETH 2, P EB+27-
O, ERFOXFEEFELFAEL., XFEEEE RRETHRLELEE - BFREBRENS
LAEHRERD, E5CISOREE TN B A BT RAFSESEA OB —BIL L7,

Z D ¥ = V> TGlobal IOTMC Model Z ##52 L, SHE AR - HACRTT Sete R RAE L. Solfl
L 7zMeta Converter System % fER% L. B —O % T—#&1L & #8812 X 5 Multilingual System %
%ﬁ Lf:o

1. Introduction

Truly internationalized computing requires, at least,
allowing simultaneous mixing any number of scripts for
any language, and use of any number of code sets (and
extensions thereof) for any script. By contrast, most
approaches to Internationalization (118N) use the
POSIX Locale model [1,2] which localizes each applica-
tion to be at most bilingual, and leaves the code-set han-
dling poorly defined. Since POSIX, ISO C[3] and
Amendment 1: C Integrity (Draft)[4] allow defining
Mutlti-code-set (MCS) locale, it is possible to apply a
MCS locale. But the MCS locale reveals contradictions
of the Locale model{5,6]. Also POSIX and C do not
allow for Non-Fixed-Length (NFL) codepoints such as
those given by ISO 6429(7] or by IS 13194{8]. Thus,
POSIX and C do not meet the minimum requirements
for true 118N[9]. Nor do they provide for orthography
independence, language-independent text manipulation
and communication.

X11RS implements partial I18N, with limited
MCSs{10]. But in X11R6, the OM and IM are hard-
coded to the locale. Neither RS nor R6 ensure com-
putability and the locale model prevents them from pro-
viding true I18N. Nor do they provide for data
exchangeability.

True [18N systems must provide Multilingual
Input, Multilingual Output, Text Manipulation, and Text
Communication; with all components ensuring com-
putability, interoperability, and information exchange-
ability, with unlimited MCSs. All functions should
work consistently with character code extensions[11] (in
1S 13194 for a set of Indian scripts, 94 codepoints is
extended to more than 2000 real characters). Thus, an
118N system must be Multilingual — code set and lan-
guage independent with the codepoint extensions.

To implement our system, all writing scripts and
their orthographies were analyzed, and essential infor-
mation was discovered for defining Character Set and
Final Glyph Set, and for specifying Final Glyphs. Using
this information, we generalized character codes beyond
ISO specifications, to a Global I0TMC Modell6] that
ensures computability, interoperability and information
exchangeability. The Model provides the Meta Con-
verter System[6,12] that was optimally designed'and
coded, and the System realized a generalized and
unified mechanism of the Multilingual System.

2. Scope of Muitilingual I/0 and TM/C System
A Multilingual O and TM/C system should have
four components: Input, Output, Text Manipulation, and
Interprocess Communication. Each component must
allow for 1) simultaneous handling of unlimited sets of
MCSs, 2) ISO 2022[13] specifiability (even for control
character sets), 3) 1ISO 6429 codepoint extensions, NFL
codepoints (e.g., TIS 620-2533[14] — Thai script, 1S
13194 a set of Scripts in India), 5) conversions between
WC and mb, which contains Control Character Sets,
Conirol Sequences, NFL codepoints, and information
about direction dependency and position dependency, 6)
interactive selectability from a set of MCSs locales, 7)
Text Manipulation Codes (TMCs) for independence of
text manipulation functions from code set and lan-
guage/orthography, and 8) information for interprocess
communication for each application. Any Multilingual
1/0 and TMIC system must satisfy the above require-
ments (i.e, code set independence by WC converted
from mb by obvious rules and language/orthography
independence by use of TMCs). As a result, each code-
point in each mb/WC/TMCs must be uniquely con-
vertable with codepoint extension methods among mb,
WC and TMCs. Thus, a system that cannot define
extension rules beyond ISO to determine each element
in each set is not a Multilingual 1/0 and TM/C system.

3. Definition of Generalized Multilingual 1/0
and TM/C System

To avoid hard-coding, the system should have data
files that describe definitions of all information for the
four components described above. And to keep consis-
tency, only one executable process of each component
of the four should provide informations and perform
functions for all processes. A ksystem satisfying above
requirements qualifies as a generalized and unified sys-
tem. '

4. Essential Information for Definition of Char-
acter based on Analyis of World’s foiting
Scripts

To design the generalized maultilingual /O and
TM/C system, world’s writing scripts and their writing
conventions were analyzed and classified[10]. Writing
scripts fall into the following categories, 1) Phonemic,
2-1) Conjunct Syllabic, 2-2) Pure Syllabic and 3)

Ideogrammic. This categorization is still not enough to
define informations held in a Character.

When a character is written, it is called a writing
script. The forms of characters that writers consider
equivalent can vary according to their writing direction
and their position in a word. They can also vary in up to
four ways depending on their position in a word; 1) Ini-
tial (first), 2) Medial (between first and last), 3) Final
(last) and 4) Independent form (first and last, i.e., a sin-
gle character word). For our purposes, a character is
rigorously defined as a named equivalence class of
triples, each of which consists of a direction, a position,
and a Final Glyph. For maximum generality, we define
all characters as being both 1) Direction dependent and
2) Position dependent[6,11]. Thus, each of our charac-
ters represents a set of 16 final glyphs (4 directions x 4
positions) (Fig. 1. Notice 'Hello!” and punctuation
marks). In some characters, some of the 16 final glyphs
happen to have the same shape. Therefore, a Character
should have informations to select one final glyph -
Final Glyph Information that is the informations held in
a Character.

[FlGrgn Lettin Origin Top B8] (&) Grigin Botiond)
HEE Hello!” Higzedoa
HEEE RIS SR
=5 (bl Beed o w00 .
BERE st ;;;2 ot e+
B4 [4HE g ﬁg ire
Origin RightFL gg{ 2 ‘:c‘ A4S
"Hello!" 1 b]u [Emﬂ,;‘}‘
Rl e T | s S | L
(9o &g M) gtzx <
rengstavzt) CaEER B
r5gHiz, HASE trtEer e

Figure 1

The Final Glyph infomation must contain 1) Direc-
tion Dependency and 2) Position Dependency. The
Direction Dependency information consists of a draw-
ing direction of a character (a character has a fixed
direction or it should be written according to a current
writing direction) and of selection rules of a glyph when
a glyph shape varies according to each direction. Posi-
tion dependency information specifies selection rules of
one glyph out of 4.

As a default, Drawing Time Information that con-
tains Origin of Line to specify a direction of word
progress must be defined to select one correct Final
Glyph.

5. Definition of Informations for Character
Code Set based on Analyis of Code Set Designs

Character code sets are classified into Graphic
Character Set (GCS) and Control Character Set (CCS).
It is clear that a GCS lists *Characters’ that hold Final
Glyph Information, e.g., ISO 8859-6 for Arabic lists
only Independent Forms. If characters in an Arabic
word were written in all Independent Forms, it is impos-
sible to read - such a sequence means "Number’ in Ara-
bic because Arabic script is a logograph. So it is natural
to think that ISO 8859-6 lists Characters[15]. Except
for a few cases, all codepoints in all GCSs are defined as
Characters, i.e., each codepoint is defined as a name of a
set of Final Glyphs — Name Definition. When a code-
point in a GCS is directly defined as a final glyph, the
codepoint is called as Glyph Definition.

Contradiction of Glyph Definition
in GB8045-1987

General Schema of Mongolian Glyphs:
Initiat medial final

S 6 O

for suffixes
Problematic Cases in GB8045-1987:

Mativi
character ‘"Pf;,';’h . initial medial | finat

I @ |a|l>
g Yos Q(D Yoo Yes

E] ala
Yes Yes

No\ [)
~ ° Yeos ?

a < J nified
e <+ A el B
Y if composed as ¢ + << , N0 way to distinguish from init. ‘e’ + med. ‘I,
Figure 2

If a GCS contains both a codepoint as Name Defini-
tion and its respective codepoints by Glyph Definition,
such a GCS provides contradictions. ISO 10646 con-
tains 5 codepoints Thek in Arabic, 1 as Name Definition
and 4 as Glyph Definition, with no description for the
relations between Name Definition and Glyph Defini-
tion. Thus, ISO 10646 cannot be used for text process-
ing by code set independent applications. GB
8045-1987 for Mongolian Script was designed as a mix-
ture of Glyph and Name Definitions. The code set does
not explain any extension ways to define relation among
Name Definition and Glyph Definition codepoints (note

h | &

y i

that one page is even lacking). By an analysis of Mon-
golian Script orthographies, it is impossible to define
Final Glyph Information for GB 8045 (Fig. 2) — there is
no way to add information to each Character by unifica-
tion of Characters by their shapes.

Adding to code extension techniques of ISO 2022,
a codepoint can be extended by combinations of code-
points in GCSs or by definitions of ISO 6429. To treat
generally both GCSs and CCSs for codepoint exten-
sions, it is possible to define that a codepoint has two
roles: one is that a codepoint can specify a Final Glyph
Set, and the other is that a codepoint invokes Control
Functions. Defined as this, a codepoint in a CCS does
not have a rule to specify a Final Glyph Set, and the
same codepoints in GCSs have both roles. Thus, infor-
mation in a codepoint can be defined as specifying these
two roles.

To generalize Codepoint Extension Methods, analy-
sis of international/national code set designs is also
essential. Code set designs are classified into the fol-
lowing categories, 1) 1 codepoint for 1 Character, 2) 1
codepoint for multiple Characters, 3) multiple code-
points for 1 Character and 4) multiple codepoints for
multiple Characters. By the analysis above, the number
of codepoints in a GCS or in a CCS is less than the
number of those in an extended set of GCS or CCS.
Therefore, Codepoint Extension Rules must be added 1o
the GCS or the CCS definition to use a GCS or a CCS
correctly. After the extension, a GCS or a CCS specifies
a set of real codepoints that have two roles above. A
Character code extended by the rules from a GCS (CCS)
is called an Extended GCS (Extended CCS). Thus,
codepoints in a WC must be converted from all code-
points in all Extended GCSs and in all Extended CCSs.

IS 13194 requires multiple different rule sets of
extensions corresponding to a set of writing scripts
derived from Brahmi Script. To process simultaneously
all sets of scripts derived from Brahmi Script, interactive
Codepoint Extension Rule set selection that is out of
ISO 6429 must be realized. Thus, the mechanism to
specify a combination between GCS and its rule set(s) is
essential.

A code set that does not permit to define com-
putable Codepoint Extension Rules is called Miss-
design code set — ISO 10646 is a typical one.

6. Definition of the Relations among mb,
Extended Set, WC and Final Glyph Sets

Mb is defined as a set of GCSs and CCSs. Then
each GCS (CCS) is extended to its Extended Set with
Codepoint Extension Rules belonging to the GCS
(CCS). Note that it is possible to combine a codepoint
in a GCS (CCS) and that in different GCS (CCS).

Since a codepoint of an Extended Set stands for
Character, it can be mapped to a Final Glyph in a Final
Glyph Set with Final Glyph Informations. Since a code-
point corresponding to a Character has two roles, a
codepoint from a CCS can be mapped to a Control
Function. Thus, a set consists of a set of Final Glyph
Sets and that of Control Functions contains all Final
Glyphs and all Control Functions as the elements of the
set. The set must be defined as WC to keep computabil-
ity of a system - the set is the biggest and involves all
informations of GCSs and of CCSs. WC must be one in
a system to keep consistency among GCSs and CCSs.
Since reverse conversion from codepoints of WC to that
of mb should be.done, informations for the conversion
must be held in the codepoints in WC.

Therefore, a codepoint of WC should have informa-
tions 1) to specify a Final Glyph (if the codepoint has a
glyph), 2) to specify a Control Function (if the code-
point has a Control Function), 3) to enable reverse con-
version to mb and 4) to correctly locate the codepoint in
a sequence of WC codepoints at drawing time (Origin of
Line Progress and Origin of Line). From the informa-
tion to specify a Final Glyph, informations to specify a
index of a font in a font file and ID of the font file can
be obtained, so any design and any number of font files
can be used for WC.

Having those informations in a codepoint of WC,
the codepoint is uniquely defined through all locales.
Thus, WC defined here can be used as locale indepen-
dent and it is independent from code sets in mb. The
width of the WC is determed by the informations - It is
clear that 16 bit WC cannot retain them.

Since POSIX does not suppose any extension of
codepoint in mb, some functions do not always work,
e.g., wctomb does not work for the permutation of two
codepoints in IS 13194,

7. Introducing TMC and Generalized Text
Manipulation Functions

As defined above, WC does not have enough infor-
mation for text manipulation. Nor WC ensure to stand
for one character to be processed. There are multiple
ways to normalize to one character, although WC can-
not be used for text manip\ulation. Note that not always
a proccess unit matches a Character.

To generalize text manipulation in a multilingual
text, a code that is normalized by a unit to be processed
by absorbing language and orthography differences —
Text Manipulation Code (TMC) is required. To avoid
reducing computability, a mechanism that provides mul-
tiple TMCs from WC by different normalizations must
be provided. By our researches, that basic unit to be
processed was discovered, and so were the basic func-
tions to manipulate text strings and techniques to gener-
alize the functions to TMCs.

One codepoint of TMC has a Character-ID field
and an Astribute field. The Attribute field retains bits of
categories of a character, such as punctuation symbol,
phonemic or position dependency. Those informations
should be definable and described in WC-TMC conver-
sion tables. Especially, TMC-ID 0 is provided by our
system which is normalized by a character for the pur-
pose of basic multilingual text manipulation.

By the informations in the Attribute field, text
manipulation functions could be designed as TMC inde-
pendent, i.e., the text manipulation functions use both or
one field for the purposes.

8. Supplying Information for Multilingual
Interprocess Communication

In interprocess communication, ISO specifications
do not supply informations for a locale. And locale
dependent factors are all implementation dependent.
Thus, a locale dependent system is closed. Therefore, it
is clear that a model independent from Locale model is
required.

For interprocess communication, a multilingual sys-
tem should return the following informations; Designa-
tion Sequences from names of GCSs/CCSs, a GCS/CCS
name from a codepoint of WC, Invocation sequences
corresponding to invocation functions in given CCSs,
control character sequences corresponding to Control
Functions in given CCSs and any current status of In-

use Table and Intermediate Table.

It is essential not only to return the informations but
also to associate a code set with a rule set to generate
WC and other code sets — IS 13194 can be used for all
different scripts derived from Brahmi.

9. The Multi-Locale Model and the Global
IOTMC Model

Two models were established that satisfy conditions
and definitions described above. The Multi-Locale
Model provides a set of MCS locales by OpenLocale
function that returns each Locale-ID. By using of the
ID, MCS can be gotten I/O simultaneously with func-
tions provided anew. Also the function setlocale can
interactively select a MSC locale in the set of locales,
and the setlocale function permits I/O and locale-related
functions just as described in POSIX and ISO C. Since
POSIX and ISO C are subsets of this model, it ensures
backward compatibility. Only one WC through all
locales is provided. Thus, it is possible to share WC
codepoints among different locales. But TMC-ID 0 is
provided only corresponding to a set of locales specified
by OpenLocale function. Also informations for inter-
process communication are restricted within a range of
code sets specified by the locales.

On the other hand, the Global IOTMC Model cov-
ers all of I/O and TM/C. This model provides — without
limitation of locales — TMC-ID 0, basic text manipula-
tion functions and interprocess communication func-
tions. It is not necessary to open locales in this model.
Once calling InitGlobal function to initialize, all graphic
character sets and control character sets can be used
without a locale-ID. And this model also provides a
switching mechanism that associates a graphic character
set and its Codepoint Extension Rules (this mechanism
solves IS 13194 and Perso-Arabic Scripts problems).
By the optimal implementation of the architecture of the
models, all functions of the models can work simultane-
ously.

10. The Architecture of the Models

The architecture of the models is based on the Mera
Converter System that converts encoding schemes,
Trans-character-set converting GCSs and CCSs to WC,
and converting them to TMCs by Trans-Unit conversion
via WC, since all sets in the system were defined clearly

to keep computability. The system generates WC and
IWC (Internal Wide Character indexing only fonts in
font files) from mb by the rules described in the tables.
And the system generates TMCs from WC. The system
also converts TMCs to WC when conditions for reverse
conversion are satisfied.

The Meta Converter System is a complex of
automata and each automaton is generated by the Meta
Converter Table Compiler that compiles data definition
tables. By analyzing writing scripts and code sets, opti-

mal paths and structures of the automaton complex and -

each automaton were discovered. To minimize the
amount of code by the compiler and to make it faster,
basic extension functions were discovered and imple-
mented. Thus, the automata call the functions with
rules that are also generated by the compiler. Therefore,
the best performance is ensured. All common areas
generated by the compiler is shared by the processes.

Each functional part is designed as a module that
calls the Meta Converter System and the System returns
all informations for all functions of the I/O and Text
Mipulation/Communication modules. Thus, each ele-
ment of a set is ensured as unique. By this architecture,
the total system can keep computability, interoperability
and data exchangeability.

11. The Implementation of the Meta-Converter
System

The Meta Converter System consists of Meta Con-
verter Table Compiler, Trans-Unit Converter,
GCS/CCS Information Functions, Character Informa-
tion Functions, Text Manipulation Functions, and Inter-
process Communication Assisting Functions. The
encoding scheme converter and the trans-character-set
converter are parts of Trans-Unit Converter. All con-
verters above are collectively called as Meta Converter.

11.1. The Meta Converter Table Compiler

The Meta Converter Table Compiler (MCTC) com-
piles data tables and generates automaton bodies that are
loaded and used by the Meta Converter System. There
are three categories of data tables, 1) Relation Tables
describing GCS Tables and CCS Tables to be loaded by
the compiler, 2) GCS Tables and CCS Tables specifying
elements of WC, and 3) TMC Tables describing conver-
sion from/to WC.

In Relation Tables, locale, multi-locale and global
informations are specified. For one GCS, by different
extension rules, multiple GCS Tables can be defined.

The compiler reads the Relation Tables, the
GCS/CCS Tables and the TMC Tables, then the com-
piler generates encoding scheme automata, Trans-code-
set automata, trans-unit automa and TMC automata.
The structure of each automaton is pointers to prede-
fined optimal functions with calling parameters for min-
imum storage size and for portability of source code.
Each automaton can be selected by merely changing
pointers. Thus, after compilation, all automata can be
invoked with no locale or GCS table dependencies.
These automata are loaded when the initializer in our
library is executed.

11.2. The Meta Converter

The Meta Converter consists of the mb/WC Con-
verter, the WC/TMC Converter, the mb/IWC Converter
and the WC/IWC Converter. The mb/IWC and
WC/AWC Converters are used in the OM.

The mb/WC Converter processes mb through the
following steps, 1) Control Functions and Determinative
processing, 2) Direction determination and 3) Position
determination[11]. In the third step, informations about
wctypes functions are stored in a bit field in WC for
compatibility with POSIX — note that those functions do
not always work correctly. Reverse-conversion executes
steps 3 through 1. Since the Control Functions and
Determinative processing use a set of functions with
rules associating GCS/CCS, and WC retains an ID for
the function, it is possible to reverse-convert by a pair of
functions and its reverse-function with the same func-
tion ID. Thus, with the function pairs, fixed length data
types can be used for WC.

Conversion from WC to TMC is done by the
WC/TMC Converter through the following steps, 1)
generating a TMC Character-ID field from the
GCS/CCS-ID, Font ID and Glyph Index of the WC
codepoints and rules, 2) generating TMC Attribute field
from rules in the converter and 3) generating the rest of
the Character-ID field that retains informations to con-
vert TMC to WC. Reverse conversion to WC can be
done by using the informations to convert TMC to WC.

Since all conversion paths were determined, the
fastest algorithm optimized was implemented with

maximum straight-line code that does not break pipe-
line stage of CPUs. The algorithm, the implementation
and the architecture are described in detail in another
paper (in preparation).

11.3. The Character Information Functions

Character Information Functions query and change
informations in the Attribute field informations in one
element of TMC. Each attribute in the field is stored as
one bit. In order to generalize the functions, each
attribute name in the field is set in a TMC Table and the
functions retain the name and its bit location in the field
by data generated by the MCTC. Thus, the functions
are called with the attribute name(s) and TMC-ID. The
essential functions[9] are as follows, 1) QueryTMCAL-
tribute, 2) QueryTMClInformation, 3) ChangeTMCIn-
formation, 4) QueryTMCCulCName. Finding a line
separation can be located by checking attributes field
defined for the purpose.

11.4. The Text Manipulation Functions

The TMC Text Manipulation functions are also
called with TMC-ID. Note that each TMC is indepen-
dent of all other TMCs.

The basic TMC string functions[9] are 1) TMC-
StringLength and 2) TMCStringCopy. A TMC string
concatenation function can be derived from these.

The essential functions for TMC text manipula-
tion[9] are as follows, 1) InsertTMCString, 2)
DeleteTMCString, 3) CompareTMCString, 4) ExtCom-
pareTMCString, 5) SearchTMCString, 6)
ExtSearchTMCString, 7) ReplaceTMCString and 8)
ExtReplaceTMCString. These functions adjust the
Direction and Position Dependency attribute fields.

11.5. The Interprocess Communication Assist-
ing Functions

The GCS/CCS Information Functions are used to
inform associations between GCS/CCS and designation
sequences, and its extension rule sets. To re-associate
designation sequences and extension rule sets, function
ChangeGCSExt is used. This function is essential for IS
13194 because ISO does not supply such re-association.
Since WC codepoints in a rule set are unique when the
rule is changed, it is possible to mix all scripts derived
from Brahmi simultaneously.

12. Multilingual Application Softwares Real-
ized by the Multilingual I/O and TM/C System

Essential applications were modified to Muitilin-
gual by using of the Multilingual I/O and TM/C System.

Adding Multilingual OM calling the Meta-
Converter System to X Window System, X Window
System could correctly draw any Character in any Code
Set in any direction as Multilingual I/O System (Fig. 3).
The new X Window System maps a Multilingual Win-
dow more than 10 times faster than older systems and
new one draws even to several times faster.

 Grigin LR 2]
French Vietnamese Swedish Turkish
Ca val Chic ba God dag lyi sinler
(NF Z 62010) (TCYN 5712) (SEN 850200) (IS0 8859-3)
English German Greok Mongolian
Hello!? Guten Tag Kodnukpr Cafu Gefma yy?
(ANSI X 3.4) (DIN 66003) (ISD 8853-7) (WSD-Mongol-Cyl)
Arabic Chinese Korean Japanese
oSl oI HIBPS LWV CAKHIT
(IS0 8859-6 + lig.) (GB 2312) (KS C 5601) (JIS X 0208)
Hebrew Thai Hindi Tanil
ot a¥adaty e QAR
{150 8859-8) {TIS 620) (1S 13194) {15 13194)
Figure 3

Also the Meta-Converter System provided Interprocess
Communication facilities to the X Window System. By
using the facilities, the communication between X
library and X IM could be defined, and a new X IM is
now under development.

Adding to the new X Window System, Multilingual
Athena Widget and X Intrinsics were developed. All
widgets in the Athena Widget relating to I/O and text
manipulation were modified to use the Meta-Converter
System. In pardcular, Multilingual Text Widget could
correctly format and edit multilingual texts in any draw-
ing direction and any direction of line progress. The
new Widgets permit interactive switching of vertical or
horizontal processing.

A Muthilingual FORTH system was developed so
that it can satisfy Multilingual Common LISP after pro-
gramming the FORTH. The FORTH calls the Meta-
Converter System to process mb/WC/TMCs. The
FORTH system compiles source code to run faster, The
system has two implementations, a FORTH interpreter
with the compiler, and a Runtime library format of
FORTH that can be linked from another application.

The library implementation makes it easy to provide
complicated application softwares.

Multilingual printing facilities for printers are now
on the way by parallel processing ability on networking
to the OS.

13. Summary

In our research, requirements, informations and
definitions for a Multilingual System became clear. A
Multilingual I/O and TM/C system was developed based
on the Multi-Locale Model and the Global IOTMC
Model. The system was optimally developed based on
the Meta Converter System with compiler technologies.
Problems with POSIX and ISO specifications were dis-
covered and solved, and problems with some Graphic
Character Sets could be defined.

The System can provide code set and lan-
guage/orthography—independent application softwares —
e.g., multilingual editors, text formatters, distributed
databases, even Multilingual parsers and syntax analyz-
ers for natural language processing can be provided.
Research for those has already begun in our laboratory.
By the analysis of characters and orthography, informa-
tions to convert a spoken language to Character
sequence became clearer. Thus, a new model of a Mul-
tilingual parser is now under development.

14. Acknowledgements

Thanks go to H. Daikokuya, K. Maruyama and T.
Oya. To Michael E. Tumer goes our deep gratitude for
his efforts on discussions. Remaining errors, if any, are
of course ours.

References

[11 ANSVIEEE Std 1003.1-1998, IEEE Standard
Portable Operating System Interface for Computer
Environments (Approved Nov-10,'89 by ANSI).

[2} ISO/MIEC 9945-1: 1990, Information technology ~—
Portable Operating System Interface (POSIX) Part
1: System Application Program Interface (API) [C
Language].

[3] ISO/IEC 9899: 1990, Programming language C.

{4] ISONEC 9899: 1990/DAM 3, Draft Amendment
1:1994 (E), Programming languages - C AMEND-
MENT 1: C Integrity.

[5] Kataoka, Y. et al., A model for Input and Output of
Multilingual text in a windowing environment,

ACM UIST’91 November 11-13, pp 175-183.

[6] Kataoka, Y., et al., Multilingual I/O and Text
Manipulation System(1): The Total Design of the
Generalized System based on the World’s Writing
Scripts and Code Sets, Proceedings of the 49th
General Meeting of IPSJ, Vol. 3, September 1994,
pp 299-300.

[71 ISO/MEC 6429: 1988, Information processing —
Control functions for 7-bit and 8-bit coded charac-
ter sets.

[8] IS 13194:1991, Indian Script Code for Information
Interchange — ISCII, Bureau of Indian Standards,
India.

[9] Kataoka, T. et al., Multilingual YO and Text
Manipulation System (3): Extracting the Essential
Informations from World’s Writing Scripts for
Designing TMC and for the Generalizing Text
Manipulation, Proceedings of the 49th General
Meeting of IPSJ, Vol. 3, September 1994, pp
303-304.

[10] Kataoka, Y. et al., A model for Input and Output of
Multilingual text in a windowing environment,
ACM Transactions on Information Systems, Vol.
10, No. 4, October 1992, pp 438-451.

[11] Uezono, K. et al., Multilingual /O and Text
Manipulation System (2): The Structure of the Out-
put Method Drawing the World’s Writing Scripts
beyond ISO 2022, Proceedings of the 49th General
Meeting of IPSJ, Vol. 3, September 1994, pp
301-302.

[12] Tanaka, T., et al., Multilingual I/O and Text Manip-
ulation System(4): The Optimal Data Format Con-
verter to/from MB/WC/TMC, Proceedings of the
49th General Meeting of IPSJ, Vol. 3, September
1994, pp 305-306.

[13] ISO/IEC 2022: 1986, Information processing —
7-bit and 8-bit coded character sets ~ Code exten-
sion techniques.

[14] TIS 620-2533 (1990), Thai Character Codes for
Computers, Thai Industrial Standards Institiute,
Ministry of Industry, Thailand.

[15] Tanaka, T., et al., Generalized Output System that
draws multiple code sets on a windowing environ-
ment (in Japanese), Proceedings of the 46th Gen-
eral Meeting of IPSJ, vol. 5, March 1993, pp
87-89.

