VAFAVYIT NI TE
FRU—F 4 25 - VAT A
(1999. 8. 2)

82—7

DBLY AT LICHVT B Fair Share 7514 F V51« X512 -7

Damien Le Moaﬁ v
G- A 1 | R
7 E — BRt

[/ N
& omt

® | OE

AFHIL T Stride Scheduling & V9 Fair-Share A7 Va2 — " Y FEDOHF L WEEL FDOFE
DT IFTAFTVTF AR Va—) YT DRI ELEFIRET S, 2D Fair-Share 754+ 57 1 -
Ay Va—5TRI—FLTO LA CPURBMEZEIY X CHIEXMEICR D, T/ 0LADE
FIHFELZHEEREDT. AV IS5 F 47 7O ADIEEREMEECTAI ENERSE, DX
o= X FEYFEELREER. BVEBRBBETHENICCPUNY Y FTOEADRFEL AT
Ta—) I REBRRRLE LG0T, BBILIDFEDA VTSI 774770 RSB T 570

DIRZBD

A Fair Share Priority Scheduler for a Distributed Operating System

DaMiEN LE MoAL,t TAKEHIRO T'SURUSAKI ,t MINEYOSHI MASUDA,t
SHIN-YA DATE,* HIROSHI YAMAZOE,! MASAHIRO GOSHIMA, '
SHIN-ICHIRO MORIt and SHINJI TOMITAt

In this paper, after discussing some commonly accepted scheduling methods, we present
our novel implementation of stride scheduling, a fair-share scheduling scheme. To allow a
flexible and controllable allocation of cpu time among users and processes while preserving
a good response time for interactive and time critical jobs, this method is combined with a
classical priority scheduling scheme. Evaluation results show that fairness can be ensured.
very efficiently within very short time intervals for compute bound jobs, even in the case of
dynamic adjustment of allocated share. Finally, we discusses some extensions of this scheme

to handle efficiently interactive processes.

Keywords : Distributed Operating Systems, Process Scheduling, Fair-share.

1. Introduction

Computer Colony system is a cluster of compﬁt-
ers, actually developed in our laboratory. Colo-
pia, the distributed operating system of Computer
Colony, implement a uniform system image, so that
each node can be seen as a processing element of
a distributed shared memory (massively) parallel
computer.

In such environment, we assume that several
users must be able to concurrently execute vari-
ous applications ranging from some light interac-
tive processes such as a simple terminal, to heavy
background parallel jobs.

Considering such characteristics, the following

T RESRE EHEM AR

Graduate School of Informatics, Kyoto Univ.

two points are of major importance.
Fairness Unlike Unix systems, logging in Colonia
~ can give a user access to the whole system com-
puting power. To prevent this user from get-
ting too much resources at the expense of oth-
ers, a user should not be able to receive more
than the share of cpu time it was allocated by
the system, and this should be ensured within
a short period of time.

Response Time It is reasonable to think that
compute bound jobs may be allocated a high
share of cpu time so that they can complete
execution fastly. Interactive processes should
not suffer from running concurrently in such
environment, and should be scheduled quickly
after waking up, in order to reduce their re-
sponse time to event occurrence.

The process scheduling scheme used on such sys-



tem must then ensure both of these characteristics
: achievement of fairness within a short time inter-
val, and a small response time. Moreover, this is
not only necessary for a single node, but also sys-
tem wide, particularly fairness. Our approach is to
develop a scheduling scheme for the node level re-
alizing both fairness and a good response time, and
to extend it to the system wide level.

In this paper, we only consider process schedul-

ing over a single node of the system. The next
section presents some current scheduling methods,
in particular stride scheduling. Section 3 discusses
our scheduling scheme which combine both priority
and stride scheduling, some evaluation results are
shown in section 4. Finally, section 5 will conclude
this paper.

2. Background

Conventional operating systems commonly use
the notion of priority to control precedence of pro-
cess execution to ensure a good response time, with-
out consideration for fairness. On the other hand,
several low-overhead, efficient, fair share scheduling
methods where developed [9,10], but do not allow
a precise control of process execution order.

2.1 Classic Priority scheduling

This scheduling method is widely used because
of its simplicity, ensuring a low overhead and a
maximal utilization of the processor. Priorities can
be calculated in several ways, and classically, pro-
cesses sleeping often waiting for events are given a
high priority on wake up, ensuring a good response
time to event occurrence, thus increasing process
throughput and user productivity. But this scheme
suffers from several drawbacks. Mainly, it is diffi-
cult to tune and in its basic implementation, pri-
‘ority scheduling does not allow to schedule fairly
processes over time. As a result, users with many
processes can easily receive more processing time.
Also, a costly regular adjustment of process priority
is necessary to avoid cpu starvation.

2.2 Priority-Based Fair share scheduling

Considering the previous problems, some prior-
ity based fair share schedulers have been developed
[12]. By measuring the past utilization of proces-
sor time for each process, and comparing it to the
allocated share, priority are adjusted to give more
cpu time to those processes which received less than
their share, and to lower the cpu use of those which
received too much. Good results can be achieved,

but these methods are difficult to tune and highly
undeterministic. A long time interval to ensure a
fair allocation of cpu time is also needed (for some
implementation, in the order of minutes or more).
2.3 Stride Scheduling .
Stride scheduling is a deterministic resource al-
location algorithm for time sharing systems which

_can be used as a process scheduling method to allow

a precise control over cpu time allocation. It was
first presented in [9] and can be seen as an applica-
tion of rate-based network flow control algorithms
to process scheduling.

2.3.1 Share and Tickets

In basic stride scheduling, resource allocation is
determined using an amount of tickets used as a
currency. Basically, a process with t tickets in a
system with T tickets is allocated t/T share of cpu
time. Therefore, the more a process owns tickets,
the more it can receive processing time.

Some variations of this basic allocation method
use exhausting tickets (tickets whom validity is
timely limited) with either a loan and borrow mech-
anism or system credits [11] to handle more effi-
ciently interactive processes fairness. With these
extensions, runnable processes can borrow the tick-
ets of the sleeping one to increase their share, thus
their throughput. But they must pay back the lent
process when it wakes up, increasing its share and
its chances to be scheduled quickly. These meth-
ods cannot anyway efficiently handle a heavy inter-
active load or processes with very short run time.
The overhead introduced is also not negligible.

2.3.2 Basic algorithm

Classically, in time sharing systems, processes are
regularly allocated a time interval (time slice or
time quantum). If a process consumes up its al-
located time slice, the system preempts it and al-
locate the next time slice to another process if one
is available. In stride scheduling, the core idea is
to compute the time interval, or stride a process
must wait before receiving its next time quantum.
The stride of a process is inversely proportional to
its share. Each time a process is scheduled, a pass
parameter associated to this process is incremented
by the stride of the process. At each time quantum,
the process with the lowest pass is chosen.

Figure 1 shows an example of stride scheduling
where three processes compete for the cpu with
different ticket allocation. Process 1 has a stride
of 6 with 500 tickets, process 2 a stride of 10 with
300 tickets and process 3 a stride of 15 with 200



Process 1: —1 Process 2 : Process 3 :
500 tickets 300 tickets 200 tickets
Stride 15

Stride 6 Stride 10

12 20 18 30 24 30 30

Pass 6 10 15

Time . —

>

Fig.1 Three runnable processes with different allocation
of cpu share are scheduled using stride scheduling
: the process with the smallest pass is scheduled

first.

tickets. Considering the ticket ratio of each pro-
cess, process 1 must receive half of the cpu time
(500/(500 + 300 + 200)), process 2 and 3 sharing
the other half in the ratio of 3 to 2. At the initial
state, all processes pass are 0, processes are first
scheduled in the 1,2,3 order. Over the scheduling
sequence of the example, process 1 is scheduled 5
times, process 2 and 3 three and two times respec-
tively. At the end of this sequence, all processes
pass are equal. The represented pattern will then
be repeated over and over. With a hundred mil-
liseconds time slice, as the length of this pattern is
ten, fairness is achieved over one second intervals.

2.3.3 Original implementation

The first implementation, proposed in [9], used a
sorted queue as the data structure to manage pro-
cesses, with a cost order of O(logn) for queue ma-
nipulation, where n is the number of processes in
the queue.

Using a floating point for the stride is possi-
ble, but for simplicity, an integer type was used.
The stride of each process is then-calculated as
the ratio of a constant to the share of the process,
and rounded up to the nearest integer. The con-
stant used is chosen big enough (2%°), so that the
round error becomes very small and practically un-
detectable.

As the stride is calculated as a big integer, the
pass parameter may grow quickly. To avoid a fast
overflow, a 64 bit integer was used so that the time
until this parameter overflow is long enough to not
be considered practically as a problem. In the case
of a 32 bit integer use, the pass parameter can over-
flow more frequently, thus needing periodical ad-
justment of all processes pass parameter.

3. Fair Share Priority Scheduler

This section presents in detail our implementa-
tion of stride scheduling, as well as its combination

with a simple priority scheduling method.

3.1 Stride scheduling implementation

This section presents in detail our implementa-
tion of stride scheduling, as well as its combination
with a simple priority scheduling method.

3.1.1 Data Structure

In its basic implementation, stride scheduling has
two main drawbacks : each process pass parame-
ter may overflow after a certain time as it is incre-
mented by the process stride each time the process
is scheduled. Also a costly search for the process
with the smallest pass is necessary at each schedule
operation. Our implementation uses the basic algo-
rithm presented in the previous section, but avoids
its problems by using a circular array of process
record linked lists, as shown in figure 2.

HEAD

Initial State of the Queue

After three schedule operations
{each process was sceduled once)

Fig.2 Stride queue data structure : an array of list of

process record. The initial state of the queue for
the ezample of figure 1 is represented, as well as
the state after three schedule operations.

Each list contains processes equal pass, these pro-
cesses are ordered in first in first out (as they all
have the same pass, no distinction can be made).
The head list contains all processes with the small-
est pass. All get operations on this queue are thus
done in this list, the head pointer is advanced to the



next non émpty list each time the head list becomes
empty.

If a process uses up its time slice without sleep-
ing, it is put back into the list at an array index
equal to its previous index (the index of the head
list) plus the current stride of this process, thus vir-
tually incrementing this process pass by its stride.
Doing so, this method also avoids ordering a queue
with the pass parameter, as lists are naturally or-
dered in increasing pass form the list pointed to by
the head. .

Manipulating the stride queue do not depend any
more on the number of processes, resulting in a
bounded time for all put and get operations on this
structure. Incrementing the pass parameter is also
no longer necessary, avoiding this parameter over-
flow and the resulting necessary corrections.

3.1.2 Ticket Allocation and Share Calcu-

lation

We consider two different sorts of tickets : user
tickets and process tickets. User tickets are allo-
cated to users by the system at login time, and are
said to be active if the user owning these tickets
has at least one process runnable or running in the
node. An active user i owning tu; active tickets in
a system with Tu = Y tu; active user tickets is
allocated ?f—; of the computing time. Each user al-
locate process tickets to his processes, those tickets
are said to be active if the process owning them is
running or in runnable state.

The share of cpu time accessible to a process is
then calculated with

Process k share = —mi— x Pk (1)
stui Doty

where tp; ;. is the number of tickets allocated to
the process k of user 7 and ) tp; ; the sum of active
process tickets for the user .

Active tickets sums are maintained on event oc-
currence which changes any process state : each
time a process becomes runnable or goes to sleep,
the sum of active process tickets of the user owning
this process is updated and if necessary the sum of
all user active tickets is also adjusted.

As a user may not know how many processes he
is running (which is a reasonable assumption : con-
sider the number of processes started when a user
logs in a system) no limit is put to the total number
of tickets allocated to processes by the user own-
ing them. Cpu time is always shared among all
runnable processes depending on the relative ratio
of their tickets (figure 3) )

User B
3000 tickets
40% ) 60%
Process 3 Process 4
100 tickets 300 tickets
20% 20% 15% 45%

Fig.3 An example of ticket allocation with the
resulting cpu share for each process.

3.1.3 Basic Stride Calculation

Using a floating point for the stride value is pos-
sible, but considering our data structure, the stride
must be an integer. As the stride must be inversely
proportional to the share, a division is needed, and
the result must be rounded up to an integer value.
The stride of a unit is calculated using the formula:

A
process sha're) )
Where rint() is the function rounding a floating
point to the nearest integer. A correct (perfect) cal-
culation of the stride with no round error would use

Process stride = rint(

A equal to the lowest common multiple of all process
share fraction numerator, which is too costly to be
calculated at each scheduling operation. To avoid
this problem, X is chosen as a constant. However,
as the size of the stride queue is fixed, a resolution
problem can appear for processes with a stride big-
ger than the stride queue size (i.e. with a small
share) : all these processes will get a stride equal
to the size of the stride queue. This size must then
be big enough and X small enough to support very
small share. The value chosen are 1024 for the size
of the stride queue, and 1 for A so that the possible
minimal share is equal to 1/1024 = 0.001, thus to
a 0.001% of cpu allocation.

However, this calculation method introduces not
negligible errors on process strides, as shown in fig-
ure 4. :

In this example, both theoretical stride and cor-
rected stride use leads to the expected 80% to
20% cpu allocation to process 1 and 2 respectively,
whereas the non-corrected stride leads to a 83% to
17% allocation, with a 3% error. This error may be
even bigger depending on ticket allocation (a ratio
of 3:2 in ticket allocation result in a 10% error).

3.1.4 Stride Correction

As the ratio A to the process share is rounded to
the nearest integer, the stride error is calculated as
follow.




‘Without correction
stride 1and 5

Pass i

‘With correction
stride 1 and §

Theoretical
Stride 5 and 20

Passi 5 20 10 15 20:40 25 30 35 .40 :60

e *
Fig.4 Stride error effect : two processes with 400 and
100 tickets respectively, corresponding to 80%
and 20% of cpu allocation. The scheduling se-
quence is shown for stride calculation without
correction, with our error correction, and with

the theoretical stride. The circled pass are in-

cremented with the corrected stride, the repeated
sequence are underlined.

Stride error = process stride — >
process share

If the stride error is positive, the rounded stride
is bigger than the theoretical stride, and thus, over
a certain time interval, the process will not receive
enough cpu time. On the contrary, if it is negative,
the process will receive too much. Few seconds of
run can be long enough to start seeing those errors
appearing in cpu time allocation to processes.

Let’s consider the case where the stride error is
positive. Each time the process is scheduled the
cumulated error Ce; is calculated as :

Ce; = stride error *n; + Le;_1

Le;—1 = previous stride error xnj_; — 1
where n; is the number of times the process was
scheduled since the : — 1 correction, and Le;_;
is the part of the error not corrected the previ-
ous time. When Ce; becomes greater or equal
to one, the process stride is decremented by one
and Ce;4; and Le; are calculated. For a nega-
tive stride error, the stride is incremented by one
when Ce; is lower or equal to minus one, with

Le;_1 = previous stride error *n;-1 + 1.

In the example of figure 4, process 1 with 400
tickets has a stride of 1 with 0.25 error. Its stride is
thus adjusted to 2 every time is has been scheduled
4 times since the last correction.

The use of this correction mechanism can change
the scheduling order of processes compared with the
use of the theoretical stride, leading to a possible
increase in the length of the interval of time neces-
sary to obtain fairness. But it has the advantage
of greatly reducing the stride calculation overhead,
and also makes it bounded : this calculation do not
depend on the number of processes in the system.

3.2 Combination of Priority and Stride
Scheduling

The basic idea is to distinguish those processes
which are compute bound to those. which are con-
sidered as interactive, and to manage them either
with stride and priority scheduling respectively.

3.2.1 Data Structure

As we wish to schedule interactive processes de-
pending on their priority in order to ensure a good
response time, a classical structure (array of list) is
used. To handle compute bound jobs with stride
scheduling, the stride queue structure presented
previously is affected a priority, and managed as
any other process within the priority queue.

Priority Queue

Stride queue

Fig.5 Ready queue organization : the stride queue is

managed as any other process by affecting it a
priority.

The scheduler always compares the stride queue
priority with the highest process priority to deter-
mine where to get the next process to runm, either
in the stride queue or in one of the priority queue.

3.2.2 Process Distinction

Classically, processes waiting for events occur-
rence are given a high priority so that they can
be scheduled quickly after waking up. On the con-
trary, processes which consume up their time slice
several times without voluntary relinquishing the
processor are given a low priority. Process priori-
ties are used to separate compute bounds jobs form
interactive processes. In a first step, process priori-
ties are calculated very simply, using a table shown
in figure 6.

High priority processes are given a small time
quantum, and low priority processes a longer one



const int pritbl[] = (

/* guantum priexp prilslpret prisslpret */ // PR.

100, o, 50, 10, /7 0
100, o, 50, ‘11, 7/ 1
100, o, 50, 12, 77 2

"7 100, 8, 58, 28, 7/ 18
100, 9, 59, 29, /7 19

/* TS <=> IA LIMIT */

80, 10, 60, 30, // 20
80, 11, 60, 31, // 21
80, 12, 60, 32, /7 22
40, 48, 63, 60, // 58
40, 49, 63, 60, // 59
20, 50, 63, 60, /7 60
20, 51, 63, 60, // 61
20, 52, 63, 60, // 62
20, 53, 63, 60, // 63

3}

Fig.6 Ezample of a table used to calculate process prior-

ity and time gquantum : the highest priority level

is 63, and the lowest 0.

(a hundred millisecond). Each time a process con-
sumes up its time slice, its priority is decreased
(priexp priority on expiration), and its time slice
increased (quantum). A new process is always af-
fected the highest priority (63), and the priority on
wake up (prilslpret priority after long sleep and
prisslpret priority after short sleep) depends on
the sleep time as well as the priority on the previous
run. The IA/TS limit (Interactive/Time Sharing)
is the priority level below which a process is consid-
ered to be compute bound, a process reaching this
priority level is scheduled using the stride queue.

3.2.3 CPU Starvation Avoidance

As all low priority processes are managed with
the stride queue, changing the priority of this struc-
ture is equivalent to change the priority of all pro-
cesses in it. To avoid cpu starvation, each time
the scheduler chooses a process from the priority
queue, the stride queue priority is increased. When
this priority is higher than any process in the prior-
ity queue, the next process is chosen from the stride
queue. If this process uses up its time slice with-
out being preempted by a higher priority process
(which will be scheduled with the priority queue),
the stride queue priority is decreased to the IA/TS
limit priority. On the contrary, if the process is
preempted, it is put back at the head of the stride
queue with a time slice adjusted to the remaining
time of the previous time slice. The stride queue
priority is not decreased in this case.

Unlike Unix systems which generally recompute
all process priorities regularly to avoid cpu star-

vation, only the stride queue priority is adjusted
depending on its use, and this operation do not de-
pend on the number of processes.

4. Evaluation Results

‘As mentioned in the introduction, this scheduling
method is part of Colonia, a distributed operating
system which will run over a cluster of worksta-
tions communicating with a special network hard-
ware. As this hardware and also device drivers are
not yet implemented, the core part of the kernel of
Colonia is actually running over an emulator above
Solaris 2.5. The results presented in this section
were measured using this emulator.

The next subsection presents some test results of
our implementation of stride scheduling. The ef-
fect of interactive load on fairness realization will
be discuss in subsection 2.

4.1 Compute bound load

In this first example, two users with the same
number of tickets are both running compute bound
jobs. User A runs two processes with 100 and 400
tickets respectively, user B runs only one process
which sleeps on a regular basis waiting for events
to occur. Figure 7 shows the load of each process
in percentage of the cpu time used over one second
intervals (considering the ticket allocation in this
case and the time slice of a hundred millisecond for
processes scheduled using the stride queue, fairness
should be ensured over one second intervals).

cpu load per process

Two users with the same number of tickets are
running two and one compute bound jobs respec-
tively. Processes 1 and 2 of user A have 100 and
400 tickets respectively, process 3 of user B re-
ceives half of the cpu time when it is runnable,
process 1 and 2 sharing the other half with o 1:4
ratio. This graph represents the cpu load for each

process over 1 second intervals.



When processes start execution, they get a high
priority and thus are scheduled using their prior-
ity. This can be seen at the beginning of each load
graph, fairness is not achieved. But as these pro-
cesses use up their time slice several times without
sleeping, they are considered as compute bound by
the scheduler which then manages them using the
stride queue.

When process 1 wakes up (15 and 29 seconds),
it gets a high priority, preempting process 2 and 3
which then can’t get their share of cpu. Fairness
is again ensured within one second interval, as pro-
cess 1 enters again the stride queue. When process
3 sleeps, process 1 and 2 shares are recomputed to
redistribute computing time. This adjustment in-
troduces some errors in fairness for a short interval,
as shown in Figure 8.

2.4 S 2 pas e o e e BLJIR S e et S S St R B B B S S S L
Process 1 o—
Process 2 ~+-
Process 3 -B--

OO N S R N R S '

Scheduler Fairmess pr procass

s

T T T T

° e e meh i i am e b1

PR 1
123456789 1011121314151§r171(8;9202122232425262728293031323336
ime (s)

Fig.8 Scheduler fairness for the first ezample over 1
second intervals.

The scheduler fairness was measured using the
following formula,

o ct
Fairness = (Ct + Wt) * process share (3)

where Ct is the cpu time received and Wt is the

time waited in runnable state in either the stride
queue or the priority queue.

In both figures 7 and 8, we can see that when pro-
cess 1 goes to sleep (9 and 23 seconds), the stride
adjustment introduces some errors in cpu alloca-
tion distribution, but within one second interval,
fairness in ensured again.

As expected, our implementation of stride
scheduling can ensure fairness very quickly. In this
example, with a hundred millisecond time slice,
fairness is guaranteed within one second intervals.
Our stride correction mechanism do not affect the
length of the interval of time necessary to ensure

fairness.

4.2 Interactive and Compute bound load

In the second example of figure 9, user A is run-
ning the same compute bound jobs as.in the first
.example on a node where user B is now running
interactive processes. These processes always sleep
before they enter the stride queue, so that they are
always scheduled on a priority basis.

©
&
2
=
a
o
02 4 6 8 10 12 14 16 18 20 22 24 26 28
Time (s)
Fig.9 Cpu load for user A processes over 2 second in-

tervals under a high interactive load Tun by user
B (not represented).

In this case, the load of both compute bound
processes decreases as soon as interactive processes
start execution (after 6 seconds). As the scheduler
uses more often the priority queues to choose pro-
cesses, processes 1 and 2 do not receive enough cpu
time, fairness is not ensured. However, the relative
load between these two processes is preserved, as
the cpu starvation algorithm and the preemption
control prevents any process in the stride queue
from getting more cpu time than its share (rela-
tively to other processes in the stride queue), and
ensuring also that the stride queue is used regularly
to schedule processes.

This examples shows that fairness is not achieved
when a heavy interactive load is concurrently run-
ning on the same node. Because priorities are cal-
culated statically without using the share of cpu
time allocated to processes, as in classical priority
scheduling, a user with many interactive processes
can still get more cpu time.

5. Conclusion and Future Work

We have presented our implementation of stride
scheduling which allow an fair allocation of cpu



time using tickets allocated to users and processes,
with a very low overhead. Preliminary results have
shown that fairness is ensured for compute bound
processes over very short time intervals, even in the
case of dynamic change in cpu share allocation. The
combination of this method with a more classical
priority scheduling scheme ensures a good response
time to event occurrence for interactive processes.
In this case, preemption of compute bound jobs
by high priority interactive prZ)cesses is necessary,
resulting in an acceptable degradation of fairness.
However, as priorities are affected depending only
on the run time behavior of processes, this degra-
dation can persist so that processes can get more
than there fair share, whereas it should be limited
to few seconds.

The next steps of this work will investigate
method to separate more efficiently processes de-
pending on their behavior, and to penalize of pro-
cesses (and users) receiving more than their fair
share by either introducing a priority correction de-
pending on the share and on the previous cpu usage,
or by using more intensively the stride scheduling
method.

More work also needs to be done on the defini-
tion of interactiveness. For example, a compute
bound job ‘waiting on a semaphore could be seen
as an interactive process. We need to raise pa-
rameters allowing the scheduler to differentiate I/O
bound processes (typically user interfaces, text ed-
itors, and more generally processes using external
devices I/0) to compute bound processes and syn-
chronized parallel applications.

‘A more efficient resource usage could be also im-
plemented using a system wide ticket inheritance
mechanism. Indeed, tickets of sleeping processes
are unused and thus wasted, whereas for example
applications could exchange tickets to reduce the
wait time on synchronization, and processes hold-
ing critical resources could be scheduled more often
to relinquish these resources faster.

Extensions of stride scheduling to multimedia
real-time scheduling will also be investigated, be-
cause a constant service rate can as well be imple-
mented using this method.

Acknowledgments

We would like to thank Mentor Graphics Japan
Corporation for providing their products and ser-
vices as a part of the Higher Education Program.

A part of this research was supported by the

Grant-in-Aid for Scientific Research (B)(2)#10558045,

and (C)#09680334 from the Ministry of Education,
Science, Sports and Culture.

References

1) Jean Bacon: Concurrent Systems - Operating
Systems, Database and Distributed Systems :
an integrated approach, Addison Westley, Sec-
ond edition (1997).

2) A. Goscinski: Distributed operating systems -
the logical design (1991).

3) Maurice J. Bach: The design of the Unix op-
erating system (1986).

4) Amnon Barak, Shai Guday, Richard G.
Wheeler “The Mosix distributed operating
system : Load balancing for Unix”,Lecture
Notes in Computer Science, vol. 672, (Springer-
Verlag, Berlin, 1993).

5) A. Silberschatz, J. Peterson, P. Galvin “Oper-
ating System Concepts”, Third edition (1991).

6) Prabhat K. Andleigh: Unix System Architec-
ture (1990).

7) AT&T Unix System V Release 4 Programmers
Guide : System services and Application Pack-
aging tools (1990).

8) S. Khanna, M. Sebree, J. Zolnowsky: Real-
time Scheduling in SunOS 5.0, USENIX Con-
ference Proceedings (winter 1992).

9) Carl A. Waldspurger, William E. Weihl:
Stride Scheduling - Deterministic Proportional-
Share Resource Management, Technical mem-
orendum MIT/LCS/TM-528, MIT Laboratory
for Computer Science (June 1995).

10) Carl A. Waldspurger, William E. Weihl: Lot-
tery Scheduling - Flexible Proportional-Share
Resource Management, Proceedings of the first
Symposium on Operating Systems Design and
Implementation (1994).

11) Andrea C. Arpaci-Dusseau, David E. Culler:
Extending Proportional-Share Scheduling to a
Network of Workstations, Computer Science
Division, University of California, Berkeley
(Undated).

12) Raymond B. Essick: An Event-based Fair
Share Scheduler, Useniz (Winter 1990).



