Consensus Protocol with Partially Ordered Domain

Iwao Shimojo, Takayuki Tachikawa, Hiroaki Higaki, and Makoto Takizawa

Tokyo Denki University
E-mail {gan,tachi,hig,taki}@takilab.k.dendai.ac.jp

Distributed applications are realized by the cooperation of multiple processes. A group of the
processes have to make consensus to do the cooperation. The processes exchange the values with the
other processes to make consensus. The processes are referred to as consent if each process takes one
value which satisfies a consensus condition. A dominant relation among the values is defined to show
what values the processes can take after taking a value in the consensus protocol. In this paper, we
discuss how to make consensus for a group of the processes by using the dominant relation.

YIEFERICFIIBEES O baL

TR M O BT RE R IR

BB AR TR B TR
BT v BT TR S b, T RETORENSEL RS, R v barTR], TH
2 A CEOEEE AV, BT 0 ABSERELHET HEYMEALE, 7ot ARBE L LT D,
BB u b IATR, BBETE- ki, KK EDERE O3 ETH 5 EHOXFEEFRTERT
2, Hlb, B7 ot 2id, TEMEFRLAVEC LT, HEEYE-S ARG, RICEDEZRE 2 ¥RET 5o

AT, ZEREANVICLT, TR SA—T T, WHCEBYR5 0 2#RT 5.

1 Introduction

A distributed system is composed of multiple
processors interconnected by communication net-
works. In distributed applications like groupware
[1], a group of multiple processes are cooperated,
each of which is computed in one processor. In the
cooperation, the processes make consensus if they
take values which satisfy a consensus condition by
exchanging values.

In this paper, we discuss a consensus protocol
where a group of multiple processes take values
among m (> 2) values vy, ..., Ur, while only two
values, i.e. 1 (commit) and 0 (abort) are consid-
ered in the two-phase commitment (2PC) proto-
col [2,6]. In the 2PC protocol, the process taking
1 can take 1 or 0 although the process taking 0 can
only take 0. After notifying other processes of 0,
the process is uncertain [11] where the processes
have to wait for the decision of the coordinator,
Here, the process may block if the coordinator is
faulty. In more general consensus protocols, af-
ter taking some value v, the process can take one
value which depends on v, Takizawa et. al. [14,15]
introduce a dominant relation < in which the val-
ues in the domain D are partially ordered. That
is, a value vy in D dominates vy (vy < v3) if the
process can take vy after taking v;. There are two
cases, i.e. homogeneous and heterogeneous ones.
In the first case, one dominant relation holds for
all the processes in the group. In the heteroge-
neous case, a dominant relation is defined for each
process, that is, even if one process takes a value
v' after taking v, another process might not take
v after v. We discuss how to make the consensus
among the processes by using <. In addition, we
make clear how the processes block in the presence
of the process faults.

In the 2PC protocol, the processes commit only
if all the processes take 1. Otherwise, the

—7—

processes abort. In addition to the atomic com-
mitment, various kinds of decision logics like
majority-consensus have to be considered. We
discuss what kinds of the consensus decisions can
be adopted based on the dominant relation.

In the 2PC, the coordinator process makes the
consensus decision and delivers the decision to all
the processes. Some meeting has no chair, i.e. ev-
ery participant makes decision by itself. Thus, we
have to consider the distributed protocol [9, 12]
in addition to the centralized one. In the 2PC,
only two values are coordinated. In this paper,
we discuss the m-ary consensus protocol with the
ordered domain composed of multiple values ob-
tained by extending the 2PC.

In sections 2 and 3, we overview the consensus
protocols and discuss the dominant relation. In
sections 4 and 5, we present the basic consensus
protocol and discuss the decision logics of consen-
sus protocols. In section 6, we discuss the m-ary
consensus protocol.

2 Commitment Protocol

If a distributed transaction T’ [10] manipulates
multiple database systems, it has to be guaranteed
that T either updates all or none of the database
systems. It is the afomic commitment (6, 11].
There is one coordinator process po in the 2PC
protocol (2,6]. If T would commit, po sends a
Prepare message to all the pariicipant processes
Piy...,Pn. Otherwise, py sends Abort. Each p;
sends 1 to po if p; could commit. Otherwise, p;
sends 0 to po and then aborts. If py receives 1 from
every process, po sends Commit (1) to p1,...,Pn-
If po receives 0, po sends Abort to all the processes
sending 1. Here, po may send Abort (0) even if po
receives 1 from all the processes. For example, if
the application process pg in the client receives an

interrupt signal from the user after sending Pre-
pare, pg sends Abort. On receipt of Commit, p;
commits. On receipt of Abort, p; aborts. The
commitment protocols like the 2PC make the fol-
lowing assumptions:

1 No participant process can change the value
after notifying the others of 1 or 0.

2 The decision logic is based on the atomic
commitment, i.e. all-or-nothing principle.

3 The coordinator po makes a global decision by
using the values obtained by the processes.
Even after all the processes take 1, py may
make a decision 0.

4 0 dominates 1. The processes sending 0 abort
unilaterally without waiting for the decision
from po. The processes sending 1 may abort
if the decision of po is Abort.

5 The process is not autonomous, i.e. it obeys
the global decision of the coordinator.

p; is uncertain [11] after taking 1 until receiving
the decision from po. The uncertain process may
block if py is faulty because all p; can do after
sending 1 is wait for the decision from py.

3 Dominant Relation

We discuss how each process can take values in
the consensus protocol in a group G of multiple
processes py,...,Pn.

3.1 Precedency

Let D be a domain, i.e. a set of possible val-
ues to be taken by the processes in the group
G. In the consensus protocol, each process p;
first takes an initial value v;o in D. p; takes
a value v;; in D given (vy0,...,%n0) and noti-
fies the other processes of v;;. Then, p ob-
tains a new tuple (vy3,...,vn1) by exchanging the
values with the others. Thus, p; takes a value
v;,;+1 based on (vyj,...,vn;) obtained at the jth
round. This step is the (j + 1)th round. Finally,
the consensus protocol terminates if (viy,...,Upns)
satisfies some consensus condition M. A global
state of G is given in a tuple (vyj,...,v,;) Where
each value v;; € D is taken by p; at the jth
round. The global state (vy;,...,vn;) is transited
to (¥1,41y-+ -1 ¥n,j+1) € D™ at the (j+1)th round.

For example, one person can go swimming af-
ter saying “go skiing” but another cannot. Thus,
values which p; can take at the (j + 1)th round
depend on v;; taken at the jth round.

[Definition] For every pair of values z and y in
D, = precedes y in a process p; (z =>; y) iff p; can
take y at the next round after taking z.0

=>; is not transitive. Let Il;(z) be { y |z =i ¥
}. pi selects one value v; ;43 in Hi(v;;) at the jth
round. A value z transitively precedes y in p; (=
= y) if = #; y and there is some value z such
that z =; z&; v.

For every pair of values z and y in D, yis reach-
able from zin p; (z —; y) iff 2z =; yor zm; v
Here, let H, K, and W show “I would like to go to
hot spring, go skiing, go swimming,” respectively.
If p; can take H just after taking K, K =; H. If
K=, H=>; Whut K #;, W, Ky W. 2 —; y
means that p; can take y at one or more than one
step after taking z. On the other hand, z =; y
means that p; can take y just after taking z. =z

and y are equivalent in p; (:u =;y) iff z =; y and
y=>z.c=>yandz=yiffz 2> yandz =; y,
respectively, for every p;.

For every pair of values z and y in D, ¢ U; y
means the least upper bound (lub) of z and y on
—;. That is, z U; y shows a value z such that (1)
z —; z and y —; z, and (2) there is no value w
such that z —; w, y —; w, and w —; 2. zUy
is the lub of ¢ and y on —. & U, y is such a
value z that ¢ U; y —; z and there is no w where
that z U; y —; w —; z for every p;. The greatest
lower bounds (gib) Ny, N, and N, are defined in
the similar way as U;, N, and U.. For every tuple
(v1,...,9n) € D™, the upper bound of (vy,...,vn)
is {v | v; —; v for every p; }. U({v1,...,v,) is the
lub of (vy,...,vn). Us(v1,...,v,) shows a value
z such that v; —; z for every p; and there is no
value y such that v; —; y —; z for every p;.
[Definition] For every pair of values z and y in D
and every process p;, y dominates z in p; (z <i)
ifz—;ybut y b, z. O
z <; y means that p; can take y after z but p;
cannot take z after y. z {;yiffz <; yorz =; y.
z<yandz < yiff z <; y and z <; y for every p;,
respectively. ¢ and y are comparable in the group
Gifz <yory <Xz Let m(z) be {y | z < y}.

The group G is homogeneous iff <; = <; for
every pair of p; and p; in G. That is, every process
has the same dominant relation <. Here, U, = U
and N, = N. G is heterogeneous iff G is not
homogeneous.

D includes a special bottom value L which de-
notes that a process can take any value in D. D
also includes A which denotes that p; does not de-
cide which value p; takes. Values in D which are
neither | nor A are proper. T denotes the top of
Dif z <, T for every z in D, i.e. T means some
value which satisfies the requirement of every pro-
cess if T exists in D.

A proper value z is minimal in p; iff there is
no proper y such that y <; z in D. z is minimum
in p; iff # <; y for every proper y in D. If p;
had taken the minimum z, p; can take any proper
value in D. For every proper z in D, z is mazi-
mal in p; iff there is no proper y in D such that
z < y. Once p; takes a maximal z in D, p; can
take no value. z is mazimum in p; iff y <; = for
every proper y in D. For example, D is {0,1} in
the 2PC. A process taking 0 aborts independently
of the others. A process taking 1 aborts if some
process takes 0. Hence, 1 < 0. 1 is minimum and
0 is maximum.

A lattice-based domain is discussed by Yahata
and Takizawa [14, 15].

3.2 Non-blocking condition

In the 2PC, the process taking 1 is unceriain
[11] because the global decision may be 0. The un-
certain process blocks if the coordinator is faulty
before sending the decision to the processes and
all the operational processes are uncertain. The
uncertain process waits for the decision. We gen-
eralize the blocking concept.

[Definition| A process p; is uncertain if p; takes
a value which is not maximal and does not make
consensus yet. O

A process p; taking the maximal value is certain
since p; cannot change the value. The uncertain

—8—

process may take another value.
Suppose that some p; is faulty and an-
other operational p; is uncertain. Let v be
U1, .+, Uj—1,V541,-.-,Vn). That is, every op-
erational process can take v. If p; is sure to be
able to take v, all the operational processes make
a consensus v. Otherwise, they have to wait for
the recovery of p;, i.e. p; blocks. Even ifall the op-
erational processes cannot make consensus, they
do not block if the NB condition is satisfied.
[Non-Blocking (NB) condition] The protocol
1s non-blocking if
(1) all the processes, whether or not operational,
can take an upper bound of the values taken
by all the operational processes, or

(2) all the operational processes can take values
which satisfy the consensus condition. O

Unless the NB condition holds, every operational
p: blocks, i.e. cannot take a value following v;.

4 Basic Commitment Protocol

4.1 Procedure

A consensus protocol coordinates the coopera-
tion of processes py, ..., P, in a group G in order
to make a consensus. We show the basic consensus
protocol as follows.

[Basic protocol][Figure 1]
1 Each process p; takes an initial value v;0. p;
notifies all the processes in G of vip. j := 0.
2 p; obtains vy, ..., v,;. p; makes a local deci-

sion Vi j+1 = Fij(‘ll1,', ey 1),.,_.,'%. F.'j is a local
decision function. p; notifies all the processes
of Vi, 5+1-

3 A global decision v = GD(vyj, ..., vnj) i8
obtained. GD is a global decision function.

If the termination M(vyj,...,vnj, v) holds,
p; obtains v. Otherwise, j := 7+ 1 and go to
step 2.

4 p; obtains the global decision v, obtains d;
= LD:(vyj, ..., Vnj, v). LD; is a final local
decision function. O

Fl‘ake an initial valuev;, ; ji=0 I

vi=GDW ... Vny)

false —_—
IM(UU. --..Unj.U)]——"U:; e =RV, . Dap)ij=j+ Il
true

Figure 1: Basic protocol

Initially, each process p; has v;0 in D. F;; is a
jth local decision function of p; from D™ into D.
For example, p; notifies all the processes of A if p;
has no idea. p; obtains vy;, ..., vnj. If p; obeys
pe's opinion, vy; = Fij(vij, ..., Unj). Here, v5j41
may not be different from v;;. p; notifies all the
processes of v; ;4 obtained by F;.

The global decision v = GD(vyj, ..., Unj) is

9

obtained by using a global decision function GD:
D™ — D. In the 2PC, D = {1,0}. If all the pro-
cesses take 1, they commit. If at least one process
takes 0, all the processes abort. Hence, GD(vyj,
vy Unj) = 1if vy = 1 for every pi. GD(wy;, ...,
Up;) = 0 if some v;; = 0. If the global decision
is a value taken by a majority of the processes,
GD(‘!JU, ciey 'Unj) = if [{v,»j|‘u,-j = v}| > %

M is the termination condition. After obtain-
ing v = GD(vyj,...,vn;), pi can terminate the
protocol if M(vyj,...,vnj,v) holds. For example,
unless v;; =%; v, M(vyj,...,Vnj,v) does not hold
because p; cannot take v. M(vyj,..., Vs, v) may
not hold if v =), i.e. nothing is decided. If steps
2 and 3 are iterated more times than the specified
number, the protocol terminates in order to avoid
the indefinite computation. Unless terminated,
step 2 can be executed again, that is, p; notifies
the other processes of vjj4+1 Fij(vij, ., ¥nj)-

p: obeys the global decision v if p; is not au-
tonomous. If p; is autonomous, p; may not obey
v. p; makes a final local decision by a final local
decision function LD; : D! — D. For example,
if p; makes the decision of v; independently of v,
LDi(v1, ..., Vn, v) = ;.

4.2 Coordination schemes

There are two points on the coordination
among the processes py,...,pn. The first point is
which process makes a global consensus decision.
In the centralized decision, every participant p;
obeys the decision made by the coordinator pg. In
the distributed decision, every p; makes the con-
sensus decision by itseif. The other point is how to
deliver values taken by the processes to the other
processes in the group G. In the centralized deliv-
ery, every p; first sends messages to pp and then
po forwards the messages to all the processes in
G. On the other hand, every p; sends messages to
all the processes in the distributed delivery.

The protocol with the centralized decision and
delivery is centralized. The 2PC [6] and 3PC éll]
protocols are centralized. Here, every p; first
sends a value v; to po. On receipt of (vy,..., v,:z,
po decides a value v = GD(vy,..., v,s. Po sends
vtopy, ... Pn.

Uro Ujo Un

A : local decision (F)
[1: global decision (GD)
O : final local decision (LD)

Figure 2: Distributed protocol

The distributed protocol adopts the distributed

decision and delivery. In the distributed protocol
[Figure 2] [9, 12], each p; sends v; to py,...,pn.
On receipt of the values, p; makes the consensus
decision by itself. If p; cannot make the consensus,
p; obtains v = Fy;(vy,...,v,) and sends u! to
P1y..+yPn. Thus, every p; has to send a message
m to all the other processes.

5 Decision Logics
5.1 Local decision

For a tuple (vij,...,vn;) of values obtained
at the jth round, each process p; takes a value
vij+1 in D by the local decision function Fjj, i.e.
Vi1 = Fijg:j,.--.vnj)- Here, vi; =i vij4+1. Pi
has its own F;; whose semantics depend on p; at
each jth round.

For some proper value v in D and every process
Pi, (vlj,...,v,._i) is agreeable on v if v;; =<; v for
every p;. That is, every process can take v. Unless
v;; =i v holds for some p;, p; cannot take the
same v as the others. In the homogeneous group,
every p; has the same dominant relation <, i.e.
<; = <. Each p; can estimate what value another
process p; takes. Suppose that p; and p; take z
and y, respectively. If p; takes a v = z Uy, p;
also can take v. On the other hand, =; # <;
for some pair of p; and p; in the heterogeneous
group. p; cannot estimate the values to be taken
by another py if <; # <; and p; does not know of
=<j- By recording the values taken by p;, p; can
learn some part of <;. Here, X;; is a subset of <;
which p; knows. p; receives a value v/ at the next
round after receiving v; from p;. m;(z) is a set
{y | = =%: y} of values dominating z in p;. I;(z)

¥z = y?. Here, II;(z) C mi(z). Similarly,
=i 18 { (2, y) [p; knows that z = y}. On receipt
of v}, p; can know that v; =; v; holds in p;. Here,
let m;;(2) be a set of values {y | <;; y} which
p; knows dominates ¢ in p;. Here, 7ii(v) = mi(v)
and IIy; = II; for p;. Let I;;(=) be {y | = =55 y}.
Each time p; obtains a tuple (v}, ..., v)) of values
after p; has (vy,...,v,), p;includes v} in IL;(v;)
and m;(v;) (7= 1,...,n). ‘

We discuss which value p; takes after obtaining
(v1y ..+ vn). Here, let 7 be my(vi) N -+ - N min(vp).
If * # ¢, there is some value z reachable from v;
in every process p;, i.e. v <X; z for every p;.
If * = ¢, p; finds one value z in m;;(z) which is
reachable from the most processes. Here, p; takes
z if v; =; =z, i.e. p; could take z just after taking
v;. -Otherwise, p; has to find such a value y that
v; =; yand y X; 2.

Here, suppose that p; obtains (vyj, ..., va;) at
the jth round. If U,(vij, ..., vn;) = A, p; can-
not take a value at the next step. Here, p; sends
I;(vi5) so that every other process p; can obtain
Hk;(vﬁ) = H,’(‘UU). Pi receives Hk(vkj) from Pk
Then, p; tries to obtain U,(vyj, ..., Un;) again by
using Ilz;(vz;) obtained here. If one value v; ;41
is obtained, p; sends v; ;1. Otherwise, some pro-
cess goes back to the previous value. In this paper,
the processes p; whose values are different from
the majority of vyj, ..., vn; are selected. p; sends
L (vi,j-1) to p1, ..., Pn. On receipt of M(v;;_1),
pr changes I;i(v; ;1) to I;(v;;-1). Then, p
tries to find U, (‘Ulj, coey Vo1 Vijy Uigl,jy c- o

Unj). If pp cannot find U., another process py is
selected to go backward to vi j_;. Even if every
process goes backward to the j — 1th round, the
protocol terminates if U, could not be obtained.

5.2 Global decision

After obtaining the values vy, ..., vn, the global
consensus value v is globally decided by using
the global decision function GD. For every
(v1,...,0,) € D*, GD(vy,...,v,) gives a value
vin D. If v; <; v for every p;, every process p;
can change the value v; to v. Unless v; <; v, p;
cannot change the value to v. The global decision
function GD is regular if v; <; GD(v1,...,vn)
for every (vy,...,v;) € D™ and every p;. If
GD is regular, every p; can change v; to a value
v = GD(vy,...,vs). Otherwise, p; cannot obey
the global decision v unless v; <; v. For example,
a process aborting cannot obey the global deci-
sion if the global decision is 1 (commit) in the
2PC protocol.

There are the following kinds of global deci-
sions:

1 Binary

commitment decision : GD(vy,..., vﬂ() =1
if every v; = 1, GD(vy,...,v,) = 0 if some
v; = 0 where D = {1,0}.

2 meary commitment
decision : GD(vy,...,v,)= v if v; = v for
every p;, otherwise U, (vq, ... ,v,) where D

S e }m > 3)
3 Majority-consensus decision on a value w:
GD(vy, ... ,vn) = v if ooy = v} > &,
otherwise GD(vy,...,v,) = A
4 () -decision on v: GD(vy,...,v.) = v if
every v; = v, otherwise GD(vy,...,vun) = A.
5 (1) -decision on v: GD(vy,...,v,) = v if
|{ui|‘u.; = v}| > r, otherwise GD(vy,...,vn)

6 Minimal-decision: GD(vy, ..., vn) = U, (v,

cia Un).

7 Super-vote: GD(vy,...,v,) = v; if p; has the

highest priority.

GD can be defined based on the application
semantics. For example, if D is a set of numbers,
some value is computed from v3,...,v,'in D. An
average of vy,..., v, is computed by GD.

In the centralized protocol, one process makes
the global decision GD while every process makes
GD in the distributed protocol. i

6 M-ary Commitment Protocol

We discuss the m-ary commitment protocol by
extending the binary commitment protocol.

6.1 Binary commitment protocol

First, the 2PC protocol is described in terms
of the domain D, the decision logics, and the
dominant relation. In the commitment proto-
col, suppose that 1 means commit and 0 means
abort. Hence, the domain includes two values, i.e.
D= {0,1}. :

The protocol terminates at the 2nd round. At
the 1st round, every process p; takes an initial
value v;0 € D and sends v;¢ to the coordinator pg.
Then, po takes vg; but p; takes the same value v;;
as vjp at the 2nd round. Here, vgo < vp1 but v5o

= viy X vo1(% > 1). That is, only pg can change
the value but no participant can. In the central-
ized protocol, vo; is the global decision. All the
processes taking 0 abort unilaterally, i.e. with-
out waiting for the global decision. On the other
hand, processes taking 1 may commit or abort up
to the global decision. Hence, 0 dominates 1, i.e.
1 < 0. 0 is maximum and 1 is minimum.

Only if all the processes take 1, they commit.
If some process takes 0, all the processes abort.
GD is the commitment decision, i.e. GD(1,...,1)
=1land GD(...,0,...) = 0. GD is regular.

The final local decision is LD;(vg, v1, ..., up, v
= v because the process taking 1 obeys the glob
decision. That is, the processes taking 1 are not
autonomous,

8.2 Centralized protocol

We extend the binary commitment protocol so
that each process p; can take more than two val-
ues, i.e. vy, ..., ¥m(m>2), A, and L. That is,
D = {v1,--+0m, A, L}. In the 2PC protocol, B
may not be able to send the value even if p; re-
ceives Prepare from the coordinator py, eg. p;
is too heavy-loaded to take a value. In such a
case, p; can send A instead of sending the proper
value, or p; can be considered to take A if no re-
ply of Prepare is received in some time units. The
global decision GD is the m-ary commitment one.
We assume that the group G is homogeneous, i.e.
<i==<and U, = U.

First, we present the centralized protocol where
there is one coordinator process pp and participant
processes py, ..., py.

[Basic centralized protocol]
1 First, po takes a value vo and sends (vo, A,
.-+ A) to all the processes py,...,p,. 7 1= 0.
2 On receipt of Svo, V1, ..., V) from pg, each
pi takes one value v; in D and sends v; to Po-

In addition, p; may send) to py if p; could

not decide whatever to take. p; may send L

to po if p; could take any value in D. j :=

j+1.
3 po obtains (vy, ..., v,) where each v; is ob-

tained from p; at step 2.

e Ifvo = vy = .+ = v,(= v), po makes
the global decision v and sends v to py,

<ivy Pn-

o Ifv; =Ua(vo, v1, ..y %, ..y W) # A for
some i, po makes the global decision v;
and sends v; to py, ..., p,

o If vg = U.(vo, v1, ..., un) # A, po takes

vy where vp < v} and v; < v}, for every
J. Then, po sends (v}, vy,...,v,) to py,
.+« Pn and go to 2.

e If U.(vo, ¥1, ..., Un) = A, po terminates
and sends X to py, ..., p, at the global
decision.

4 On receipt of the global decision v from po, p;
decides if p; takes v by the final local decision
LD;. If v satisfies LD;, p; takes v. Otherwise,
pi takes v;. O

From (v, 1, ..., vn) at step 3, v; < vy for every
pi- On receipt of (vo, vy, ..., va), p; takes a value
v; by the local decision function Fj;. Here, v; <

i
7 / [P - X
v; and vo <X v;. Here, if v is maximum, p; makes

the final decision v and terminates after sending
v;. Otherwise, p; has to wait for the next decision
value from po. Here, p; is uncertain. At step
3, po makes a consensus decision v if v = v} =
v; for every p;. po sends v to all the processes
and terminates. This decision corresponds to the
commit in the 2PC. On receipt of v, each p; takes
v as the final consensus value. If v; # v; for some
pi and p;, po takes a new value v} after receiving
U1, ..+ Un. Po finds the least upper bound v of
(Yoy Y1y .-, Un). If some p; takes v(# A), ie. v;
= v, po makes a consensus decision v. po sends v
to p1, ..., Pn. It corresponds to the abort in the
2PC. If v # v; for every p;, pp sends (v, v1, -+ 4
Un) t0 p1, ..., Pp and step 2 is iterated.

Suppose that py is faulty at the jth round after
each p; sends v; before sending the reply v} to all
the processes. If p; receives no reply in some pre-
determined time units, p; detects that pq is faulty
and invokes the following termination protocol to
make consensus among the operational processes.
Here, suppose that p; takes a new value v} after
receiving (vo, v1, ..., Up).

[Termination protocol]

1 pi sends StateReq with v/ to all the processes.

2 On receipt of StateReg from p;, pr sends the
local state to p;. If pj receives no reply from
Po, P sends the value v,. If p; had received
some reply v, from po, py sends the reply (v,
V1, ... Up) back to p;.

3 p; makes the decision by the termination rule
if p; receives the replies of StateReq from all
the operational processes. O

[Termination rule]
1 If p; receives a maximal value v from some
process, p; takes v as the global decision.
2 If some operational p; still takes), p; makes
a consensus decision of the maximal value.
Otherwise, p; waits for the recovery of py. O

Next, suppose that p; recovers from the fault.
Suppose that p; records the local state in the log
L;. p; invokes the following recovery protocol.
[Recovery protocol]

1 p; restores the state from L;.
2 If p; is uncertain, p; asks other processes in
the same way as the termination protocol.
3 If p; had taken A or the maximal value, p;
" makes the consensus decision on the maxi-
mum value. O

6.3 Distributed protocol

We discuss the distributed m-ary commitment
protocol. Each process makes the global consen-
sus decision on receipt of the value from the other
processes.

[Basic distributed protocol]

1 Each process p; takes a value v; and sends v;
to all the processes py, ..., p,. j := 0.
2 pi receives (vy, ..., v,) from py, ..., pn.

e Ifv; =... = v, (= v), p; makes the
global consensus decision v and then ter-
minates.

o v, = U.(v1,..., va) (# A) for some v,
p; makes the decision v; and then termi-
nates.

o If vl = U, (v, .- va) (# A), p; sends o]
to all the processes. j := 7 + 1 and go
to 2.

o If U.(v1, ..., Un) = A, pi sends) to all
the processes and then terminates. O

Here, suppose that some process p; is faulty
after the jth round. Each operational process p;
has a tuple (vy, ..., v,) obtained at the jth round.
If a global decision v from (vy, ..., vn) satisfying
the termination condition M is obtained, every
operational process takes v. Otherwise, every op-
erational process blocks.

7 Concluding Remarks

This paper has discussed the general frame-
work of consensus protocols where the values to
be taken by the processes are partially ordered by
the dominant relation. The dominant relation <;
is defined for each process p;. p; decides which
value v} p; takes after taking v; so that v; =;
v!. We have presented kinds of the decision logics
based on the dominant relation. We have also pre-
sented the m-ary commitment protocol obtained
by extending the 2PC protocol, where each pro-
cess takes m (> 2) kinds of values.

References

[1] Barborak, M., Malek, M. and Dahbura,
A., “The Consensus Problem in Fault-
Tolerant Computing,” ACM Computing Sur-
veys, Vol.25, No.2, 1993, pp.182-184,198-199.

(2] Bernstein, P. A., Hadzilacos, V., and Good-
man, N., “Concurrency Control and Recov-
ery in Database Systems,” Addison- Wesley,
1987, pp.222-261.

[3] Birman, K. P., Schiper, A., and Stephenson,
P., “Lightweight Causal and Atomic Group
Multicast,” ACM Trans. on Computer Sys-
tems, Vol.9, No.3, 1991, pp.272-314.

[4] Ellis, C. A., Gibbs, S. J., and Rein, G. L.,
“Groupware,” Comm. ACM, Vol.34, No.1,
1991, pp.38-58.

[5] Fischer, J. M., Lynch, A. N., and Paterson, S.
M., “Impossibility of Distributed Consensus
with One Faulty Process,” Journal of ACM,
Vol.32, No.2, 1985, pp.374-382.

[6) Gray, 1., “Notes on Database Operating Sys-
tems, An Advanced Course,” Lecture Notes
in Compuler Science, No.60, 1978, pp.393-
481.

[7] Lamport, L., “Time, Clocks, and the Or-
dering of Events in a Distributed System,”
Comm. ACM, Vol.21, No.7, 1978, pp.558-
565.

[8

—

Lamport, L. and Shostak, R., “The Byzan-
tine Generals Problem,” ACM Trans. Pro-
gramming Languages and Systems, Vol.4,
No3,1982, pp.382-401.

[9] Nakamura, A. and Takizawa, M., “Causally
Ordering Broadcast Protocol,” Proc. of
IEEE ICDCS-14, 1994, pp.48-55.

(10]

(1)

(12]

(13]

(14]

(18]

Ozsu, M. T. and Valduriez, P., “Principle
of Distributed Database Systems,” Prentice-
Hall, 1990.

Skeen, D. and Stonebraker, M., “A For-
mal Model of Crash Recovery in a Dis-
tributed System,” IEEE Computer Society
Press, Vol.SE-9, No.3, 1983, pp.219-228.

Tachikawa, T. and Takizawa, M., “Selective
Total Ordering Broadcast Protocol,” Proc. of
IEEE ICNP-94, 1994, pp.212—219.

Turek, J. and Shasha, D., “The Many Faces
of Consensus in Distributed Systems,” Dis-
tributed Computing Systems, IEEE Com-
puter Society Press, 1994, pp.83-91.

Yahata, C., Sakai, J., and Takizawa, M.,
“Generalization of Consensus Protocols,”
Proc. of the 9th IEEE Intl Conf. on
Information Networking (JCOIN-9), 1994,
pp.419-424.

Yahata, C. and Takizawa, M., “General Pro-
tocal for Consensus in Distributed Systems”,
Proc. of DEXA(Lecture Notes in Computer
Science, No. 978, Springer-verlag), 1995,
Pp.227-236.

