Data Transmission for Wide-area Group Communication Takayuki Tachikawa and Makoto Takizawa {tachi, taki}@takilab.k.dendai.ac.jp Dept. of Computers and Systems Engineering Tokyo Denki University Group communication protocols support the ordered and reliable delivery of messages to multiple destinations in a group of processes. The group communication protocols discussed so far assume that the delay time between every two processes is almost the same. In world-wide applications using the Internet, it is essential to consider a wide-area group where the delay times among the processes are significantly different. We discuss protocols for distributing messages to multiple destinations and retransmitting messages to processes losing the messages in the wide-area group. We present the evaluation of the protocols in the world-wide environment. # 広域グループ通信におけるデータ転送手続き 立川 敬行 滝沢 誠 東京電機大学理工学部経営工学科 複数プロセスが協調動作を行うためのグループ通信では、メッセージの配送順序と全宛先での受信を保障する必要がある。これまでのグループ通信は、LANを用いた、伝搬遅延時間の差が小さい環境が考えられてきた、本論文では、インターネットで広域に分散しているプロセス間のグループ通信を考える。このような広域環境では、グループ内のプロセス間でのメッセージの伝搬遅延時間とメッセージの紛失率が地理的な環境により異なる。広域環境で従来のグループ通信プロトコルを適用すると、遅延時間が大きいプロセスに合わす形でグループ全体の転送遅延時間が増加する。本論文では、プロセス間の伝搬遅延時間とメッセージ紛失率が異なるもとでの効率的なグループ通信を行うための再送方式、送信方式を示す。 ## 1 Introduction In distributed applications like teleconferences, a group of multiple processes, i.e. process group [13] is established and the processes in the group are cooperated. Group communication protocols support a group of processes with the reliable and ordered delivery of messages to multiple destinations. Transis [2], ISIS(CBCAST) [4], Psync [17], and others [1, 16, 22] support the causally ordered delivery. Totem [3], ISIS(ABCAST) [4], Ameoba [12], Trans/Total [15], and others [5, 20] support the totally ordered delivery. Group communication protocols discussed so far assume that every pair of processes have almost the same delay time and reliability. Here, let us consider a world-wide teleconference among five processes K, U, O, T, and H in Keele of UK, UCLA and Ohio State Univ. of the USA, and Tohoku Univ. and Hatoyama of Japan, respectively. In the Internet, it takes about 60 msec to propagate a message in Japan while taking about 240 msec between Tokyo and Europe. In addition, the longer the distance is, the more messages are lost. For example, over than 10% of the messages are lost between Japan and Europe while less than 1% are lost in Japan. Thus, it is essential to consider a group communication where the delay times between the processes are significantly different [8,9,11], i.e. not neglectable compared with the processing speed. Such a group of processes is named a wide-area group. In the wide-area group, the time for delivering messages to the destinations is dominated by the longest delay between the processes. For example, if T sends a message m to H and K, T has to wait for the response from K after having received the response from H. Next, suppose that K sends a message m to H and T, respectively. If T loses m, T requires the sender K to resend m. The delay time between T and K is about four times longer than T and H. If H resends m, the time for retransmitting m can be reduced. Thus, the delivery time can be reduced by the destination retransmission. Suppose that T sends m to H, U, and K. On receipt of m, the destination processes send the receipt confirmation messages to T. Here, let us consider a way that K sends the confirmation to U instead of directly sending to T and then U sends the confirmation back to T. Even if U loses m, the delay time can be reduced if K retransmits M to U as presented before. A wide-area group G can be decomposed into disjoint subgroups G_1 , ..., G_{sg} ($sg \geq 2$) [8,24] where each G_i has one coordinator process. Messages sent by a process are exchanged by the coordinators of the subgroups. Holbrook, et. al. [9] presents a way where each subgroup has a message log to retransmit messages. The protocols [8, 9, 11, 24] are discussed to reduce the number of messages in large-scale groups. Jones, et. al. [11] discuss the saturation protocol where the sender sends multiple copies of a message m to the destinations. In this paper, we discuss the destination replication where the destinations forward m to the other destinations on receipt of m. In sections 2 and 3, we present a system model and the measurement of the delay time and message loss rate in the network. In section 3, we discuss ways to reliably deliver messages in the wide-area group. In section 5, we present protocols in the wide-area group. ## 2 System Model A distributed system is composed of application, transport, and network layers. A group of $n \geq 2$ application processes $AP_1, ..., AP_n$ are communicated by using the underlying group communication service provided by transport processes $TP_1, ..., TP_n$. A group G of the transport processes $(G = \{TP_1, ..., TP_n\})$ is considered to support each pair of processes TP_i and TP_j with a logical channel. Data units transmitted at the transport layer are packets. TP_i sends a packet to TP_j by the channel. The network layer provides the IP service [18] for the transport layer. The cooperation of the processes at the transport layer is coordinated by group communication (GC) and group management (GM) protocols. The GC protocol establishes a group G and reliably and causally [4] delivers packets to the processes in G. The GM protocol is used for monitoring and managing the membership of G. AP_i requests TP_i to send an application message s. TP_i decomposes s into packets, and sends them to the destinations in G. The destination TP_j assembles the packets into an application message s_j , and delivers s_j to AP_j . Packets decomposed from the application message are messages. Let dest(m) be a set of destination processes of a message m in G. A transport process TP_i has to know the delay time δ_{ij} with each TP_j in G. In the GM protocol, TP_i requests the network layer to transmit two kinds of ICMP [19] packets: "Timestamp" and "Timestamp Reply". TP_i can know when "Timestamp" sent by TP_i is received by TP_j , and "Timestamp Reply" received by TP_i is sent by TP_j by using the time information. TP_i calculates δ_{ij} , i.e. round trip time. TP_i sends periodically the ICMP packets to all the processes in G. Here, TP_j is nearer to TP_i than TP_k if $\delta_{ij} < \delta_{ik}$. In addition, the GM protocol monitors the ratio ε_{ij} of packets lost between each pair of TP_i and TP_j . $\overline{\delta}_{ij}$ and $\overline{\varepsilon}_{ij}$ show the averages of δ_{ij} and ε_{ij} , respectively. Here, we assume that $\overline{\delta}_{ij} = \overline{\delta}_{ji}$ and $\overline{\varepsilon}_{ij} = \overline{\varepsilon}_{ji}$ for every pair of TP_i and TP_j . We make the following assumptions about packets sent by TP_i : - Packets may be lost and duplicated. - Packets can be sent to any subset V of destination processes in a group G (V ⊆ G). - Packets sent to V are not received by pro- - cesses which are not included in V. - Packets sent by the same process may be received by the destination processes not in the sending order (not assuming FIFO arrival). #### 3 Network Measurement We measure the message loss rates and the delays among seven UNIX processes in SPARC workstations, i.e. three $(ktsun\theta, kelvin, ccsun)$ in Hatoyama, one (tu) in Sendai, Japan, two (ucla, osu) in the USA, and one (des) in Keele, UK. Here, $ktsun\theta$ sends 5000 messages of 128 bytes, one message every one second to tu, ucla, osu, and des. Figure 1 shows the receipt ratio R(t) of each process for the delay time t. For example, ucla receives about 30% of the messages sent by $ktsun\theta$ in 120 to 150 msec. The average delay time $\overline{b}_{ktsun0,des}$ is about 240 msec. The figure shows that the longer the distance is, the more messages are lost and the bigger the variance of R(t) is. Figure 1: Message receipt ratio v.s. delay Next, we measure how reliably the destination can receive a message m by the replication. kt-sun0 sends h copies of m to tu, ucla, and des. Table 1 shows a rate that each destination receives at least one copy for h = 1, 2, 3. ## 4 Reliable Delivery #### 4.1 Transmission and confirmation In the group communication, a message m sent by a process TP_i is sent to multiple destination processes in a group $G = \{TP_1, ..., TP_n\}$. Here, let s be the number of the destinations of m, i.e. s = |dest(m)|. There are two points to be discussed to realize the reliable receipt of m in G: - (1) how to deliver m to the destinations, and (2) how to deliver the receipt confirmation of m - (2) how to deliver the receipt confirmation of m to the sender TP_i and the destinations. There are direct and hierarchical ways [Figure 2] for (1). In the direct multicast, TP_i sends m directly to all the destinations. In the hierarchical multicast, TP_i sends m to a subset of the destinations. On receipt of m from TP_i , TP_j forwards m to other destinations. The propagation tree based routing algorithms [5] are discussed so far. Another example is to decompose G into disjoint subgroups $G_1, ..., G_{sg}$ ($sg \geq 2$) [24]. Each G_i has one coordinator process. TP_i sends m to the coordinator and the coordinator forwards m to the destinations in the subgroups. Figure 2: Distribution ways There are two ways to deliver the confirmation [Figure 3]. In the decentralized way [4], TP_i sends m to the destinations and the destinations send back the receipt confirmation of m to TP_i . If TP_i receives all the confirmations, TP_i informs all the destinations of the reliable receipt of m. Totally 3s messages are transmitted and it takes three rounds. In the distributed way [20,22], every destination TP_j sends the receipt confirmation of m to all the destinations and TP_i on receipt of m. If each TP_j receives the confirmations from all the destinations, TP_j reliably receives m. Here, $O(s^2)$ messages are transmitted and it takes two rounds. In the paper [22], the number of messages transmitted in G can be reduced to O(s) by adopting the piggy back and the deferred confirmation. Figure 3: Confirmation ways There are the following protocols to distribute messages and confirm the receipts: - (1) Direct multicast and distributed confirmation (DD). - (2) Direct multicast and decentralized confirmation (DC). - (3) Hierarchical multicast and distributed confirmation (HD). - (4) Hierarchical multicast and decentralized confirmation (HC). - (1) is named a distributed protocol [16]. (2) is adopted by ISIS [4] and others [2, 12, 15]. Next, we consider when each destination process can deliver messages received. Here, let m_1 be a message received by TP_i . TP_i can deliver m_1 if (1) TP_i had delivered every message m_2 such that $m_2 \to m_1$ and (2) m_1 is reliably received by all the destinations. How long it takes to reliably receive messages depends on the maximum delay time among the processes in G. Hence, the delay for delivering messages is increased if G includes more distant processes. Since the processes are assumed to be not faulty, messages are eventually received by all the destinations. Hence, TP_i can deliver m_1 if TP_i delivers every message m_2 destined to TP_i such that $m_2 \to m_1$ even if m_1 is not reliably received. - (1) A message m is guaranteed to be buffered by at least one process TP_j in G. If m is lost by some process, TP_j can retransmit m. - (2) m is removed from the buffer if m is reliably received, i.e. no need to retransmit m. Hence, only destination to retransmit m and the sender of m need to know whether or not m is reliably received. Not necessarily all the destination processes need to buffer m. #### 4.2 Retransmission In the underlying network, messages are lost due to buffer overruns, unexpected delay, and congestion. Hence, the processes have to recover from the message loss. Let us consider a group $R=\{H,U,O,K\}$. Figure 5 shows a process graph of R where each node denotes a process. The weight of the channel (a,b) indicates the average delay time $\overline{\delta}_{ab}$. In Figure 5(2), a directed edge $a\to b$ means that b is the nearest to a. Suppose that H sends a message m to U,O, and K, but O fails to receive m. In the traditional protocols, the sender H retransmits m to O and it takes $2\overline{\delta}_{HO}$. On the other hand, if U forwards m to O, it takes $2\overline{\delta}_{UO}$. Since $\overline{\delta}_{HO} > \overline{\delta}_{UO}$, we can reduce time for retransmission of m if U forwards m to O. Thus, if TP_j loses m, TP_k whose $\overline{\delta}_k$ (1 $+\overline{\epsilon}_{kj}$) / (1 $-\overline{\epsilon}_{kj}$) is the minimum can send m to TP_j . Thus, there are two ways to retransmit m if TP_j loses m. - (1) Sender retransmission: The sender TP_i retransmits m to TP_j [Figure 4(1)]. - (2) Destination retransmission: Some destination TP_k forwards m to TP_j [Figure 4(2)]. #### 4.3 Replication Figure 4: Retransmission Figure 5: Process graph of the group H In Figure 5, if H sends multiple copies of m to U, there is bigger possibility that U can receive one copy of m. Thus, one way to prevent from the message loss is that the sender TP_i of m sends multiple copies of m to the destinations. Another way is that a destination TP_k forwards m to another destination TP_j while TP_i sends m to TP_j . TP_j receives m from TP_i and TP_k . For example, U sends m to O on receipt of m while T directly sends T to T or - (1) Sender replication: TP_i sends multiple copies of m to TP_j . - (2) Destination replication: TP_k receiving m sends m to TP_j . The protocols with the replication are named replicated protocols. The sender replication is similar to the saturation protocol [11]. There are two kinds of the destination replication. In the first way, one destination TP_k sends one, possibly multiple copies of m to TP_j on receipt of m while TP_i sends m to TP_j [Figure 6(1)]. In another way, multiple destination processes, say TP_k and TP_l send copies to TP_j [Figure 6(2)]. TP_j receives multiple copies from TP_i and TP_k . In the replication, TP_i sends multiple copies of m to TP_j . The continuous replication is to send the copies of m continuously to TP_j . There is no gap between messages. In another discrete replication, TP_i sends the succeeding copies of m some time units after TP_i sends each copy of m. If the message loss occurs in a burst manner, the retransmission with the discrete replication has Figure 6: Destination replication to be adopted. Suppose that TP_i sends h_{ij} copies of m to TP_j in the sender replication. If TP_j receives no copy of m from TP_i , TP_i sends h_{ij} copies of m to TP_j again. The expected time T_{ij} for TP_j to receive at least one copy of m from TP_i is $\delta_{ij} \cdot (1 + \overline{\epsilon}_{ij}^{h_{ij}}) / (1 - \overline{\epsilon}_{ij}^{h_{ij}})$. The probability P_{ij} that TP_j receives at least one copy of m is $1 - \overline{\epsilon}_{ij}^{h_{ij}}$. The cost C_{ij} for TP_i to send m to TP_j is defined to be $h_{ij} \cdot \delta_{ij}$. In the destination replication, TP_i sends h_{ik} copies of m by the sender replication. On receipt of at least one copy of m, TP_k sends h_{kj} copies of m to TP_j . The expected time T_{ikj} for TP_j to receive at least one copy of m forwarded by TP_k is $\overline{\delta}_{ik} \cdot (1 + \overline{\epsilon}_{ik}^{h_{ik}}) / (1 - \overline{\epsilon}_{ik}^{h_{ik}}) + \overline{\delta}_{kj} \cdot (1 + \overline{\epsilon}_{kj}^{h_{kj}}) / (1 - \overline{\epsilon}_{kj}^{h_{kj}})$. The cost C_{ikj} is $h_{ik} \cdot \delta_{ik} + h_{kj} \cdot \delta_{kj}$. The probability P_{ikj} that TP_j receives at least one copy of m is $(1 - \overline{\epsilon}_{ij}^{h_{ij}}) + \overline{\epsilon}_{ij}^{h_{ij}} \cdot (1 - (1 - \overline{\epsilon}_{ik}^{h_{ik}}) \cdot (1 - \overline{\epsilon}_{ik}^{h_{ik}})$. The destination replication is more efficient than the sender replication if $T_{ij} \geq T_{ikj}$, $P_{ij} \leq P_{ikj}$, and $C_{ij} \geq C_{ikj}$. In the time critical applications, the destination one can be adopted if $T_{ij} \geq T_{ikj}$, even if $C_{ij} \leq C_{ikj}$. TP_k is selected to forward m to TP_j if T_{ikj} is the minimum among the destinations of m. Here, no sender replication is adopted if $h_{ij} = 1$ and $h_{ik} = 1$. Let ε be a maximum allowable loss ratio. If $\overline{\varepsilon}_{ij} \leq \varepsilon$, TP_i does not need to send multiple copies of m to TP_j . If $\overline{\varepsilon}_{ij} > \varepsilon$, TP_i has to send h_{ij} (> 1) copies of m whether or not TP_i retransmits m. It is required that $\overline{\varepsilon}_{ij}^{h,ij} \leq \varepsilon$. Hence, $h_{ij} \geq \log \varepsilon / \log \overline{\varepsilon}_{ij}$ if $\overline{\varepsilon}_{ij} \leq \varepsilon$, otherwise $h_{ij} = 1$. For example, $h_{ij} = 3$ if $\varepsilon = 0.01$ and $\overline{\varepsilon}_{ij} = 0.2$. We can consider a way that TP_i sends m to TP_i , TP_i sends m to TP_k , and finally TP_k sends m to TP_j . However we assume that there is only one process TP_k forwarding a copy of m to TP_j . #### 5 Protocols Suppose that a process TP_i sends m to a subset V_m of the destination processes in the group G. There are the following protocols. - Basic (B) protocol: distributed protocol with sender retransmission. - (2) Modified (M) protocol: distributed protocol with destination retransmission. - (3) Nested group (N) protocol: hierarchical multicast and decentralized confirmation with destination retransmission. (4) Decentralized (D) protocol: direct multicast and decentralized confirmation with sender retransmission. There are two further types, i.e. replicated and non-replicated ones for each protocol. Here, BR, MR, NR, and DR are replicated versions of B, M, N, and D protocols. ### [Basic (B) protocol] - (T1) TP_i sends m to every destination process in $V_m \subseteq G$. - (T2) On receipt of m, each process TP_i in V_m sends the receipt confirmation to TP_i . - (T3) On receipt of the confirmations from all the processes in V_m , TP_i reliably receives m. - (R) If some TP_j fails to receive m, TP_i sends m to TP_j again. \square In the BR protocol with the sender replication, TP_i sends h_{ij} copies of m to TP_j . In the BR protocol with destination replication, a destination TP_k sends h_{ij} copies of m to TP_j on receipt of m The modified (M) protocol is the same as B except that the destination retransmission is adopted. ### [Modified (M) protocol] (R) If TP_j fails to receive m, destination TP_k nearest to TP_j sends m to TP_j. If all the destinations lose m, T1 is executed again. □ In the N protocol, G is decomposed into disjoint subgroups $G_1, ..., G_{sg}$ ($sg \ge 2$). Each G_i is composed of the processes $TP_{i1}, ..., TP_{il_i}$ ($l_i \ge 1$) where TP_{i1} is a coordinator. ### [Nested group (N) protocol] - (T1) TP_{ij} sends m to the coordinator TP_{i1} . Let DC_i be a set of the coordinators whose subgroups include the destinations of m. TP_{i1} forwards m to the coordinators in DC_i . - (T2) On receipt of m, the coordinator TP_{k1} sends m to the destinations in G_k . On receipt of m, TP_{kh} sends the confirmation back to TP_{k1} . On receipt of the confirmations from all the destinations in G_k , TP_{k1} sends the confirmation to the coordinators in DC_i . - (T3) On receipt of the confirmations from all coordinators in DC_i , TP_{k1} sends the confirmation to the destinations in G_k . On receipt of the confirmation from TP_{k1} , TP_{kh} reliably receives m. - (R) If TP_{kh} fails to receive m, TP_{k1} resends m to TP_{kh} . \square In the D protocol, only the sender TP_i can know whether each destination receives m or not. Hence, the sender retransmission is adopted. T1 and R are the same as the B protocol. ## [Decentralized (D) protocol] - (T2) On receipt of m, TP_j sends the confirmation back to TP_i . - (T3) On receipt of all the confirmations, TP_i sends the acceptance a to all the processes in B. - (T4) On receipt of a, TP_j accepts m. \square Figure 7(1), (2), and (4) show the B, M, and D protocols where H sends a message m to U, O, and K but K loses m. In the M protocol, O forwards m to K since O is the nearest to K. In the replicated version of D, O forwards m to K on receipt of m from H. Here, $\overline{\epsilon}_{OK} > \overline{\epsilon}_{HK}$ and $\overline{\delta}_{OK} < \overline{\delta}_{HK}$. Figure 7(3) shows the N protocol with three subgroups $\langle H \rangle$, $\langle U, O \rangle$, and $\langle K \rangle$ where H, U, and O are the coordinators. U receives m but O loses m. Here, U resends m to O. Figure 7: Protocols In the B and D protocols, only H is required to buffer m since H retransmits m. All the processes may retransmit m. Hence, every process has to buffer m. In the N one, H sends m only to U, and then U forwards m to O and K. If either O or K loses m, U retransmits m. Hence, the coordinators have to have buffers. The B and D ones imply fewer buffers than the others. ### 6 Concluding Remarks We have discussed the wide-area group communication including multiple processes interconnected by the Internet. Here, each logical channel between the processes has a different delay time and message loss ratio. In this paper, we have presented ways to reduce the delay time of messages and improve the reliability in the wide-area group, i.e. destination retransmission and replication. We have presented four protocols, i.e. basic, modified, nested group, and decentralized protocols. We are planning to evaluate the protocols in the wide-area environment including processes in Dendai, Tohoku Univ., UCLA, OSU, and Keele. ## Acknowledgment We would like to thank Prof. Lewis A. Davis, Tokyo Denki Univ. for his useful help and encouragement in writing this paper. We also would like to thank Prof. N. Shiratori, Tohoku Univ., Prof. M. Liu, OSU, Prof. M. Gerla, UCLA, and Prof. S. M. Deen, Keele Univ. for their cooperation of the internetwork experiment. ### References - Aiello, R., Pagani, E., and Rossi, G. P., "Causal Ordering in Reliable Group Communications," ACM. SIGCOMM'93, 1993, pp.106-115. - [2] Amir, Y., Dolev, D., Kramer, S., and Malki, D., "Transis: A Communication Sub-System for High Availability," Proc. of IEEE FTCS-22, 1993, pp.76-84. - [3] Amir, Y., Moser, L. E., Melliar-Smith, P. M. Agarwal, D. A., and Ciarfella, P., "The Totem Single-Ring Ordering and Membership Protocol," Trans. on ACM Computer Systems, Vol.13, No.4, 1995, pp.311-342. - [4] Birman, K., Schiper, A., and Stephenson, P., "Lightweight Causal and Atomic Group Multicast," ACM Trans. Computer Systems, Vol.9, No.3, 1991, pp.272-314. - [5] Chang, J. M. and Maxemchuk, N. F., "Reliable Broadcast Protocols," ACM Trans. Computer Systems, Vol.2, No.3, 1984, pp.251-273. - [6] Florin, G. and Toinard, C., "A New Way to Design Causally and Totally Ordered Multicast Protocols," ACM Operating Systems Review, Vol.26, No.4, 1992, pp.77-83. - [7] Garcia-Molina, H. and Spauster, A., "Ordered and Reliable Multicast Communication," ACM Trans. Computer Systems, Vol.9, No.3, 1991, pp.242-271. - [8] Hofmann, M., Braun, T., and Carle, G., "Multicast Communication in Large Scale Netwoks," Proc. of 3rd IEEE Workshop on High Performance Communication Subsystems (HPCS), 1995. - [9] Holbrook, H. W., Singhal, S. K., and Cheriton, D. R., "Log-Based Receiver-Reliable Multicast for Distributed Interactive Simulation," Proc. of ACM SIGCOMM'95, 1995, pp 328-341. - [10] Jia, X., "A Total Ordering Multicast Protocol Using Propagation Trees," IEEE Trans. - Parallel and Distributed Systems, Vol.6, No.6, 1995, pp.617-627. - [11] Jones, M., Sorensen, S., and Wilbur, S., "Protocol Design for Large Group Multicasting: The Message Distribution Protocol," Computer Communications, Vol. 14 No. 5, 1991 pp.287-297. - [12] Kaashoek, M. F., Tanenbaum, A. S., Hummel, S. F., and Bal, H. E., "An Efficient Reliable Broadcast Protocol," ACM Operating Systems Review, Vol.23, No.4, 1989, pp.5-19. - [13] Liang, L., Chan, S. T., and Neufeld, G. W., "Process Groups and Group Communications: Classifications and Requirements," *IEEE Computer*, Vol.23, No.2, 1990, pp.56-66. - [14] Mattern, F., "Virtual Time and Global States of Distributed Systems," Parallel and Distributed Algorithms (Cosnard, M. and Quinton, P. eds.), North-Holland, 1989, pp.215-226. - [15] Melliar-Smith, P. M., Moser, L. E., and Agrawala, V., "Broadcast Protocols for Distributed Systems," *IEEE Trans. on Parallel* and Distributed Systems, Vol.1, No.1, 1990, pp.17-25. - [16] Nakamura, A. and Takizawa, M., "Causally Ordering Broadcast Protocol," Proc. of IEEE ICDCS-14, 1994, pp.48-55. - [17] Peterson, L. L., Buchholz, N. C., and Ghemawat, S., "Preserving and Using Context Information in Interprocess Communication," ACM Trans. on Computer Systems, Vol.7, No.3, 1989, pp.217-246. - [18] Postel, J., "Internet Protocol," *RFC-791*, 1981. - [19] Postel, J., "Internet Control Message Protocol," RFC-792, 1981. - [20] Tachikawa, T. and Takizawa, M., "Selective Total Ordering Broadcast Protocol," Proc. of IEEE ICNP-94, 1994, pp.212-219. - [21] Tachikawa, T. and Takizawa, M., "Multimedia Intra-Group Communication Protocol," Proc. of IEEE HPDC-4, 1995, pp.180-187. - [22] Tachikawa, T. and Takizawa, M., "Distributed Protocol for Selective Intra-group Communication," Proc. of IEEE ICNP-95, 1995, pp.234-241. - [23] Tachikawa, T. and Takizawa, M., "Communication Protocol for Wide-area Group," Proc. of the International Computer Symposium (ICS'96), 1996, pp. NM 158-165. - [24] Takamura, A., Takizawa, M., and Nakamura, A., "Group Communication Protocol for Large Group," Proc. of IEEE Conf. on Local Computer Networks (LCN-18), 1993, pp.310-319.