
1

SoftwarePotを用いた汎用仮想ホスティング

シュラーニペーテル †1 廣津 登志夫 †2,†3加 藤 和 彦†4,†3

近年のコンピュータの高速化により，一台のマシンを複数のホストのサーバにする仮想ホスティン
グ技術が一般的に使われるようになったがこれにより以前よりもセキュリティを考慮することが必要
となった．安全に仮想ホスティングを行うため広く利用されている仮想マシン技術は実行時オーバヘッ
ドも大きく，セットアップにも手間がかかる．OSの機能として提供されている手法は実行は効率的
だがセットアップの面では仮想マシンより改善がない．本論文では安全なソフトウェア実行システム
SoftwarePotを用いた汎用仮想ホスティング手法を提案し，仮想ホスティング機能の実現について述べ
る．提案システムではディレクトリのマッピング機能により仮想ホスト環境のセットアップにかかる
労力の軽減を実現している．

General Virtual Hosting with SoftwarePot

SURÁNYI, P́ ,†1 T H †2,†3 andK K†4,†3

While recent computers provide sufficient resources to share them between hosting several sites, network
intrusions force people to focus on security. In order to realize safe virtual hosting, resources for hosted
services need to be isolated. Virtual machine managers (VMMs) are commonly utilized for this purpose,
however they require a significant amount of extra work for setting up and resources for running them. OS
specific solutions such as FreeBSD jail provide more efficient execution, but still require the preparation of a
full basic operating system for each virtual host. This paper proposes a general method for virtual hosting of
arbitrary services based on the SoftwarePot Secure Execution System, and describes how the virtual hosting
facility was implemented. Our approach allows reducing the work required for setting up the virtual hosting
system.

1. Introduction

The amount and severity of network intrusions on the
Internet is increasing day by day. Virtual hosting, ie.
hosting services for several sites on the same machine not
only increases the probability of that server being chosen
as a target for an attack, but also widens the area of pos-
sible damage in the case that a security breach occured.

Security vulnerabilities are frequently discovered in
server software, operating systems, and other pieces of
software commonly employed on server machines. These
weaknesses, if not dealt with promptly, may lead to a
break-in possibly causing failure (downage) of the ser-
vice or leakage, deletion or alteration of the data. Dy-

†1 筑波大学大学院博士課程システム情報工学研究科
Graduate School of Systems and Information Engineering, Univer-

sity of Tsukuba

†2 日本電信電話株式会社 NTT未来ねっと研究所
NTT Network Innovation Laboratories

†3 科学技術振興機構 CREST

CREST, Japan Science and Technology Agency

†4 筑波大学電子・情報工学系
Institute of Information Sciences and Electronics, University of

Tsukuba

namic content created by the site author (e.g. CGI or
other WWW scripts) that is not part of the server soft-
ware itself may also contain security holes and make an
otherwise secure server exposed to attacks.

In a virtual hosting scenario, with a single server host-
ing services for multiple sites, this means that having
merely one service with a security vulnerability may gain
access for the attacker to data belonging to all of the
hosted sites. Even if there are no security holes in the
server software at all, a single faulty user script may cause
exposure of data of all of the hosted sites. Considering
these factors, it can be easily seen that resource isolation
is a vital problem in virtual hosting.

The aim of this research is to provide a means of vir-
tual hosting that provides a high level of resource iso-
lation together with ease of setup, while maintaining an
acceptable level of runtime overhead. The ability to allow
virtual hosting of existing services and design that allows
portability are also considered as important aspects.

In this paper, we propose a system that provides re-
source isolation by running each service in a confined en-
vironment with a virtual file system view. This virtual
view, besides preventing unwanted access to resources,
can also help in absorbing differences between file sys-
tem hierarchies of hosting machines.

The remainder of this paper is organized as follows.

研究会Temp 
 

研究会Temp 
 

研究会Temp 
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

研究会Temp 
2004－OS－95　　(7)

研究会Temp 
2004／2／27

研究会Temp 
－49－

研究会Temp 
 

研究会Temp 
 



2

Section 2 discusses different methods employed for vir-
tual hosting. Section 3 describes the SoftwarePot Secure
Execution System. Section 4 explains how SoftwarePot
was extended to make it suitable for virtual hosting. Sec-
tion 5 evaluates the proposed system using application
level benchmark. Section 6 concludes describes future
work.

2. Related Work

At the time when the Internet was beginning to gain
wider acceptance, virtually all sites were hosted on dedi-
cated servers, with the single task of servicing requests
for that site. However, with the computing power of
servers increasing rapidly and the Internet expanding ex-
plosively, there was a strong demand to share resources
between several sites.

Dedicated servers generally only had a single network
interface with a single Internet address assigned to. Inter-
face aliasing, i.e. assigning multiple Internet addresses to
the same network interface, a technique now commonly
utilized in virtual hosting, is also a relatively new con-
cept. This means that many of the server programs still in
use were not designed for being employed on a machine
having multiple Internet addresses. These programs ac-
cept connections targeted to any of the addresses assigned
to the machine, which can easily cause conflicts in an en-
vironment running several services for multiple hosts.

Virtual hosting was primarily realized by extending the
server software to add support for running services for
multiple Internet addresses. This was implemented in
many World Wide Web (HTTP) and file (FTP) servers.
While embedding virtual hosting support in the server
software is arguably the most effective method for shar-
ing resources, it also has its drawbacks. Adding support
for multiple addresses increases server code complexity
significantly as care must be taken to use the correct
address both with incoming and outgoing connections.
Since there is no way for the program to decide which of
the multiple addresses available to use, it must be spec-
ified by the administrator. As different server programs
usually require different ways of configuration, this can
mean considerable extra work. This approach also brings
up security concerns: a malicious attacker may cause fail-
ure of services, damage or leakage of information for any
of the hosted sites by finding and exploiting a security
vulnerability in merely a single one of the hosted sites
(e.g. a faulty CGI script). To address these issues, recent
trends favor running services for different virtual hosts in
confined environments utilizing virtual machine monitors
(VMMs) or isolation services provided by the operating
systems.

Virtualization was not considered in the design for the
predominant IA32 (also known as Intel x86 or i386) ar-
chitecture. Because of this, solutions providing complete
virtualization (e. g. VMware6), VirtualPC) require a con-
siderable amount of extra computing resources to achieve
this goal, especially in the case of I/O intensive tasks.
Besides the runtime overhead, another drawback of the
virtual machine approach is that a separate copy of the
operating system (guest OS) with its basic services needs

to be installed and run within the virtual execution space.
This requires additional work for setting up and increases
memory and storage requirements as well.

Other VMMs such as Xen2) and User Mode
Linux(UML)4) provide a limited level of virtualization
that is sufficient for their goals. In the case of Xen, this
avoids much of the runtime overhead, but it requires sig-
nificant alteration of the guest OS code. UML’s origi-
nal goal is to run Linux within the user level of another
Linux operating system. While originally created for aid-
ing development of kernel code, UML is capable of vir-
tual hosting, but having all I/O data pass through user-
mode virtual device drivers increases runtime overhead
considerably. These VMMs also don’t solve the setup,
memory and storage cost problems mentioned before.

UNIX and UNIX-like operating systems provide a sys-
tem call namedchroot that is capable to execute pro-
grams in a sandboxed file system environment, prohibit-
ing access to all but a single subtree of the file system.
Running network services in achroot environment does
avoid some security threats but it does not provide sup-
port for virtual hosting. To overcome this, version 4.0
of the FreeBSD operating system introduced a new sys-
tem call namedjail that provides a file system sandbox
similar to that ofchroot, with the additional feature of
limiting the addresses used in network connections to a
single one, thus making virtual hosting of practically any
service possible. However, forjail, similarly to the vir-
tual machine based approaches, it is necessary to install
a copy of all the files that may be needed for the execu-
tion of the service. The FreeBSD manual suggests in-
stalling a comlete copy of the operating system inside the
target directory. This requires a considerable amount of
work to do for each service to host. Linux VServer1) is a
project aimed to provide services similar to that ofjail
by adding new system calls to the Linux operating sys-
tem. This requires compiling a modified version of the
kernel.

3. The SoftwarePot Secure Execution System

Installing and running programs on a system implies
numerous security risks. Most recent applications consist
of several files that need to be installed in the correct lo-
cation in order for the program to function properly. This
is usually performed by installer or package manager pro-
grams. In most cases installers are (and generally require
to be) executed with super-user or administrator privi-
leges, having full access to the machine’s resources. This
means that the installer is technically able to arbitrarily
read, modify, overwrite or delete files, or initiate network
transfers at will. Even for installers with no malicious in-
tent it is often the case that some file to be installed is in
conflict with a pre-installed file on the system, in which
case either installing the new file or retaining the origi-
nal one may cause one of the applications fail to operate
correctly. In general, the user has to trust both the creator
of the installer and the location it obtained it from, hav-
ing no other way of ensuring that no unwanted effect is
caused by the installation process.

SoftwarePot is designed for safely executing programs

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－50－



3

that are not perfectly trusted by the user. This may in-
clude programs of untrusted source or programs that may
be suspicable of security vulnerabilities.

3.1 Design
In SoftwarePot, similarly to most installers, the pro-

gram and the related data files are stored together in a
compressed data file, calledpot file. However, contrary
to the traditional installation methods, these files are not
installed in the real target location, instead they are ex-
tracted in a temporary directory. During execution, the
program is run in a special environment calledpot space,
that provides a virtual file system view, with the files in
the archive mapped to their correct locations. The pro-
cesses executing in this virtual space are calledpot pro-
cesses. Access to all other resources are governed by
the system based on the security policy specification pro-
vided at execution time. This makes accessing external
files possible by mapping them into the virtual file system
view. Multiple pot files may share the same pot space,
allowing non-essential data files or different versions of
libraries to be distributed as separate pot files.

Operating the SoftwarePot system consists of using
two commands.makepot creates a pot file based on a
specification file describing files to incude in the archive,
files and directories to map at runtime etc.execpot ex-
tracts and executes a pot file, optionally taking as argu-
ment an extra specification file that can specify new map-
pings and override the ones in the specification the pot
file was created with.

The following is the sample specification file that can
be used for generating a pot file with a single executable
(myserver). In this example, the librarylibc.so.6 is
mapped into the pot space dynamically on the execution
site.

<Skeleton>
<Entry path="/mybin/myserver">

<Arg>arg1</Arg>
</Entry>
<StaticFiles>

<StaticFile vpath="/mybin/myserver">
<Load protocol="local">

<Path>/home/user/myserver</Path>
</Load>

</StaticFile>
</StaticFiles>
<DynamicFiles>

<DynamicFile vpath="/lib/libc.so.6">
<Load protocol="local">

<Path>/lib/libc.so.6</Path>
</Load>

</DynamicFile>
</DynamicFiles>

</Skeleton>

3.2 Implementation
In many operating systems, all access to system re-

sources is performed via system calls. This means that
all system resource references can be monitored by in-
tercepting the corresponding system call(s). This is the
approach taken in SoftwarePot to ensure safe execution

of programs.
Figures 1 and 2 show the execution of a system call

in the native system and in a SoftwarePot environment
respectively. When running in SoftwarePot, system calls
are intercepted, their arguments are checked and modified
if necessary.

SoftwarePot is currently implemented in the following
systems:
• Linux 2.4 / Intel IA32
• Linux 2.4 / ARM
• Solaris/ SPARC
The Linux implementation currently requires loading

a kernel module. This design has been chosen for per-
formance reasons, it is believed to be possible to imple-
ment it utilizing the ptrace facility, allowing for an en-
tirely user-space implementation. Recent improvements
in the Linux ptrace facility may make such an implemen-
tation feasible.

3.3 Extensibility
SoftwarePot employs modular design in order to pro-

vide a high level of extensibility. Two kinds of modules
can be used for extending SoftwarePot:
• Protocol modules

SoftwarePot supports several methods for accessing
files in the virtual view. It is possible for example
for a file appearing in the virtual view of the Pot pro-
cess to be retrieved through HTTP or other protocols
dynamically when the process accesses the file. Pro-
tocol modules can be used to define these kinds of
file access methods.

• Runtime modules
Runtime modules can incorporate in SoftwarePot,
intercept any system call and control the execution
of the Pot process. This feature is employed in our
implementation for virtual hosting.

4. Virtual Hosting with SoftwarePot

While SoftwarePot is an efficient and convenient sys-
tem for running applications in confined environments, it
was not designed for virtual hosting. Therefore, when ap-
plying SoftwarePot for virtual hosting, several problems
arise.

4.1 Issues
In order to provide virtual hosting, we need to have

multiple Internet Protocol (IP) addresses assigned to the
machine. Several approaches are available for assign-
ing addresses to virtual machines. VMware, User Mode
Linux and Xen utilize a separate virtual network, bridg-
ing it to the actual network interface. This method pro-
vides a high level of separation at device level, however
it requires forwarding packets between the virtual and the
actual network interface. FreeBSD jail utilizes IP address
aliases, reserving multiple IP addresses on the same in-
terface. This method allows direct delivery of packets to
the process by the kernel. This approach is taken in the
proposed method as well, as it is believed to be the most
efficient one.

Not separating virtual machines at a network device
level means that all processes (including SoftwarePot

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－51－

研究会Temp 
 

研究会Temp 
 



4

user space kernel space

...
open

/var/www/index.html

recieve descriptor
.
.
.

application
program

operating
system kernel

check OS permissions

access resource

return result

system
resources

(file system)

図 1 System call execution - normal flow

user space kernel space

...
open

(/var/www/index.html)

recieve descriptor
.
.
.

application
program

operating
system kernel

check OS permissions

access resource

return result

open() handler

system
resources

(file system)
SoftwarePot

alter filename:
/tmp/.../index.html

check SwPot perm.

open
(/tmp/.../index.html)

continue 

file mapping module

図 2 System call execution flow with SoftwarePot

processes) are able to use any of the IP addresses avail-
able. In order to use SoftwarePot processes for virtual
hosting, this needs to be limited to the address of the vir-
tual site.

Numerous server programs read the hostname of the
machine in order to determine the IP address. In order to
make these programs aware of their virtual IP addresses,
it is neccessary to provide them with a virtual hostname.

4.2 Design
Server programs work by binding to a specific port

number on the machine and waiting for clients to con-
nect to that port. Binding to a port number is achieved by
thebind() system call. While it is possible to specify an
IP address to bind to, numerous server programs default
to binding to the so-called ”any” address (INADDR_ANY),
which causes the program to recieve connections on all
IP addresses assigned to the host. Several programs give
an option for specifying the bind address explicitly. How-
ever, the means of configuration is different from server
to server. In a virtual hosting scenario, it is often more
desirable to handle the address configuration centrally in

a unified way.☆
Besides incoming connections, many server programs,

most importantly proxy servers, also initiate connections
to external hosts. When creating connections to other ma-
chines, theconnect() system call is utilized. Unless
the network socket has been bound to a specific address,
which is generally not the case, the outgoing connection
is assigned to a local address and port by the kernel. In
virtual hosting, having the connection bound to an ad-
dress that is different from the one assigned to the ma-
chine, may cause one of the following troubles.
• The connected host is misinformed about the origin

of the connection, causing accesses to be associated
with a different virtual host.

• If the machine is connected to several networks, de-
pending on the routing configuration, this may allow
clients from one network having the server make a

☆ xinetd5) makes it possible to run several servers with a centralized

configuration. This method, however, does not provide any isolation

mechanisms between the services.

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－52－



5

connection to the other network that is supposed to
be separated from the client.

4.3 Implementation
To summarize the previous sections, the following

main features need to be implemented in order to utilize
SoftwarePot for virtual hosting.
• virtual IP address - forcing process to use assigned

address
– incoming connections (bind())
– outgoing connections (connect())

• virtual hostname - report virtual hostname to the pro-
cess

These functions are currently implemented in Linux on
the Intel IA32 platform only, however they are believed
to be easily ported to other UNIX-like OS’s as well.

4.3.1 Incoming connections
The only thing required for IP address virtualization

for incoming connections is to ensure that the argument
passed to thebind() contains the IP address assigned
to the virtual machine. This can be achieved by a sim-
ple SoftwarePot module that intercepts calls tobind()
and rewrites the address in the argument to that of the
virtual host. Additionally, for safety reasons, it is im-
plemented so that it issues a warning when the address
(before rewriting) neither matches the ”Any” address nor
the virtual host address. (The running program may be
aware of its virtual address by performing a name server
lookup on the virtual hostname.)

4.3.2 Outgoing connections
Implementing virtualization with regard to outgoing

connections is a more sophisticated problem. Several ap-
proaches can be thought of in order to make sure that
outgoing connections are bound to the correct address.

The address a connection is bound to is decided by
the operating system kernel based on its routing tables
and other internal data. The most straightforward method
would be to check and ensure that these tables are cor-
rectly setup. However, this procedure would depend
highly not only operating system, but, in the case of
Linux, also its kernel version and configuration. Also,
these kinds of low-level interactions with kernel struc-
tures are contrary to our goals of high portability and
affinity with the original SoftwarePot architecture.

In order to achieve this goal in the system call level pro-
vided by the SoftwarePot infrastructure, it is necessary to
make sure that the socket is bound to the local address
beforeconnect() is called. This could be achieved by
forcing the pot-process to callbind() for each socket
before aconnect() call is made.

While the Reference Monitor Library makes it possi-
ble to intercept calls toconnect(), by this point of time,
the control of the process has been passed over to the ker-
nel system call handler. This means that it is not possible
to make the process invoke abind() call before control
has returned from theconnect() call. This makes im-
plementation as a single SoftwarePot module infeasible.

A different method is required for ensuring the bind-
ing of outgoing connections. As the interception point
provided by SoftwarePot is in a position too late in the
control flow, process needs to be overtaken in an earlier.

In UNIX systems, it is rarely the case that a system
call is called directly from the code of an application
program. Practically all programs access system calls
via the wrapper functions of the same name provided
in the C library. Also, it is important to note that al-
most all software for UNIX systems is made available
in dynamically linked format3). Considering this, we de-
cided to implement interception of outgoing connections
using a technique called library interposition. By utiliz-
ing the library preload function of the loader,it is possible
to preload a small wrapper library that defines a func-
tion calledconnect(). This causes the wrapper library
function to be called every time the application makes a
connect() call. The preloaded library can callbind()
to bind the socket to the local address☆, and then have
the linker execute the originalconnect() code in the C
library (which finally executes the system call with the
same name). Figure 3 shows an example of how library
interposition changes execution flow.

In order for the wrapper library to get preloaded, it is
necessary to specify its path in either theLD_PRELOAD en-
vironmental variable or the/etc/ld.so.preload file.
As environmental variables can be changed by user pro-
cesses and are difficult to enforce, the proposed system is
implemented by mapping a file containing its virtual path
to /etc/ld.so.preload.

For almost all programs, this approach can intercept
execution before entering theconnect() system call.
However in a security-conscious scenario as virtual host-
ing is, it is neccessary to consider all cases. The proposed
system is not capable of detectingconnect() calls in-
voked from statically-linked binaries, or any other code
that bypasses the standard C library function call. To
avoid security problems caused by these techniques, a vi-
olation check system has been implemented as a separate
SoftwarePot module. It takes track of allconnect(),
bind() and other socket manipulation system calls and
keeps a list of sockets bound to the local IP address. Ev-
ery timeconnect() is called, it checks if the correspond-
ing socket is on the list of bound ones and in the case it is
not, denies execution of the system call.

It is important to note that many server programs don’t
connect to external hosts or only create connections for
looking up hostnames. For these programs using this
module and library is not necessary, network safety can
be ensured by disablingconnect completely or restrict-
ing to only allow creating connections targeted to the Do-
main Name Server.

4.3.3 Virtual Hostname
In order to obtain the hostname of the machine they’re

running on, most programs utilizegethostname(). In
Linux, this is a C library function that is implemented so
that it calls theuname() system call to fetch the host-
name from the kernel. The virtual hostname feature is
implemented by a module intercepting theuname system
call.

☆ The library need not be aware of the local address. It is sufficient to

give the ”any” address as a parameter for bind(), as our SoftwarePot

module will rewrite it to the virtual host addess before it is executed.

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－53－

研究会Temp 
 

研究会Temp 
 



6

図 3 Flow of execution with and without library interposition

4.4 Features and Limitations
Two basic scenarios can be though of for the deploy-

ment of SoftwarePot-based virtual hosting:
• Local hosting

A site may want to run one or more of its services in
confined environments. In this case, it is usually suf-
ficient to install the files on the local file system, and
create a Pot file that maps the required files inside
the Pot space and executes the service. None of the
actual files need to be stored in the archive, reducing
the initialization time at Pot execution.

• Remote hosting
A service provider may provide virtual hosting ser-
vices based on the presented system. In this case, the
deployment of the service can be as simple as send-
ing a single Pot file to the service provider. For users
that cannot or do not want to create Pot files for their
services, the provider can set up a remote login (ssh)
service confined in a Pot environment, in which the
user can set up the services to be hosted.

5. Evaluation

In this section we compare our virtual hosting sys-
tem to some well-known and widely used solutions. The
evaluation was performed on two Dell OptiPlex GX260
machines (each with a 2.8GHz Pentium4 CPU, 1 Gb of
RAM and Intel PRO/1000 network device), connected
through a CentreCOM 9606T Gigabit Ethernet Switch.
Benchmarks were performed in the following environ-
ments:
• SoftwarePot on Linux 2.4.24
• User Mode Linux 2.4.19 (tt-mode) on Linux 2.4.24
• User Mode Linux 2.4.19 (skas-mode) on Linux

2.4.24
• VMware GSX server
• FreeBSD jail
Unfortunately, benchmark results for VMware GSX

server cannot be published due to licence limitations.

VMware Workstation 3.2.1 does not have this limitation
but it doesn’t support our experiment environment. How-
ever, according to Barham et al2), Linux on VMware
shows an approximately 30–80% runtime overhead com-
pared to native Linux.

In this test we set up an environment where one ma-
chine functioned as a server for different numbers (1,
2, 4, 8, 16, 24, 32) of virtual hosts running Apache
HTTPd 1.3.29. The other machine acted as client, utiliz-
ing Apache Benchmark (AB) to perform multiple simul-
taneous requests to the server. Measurements were per-
formed with requests for files of sizes of 10KB, 100KB
and 1000KB. One copy of Apache Benchmark was run
for each virtual host and all of them were set up to initi-
ate 4 connections at a time (acting as 4 clients). The total
throughput of AB clients was measured. Figure 4 shows
the results.

Our system provided substantially higher throughput
than that of User Mode Linux and often close to that of
jail. In the case of 10KB transfers it showed to be scaling
significantly better than jail.

It should be noted that when reaching 32 virtual hosts,
User Mode Linux tt-mode became highly unstable, so we
were not able to perform a valid test during several tries.
FreeBSD jail produced some failed requests, making re-
sults unreliable. By repeated experiments we could avoid
this error in all cases except for the 32 hosts, 1000KB
setting. Therefore the result result marked with a star is
known not to show the actual throughput of that scenario.

As certain degree of failures is inevitable in highly
loaded systems, performing benchmarks for higher num-
bers of virtual hosts requires reconsidering the examina-
tion method, which remains future work.

6. Conclusion and Future Work

We have presented an extension to the SoftwarePot Se-
cure Execution System that makes it capable for utiliza-
tion for virtual hosting. In the proposed system, services

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－54－



7

file number FreeBSD Linux UML UML
size of hosts jail SoftwarePot skas-mode tt-mode

01 34249.03 12908.90 5671.76 5586.51
02 29409.94 12089.30 5760.29 5668.48
04 22938.74 11082.10 5700.74 5653.48

10KB 08 17448.65 10300.64 5635.02 5503.98
16 12963.81 8463.53 5375.93 5368.25
24 7163.91 8093.87 5295.18 5153.04
32 5570.17 7191.31 4889.95 n/a
01 72594.62 63773.47 17520.37 17583.48
02 72627.87 62042.45 17962.07 17589.66
04 73393.05 58797.29 17784.42 17388.11

100KB 08 72187.86 55353.96 17226.86 17314.51
16 67604.16 48588.34 16262.19 17090.96
24 62716.31 46278.31 16336.77 16018.64
32 53143.01 45298.92 15389.73 n/a
01 73037.44 88079.51 23531.56 23115.28
02 74041.53 87239.96 22942.94 22763.40
04 73944.19 88851.31 22488.64 23594.20

1000KB 08 74976.58 89643.04 22414.98 22176.69
16 78134.91 90801.36 20956.13 20228.85
24 79700.09 94788.90 20081.95 20774.74
32 ☆120414.23 94144.51 19639.47 n/a

図 4 Application benchmark – apache throughput

are provided a virtual file system view, allowing them ac-
cess only to the resources needed. Services can be encap-
sulated in a single archive file that can be easily deployed
to different service providers. In this case. the virtual
file system view can absorb the differences between the
hosting machines. Virtual hosting of arbitrary services is
made possible by forcing all connections by the server
program to use the virtual host’s IP address.

We performed evaluation benchmarks that show that
the proposed system performs significantly better than
other user-mode methods and in many cases has a sim-
ilar performance to kernel-level implementations such as
FreeBSD jail. Experiments also showed some weak areas
of the system. Most importantly, frequent file accesses
cause high runtime overhead for the system as context
switches need to be performed for the file path rewriting.

In the future we plan to perform more benchmarks to
find out more about which parts need to be improved.
Solution should be found to improve the latency of file
accesses. Recent versions of Linux and FreeBSD pro-
vide directory mapping support at kernel level, these may
prove useful in improving the system’s performance.

We plan to extend the system to support virtual net-
working that is suitable different purposes such as testing
networked applications. It would be interesting to extend
the system to provide framework for testing and devel-
opment of virtual networking-aware networked software.
This should make creating highly connected software
such as mobile-agents or Peer-to-Peer programs easier.

参 考 文 献

1) Linux V-Server Project.http://www.linux-vserver.
org/.

2) Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, and Rolf Neugebauer.
Xen and the art of virtualization. InProceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), pp. 164–177, Bolton Land-
ing, NY, USA, October 2003.

3) Tool Interface Standards (TIS) Committee.Ex-
ecutable and Linking Format (ELF) Specification,
May 1995. Available fromhttp://x86.ddj.com/
ftp/manuals/tools/elf.pdf.

4) Jeff Dike. A user-mode port of the linux kernel. In
Proceedings of the USENIX Annual Linux Showcase
and Conference, Atlanta, GA, Oct 2000.

5) Jose Nazario. Usingxinetd. Linux Jour-
nal, Vol. 83, pp. 136, 138, 140–141, March 2001.
Available fromhttp://www.linuxjournal.com/

article.php?sid=4490.
6) VMware, Inc. VMware. http://www.vmware.
com/.

研究会Temp 
 

研究会Temp 
 

研究会Temp 
－55－

研究会Temp 
 

研究会Temp 
 




