HMEEN MBS 2 S 2005—0S—98 (3)
IPSJ SIG Technical Report 2005,72,722

Jv—FVVT774IV AT LOEEEFIALE
FEVE—FZIS—UIFRk

e EE EAK t KHEE
INTT U A8—V Y a— 3 VB
EE

$ﬁm,$ZF:yez—ﬁﬁy¥~%uyﬁ774wvx%b%%$b.?—&%
RELTVBRAMNL—VVRTLE, 29 NI — I TEEZNTIMMOZI L —TT 2
TLEDIERPY E—FI5—1) VI DOEELFERE, TARM #EETZ. TARM T
&, B=ANVTAFDANL—VYRAFLD, T7ANYATFLDF 4 27 FDOF—
SREZFIHTR LT, VE—PRAML—Y L RF LBEINEF— 2 D—BM
RIS A BEEFHIEERROGHEZRNT . Chick->T, RARILVE1—4%
U%—FZF&—V&Z%AM,E?—Uy7®kb®§mﬁﬁ%ﬁmﬁéca&§
VE—hA L=V TOEHIEFICHEBILE ChWTF—2 2RI L, LHICESHTS

TET, WmELZERT S, ARIE, Linux Dext3 77 ALY A5 LEFIHTZES
D, 7IN3) XLEHBRSB.

Asynchronous Remote Mirroring with Journaling File Systems

FUIJITA Tomonorit YATA Koujit
TNTT Cyber Solutions Laboratories

Abstract

This paper presents TARM, a block storage system, which transparently and asynchronously
replicates data across multiple storage sites. TARM is designed for journaling file systems.
It uses the knowledge of the file system such as information about its on-disk data struc-
tures to ensure that the replicated data are recoverable regardless of catastrophic site fail-
ures. TARM enables remote storage systems to write the received data in a favorable order
without requiring any procedures from the host or special features from the remote storage
systems. We implement a storage system that adopts the algorithm to the knowledge of a
popular journaling file system available for Linux, Ext3 file system as our first case study.

1 Introduction mote mirroring, it is possible to quickly resume normal
operations by using a spare host and replicated data on
Many companies have started to realize the impor- the secondary storage system on the remote site.

tance of protecting data from catastrophic site failures How closely the copies are kept synchronized is an

such as flood, fire, or earthquake. A widely deployed important design choice for remote mirroring.
solution is remote mirroring, which stores data across

i ] Synchronous remote mirroring immediately updates
multiple storage sites.

all copies. there is no divergence between two copies.

Compared with the traditional data protection, tape All writes (updates) from the host are blocked un-
backup, remote mirroring provides faster data recovery til their completion on the secondary storage system.
and more recent data in the event of a disaster. With re- Synchronous remote mirroring incurs large write la-
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tency and requires a high bandwidth network.

Asynchronous remote mirroring permits some diver-
gence between two copies. The primary storage sys-
tem sends the write completion to the host independent
of the secondary storage system. Then, the primary
storage system sends the writes to the secondary stor-
age system. This provides better write performance
and requires a less expensive network, in exchange for
the potential loss of recently written data.

With asynchronous remote mirroring, it easily leads
to inconsistent, unusable replicated-data unless the
write ordering across the entire data set is maintained.

The basic approach to keep replicated-data consis-
tent is that committing all updates on the secondary
storage system in the exact order. However, it leads
to the poor performance because the secondary storage
system can not commit several updates simultaneously.

The common approach, which commercial storage
systems use, for ensuring the consistency of replicated
data with asynchronous remote mirroring is using spe-
cialized functionality installed a host and storage sys-
tems.

There are two disadvantages of this approach.

o Companies are reluctant to introduce software
changes to operating systems or applications for
new functionalities such as asynchronous remote
mirroring.

o Storage vendors use own proprietary protocol to
control a host and storage systems. Therefore,
you cannot replace your storage system with other
vendors’ storage system easily. Additionally, this
makes it difficult to use shared storage systems on
a storage service provider (SSP).

In this paper, we describe the TARM (Transparent,
Asynchronous Remote Mirroring) storage system. A
host accesses TARM by using a block-level storage
protocol, such iSCSI [1]. TARM works as a primary
storage system and replicates data over multiple re-
mote sites asynchronously.

TARM is especially designed for journaling file sys-
tems, and it has the knowledge of the file system that
the host uses on the storage system, such as informa-
tion about its on-disk data structures. By using this
knowledge, TARM ensures the consistency of repli-
cated data without special procedures for remote mir-
roring between the host and the storage systems or
atomic update methods on the secondary storage sys-
tems. The host does not need to know anything about
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1: Typical Remote Mirroring deployment.

remote mirroring and TARM can replicates data on any
storage system. TARM permits the secondary storage
systems to write transferred data in a favorable order to
improve performance. We choose a popular journaling
file system, the Linux Ext3 file system, as our first case
study, and present how TARM uses its knowledge.

The outline of the rest of this paper is as follows.
Section 2 discusses the issues related to asynchronous
remote mirroring and data consistency. Section 3
provides the TARM architecture. Section 4 summa-
rizes related work, and Section 5 summarizes the main
points.

2 Asynchronous remote mirror-
ing
2.1 System architecture

We concentrate on the two-site configuration here to
simplify the explanation.

Figure 1 shows a remote mirroring system in a typi-
cal configuration with the iSCSI protocol.

The host and the primary storage system at the lo-
cal site serve data under normal operating conditions.
They communicate by using the iSCSI protocol. The
primary storage system and the secondary storage sys-
tem also communicate by using the iSCSI protocol.

A host views the iSCSI driver as a general SCSI
host bus adapter driver managing directly attached disk
drives. No difference can be found between an iSCSI
storage system and a local hard disk directly connected
with the host computer. Therefore, the host can use
any local file system or a database that accesses to a
local hard disk. TARM is designed for environments
in which a host compute uses a file system to access a
storage system.

A host issuing SCSI commands is called an initia-
tor in the iSCSI protocol like the SCSI protocol. A



target provides services to initiators. Therefore, in Fig-
ure 1, the host and the primary storage system have the
initiator-target relationship. In addition, the primary
storage system and the secondary storage system also
have the initiator-target relationship.

2.2 Data consistency

For file systems, data consistency commonly refers
to the consistency of metadata, which is information
about the structure of the file system. Some system
calls require several metadata changes. In such a case,
metadata must be updated in such a way that the file
system can avoid file system corruption and restore the
file system to an accurate state after a system crash.
File systems require some updates to be in a precise
order to ensure it.

Traditionally, a file system synchronously updates
metadata and scans the file system during the recov-
ery process. This incurs poor performance of metadata
operations and a long recovery time. Journaling and
Soft Updates [2] are often used by modern file systems
to solve these problems [3].

These techniques can update most metadata asyn-
chronously, however they still require precise ordering
in some parts. Therefore, replicated-data on the sec-
ondary storage system can be inconsistent unless the
write ordering across the entire data set is maintained.

Suppose that a file system on the host needs to up-
date sector 1 and sector 2 on the primary storage sys-
tem in that order. The host updates sector 1. After
the host receives the completion of updating on sec-
tor 1 from the primary storage system, it requests the
primary storage system to update sector 2.

After the above operations, the primary storage sys-
tem sends both updated data to the secondary storage
system. The write ordering of these data on the sec-
ondary storage system is undecided.

If catastrophic site failures destroy the whole data on
the primary storage system and an unexpected event
crashes the secondary storage system during the up-
dates on the secondary storage system, the replicated
data can be inconsistent. That is, if sector 1 is not up-
dated and sector 2 is updated, the replicated data is in-
consistent. The previous data stored at sector 1 is not
stored anywhere, thus the replicated data is not recov-
erable.
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[X] 2: Effects of write ordering on performance

2.3 Performance drop due to write order-
ing

The constraint on the write ordering to avoid the in-
consistency of the replicated data significantly reduces
the mirroring performance. We examined how much
the performance falls because of the constraint.

The iSCSI target host used one 2.8 GHz Xeon pro-
cessor with 2 GB main memory and ran a modified
version of the iSCSI enterprise target [4] and the Linux
kernel version 2.4.25. The Maxtor Atlas 10K 36.7 GB
10000 RPM SCSI disks were directly connected to the
host via LSI Logic 53C1030 Ultra320 SCSI chip.

The iSCSI initiator host used one 2 GHZ Xeon pro-
cessor with 1 GB main memory and ran version 4.0.1.1
of a Cisco iSCSI initiator [5] and the Linux kernel ver-
sion 2.6.4.

Both hosts used an Intel Pro/1000 MT Server
Adapter connected to a 66MHz 64-bit PCI slot. They
were connected by an Extreme Summit 7i Gigabit Eth-
ernet switch.

Figure 2 shows the results of the microbenchmarks
that write sequentially 50,000 times with the /O sizes
ranging from 2 KB bytes to 32 KB. The microbench-
marks were run with two configurations: maintained
ordering, in which the write ordering across the entire
data set is maintained by using the ORDERED attribute
of SCSI commands; no ordering constraint, in which
the target writes the received data in a favorable order.

The results indicate that the write ordering con-
straint negates the performance advantage that the
asynchronous mirroring has.
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3 TARM architecture

File systems can update most of data in a favorable
order, although they need some of data to be updated
in the exact order for the consistency. Storage sys-
tems do not know such dependency information about
the relationship among data, that is, which of the data
must be written in a precise order and the write order-
ing. So even if storage systems can replicate data asyn-
chronously, the secondary storage system must serial-
ize all writes to ensure data consistency.

TARM algorithm is implemented inside a primary
storage system. The primary storage system controls
the write ordering on the secondary storage system.
The primary storage system identifies the write order-
ing constraint of data by exploiting the knowledge of
the file system. Therefore, the secondary storage sys-
tem can update the data that do not have the write or-
dering constraint simultaneously. This boosts mirror-
ing performance.

TARM provides power-failure consistency [6]. It
keeps replicated data as recoverable guarantees that the
data can be quickly used as the file system in the event
that a disaster has completely destroyed the primary
storage system and the host.

A logical volume is used as the entities to mirror.
A logical volume may consist of several disk drives to
protect data from disk drive failures. We do not ex-
plicitly deal with disk failures inside a single storage
system.

Due to space limitation, we do not describe the re-
covery mechanisms. This paper focuses only on how
TARM uses the knowledge of a file system to asyn-
chronously replicate data on a remote site to ensure
data consistency.

3.1 Choice of file systems

The first design choice concerns what kind of file
system makes it practical to infer dependency infor-
mation from only the knowledge of the file system and
the data that the file system updates. That is, without
accessing information maintained on the host’s mem-
ory, TARM must get enough dependency information
to ensure the consistency of the replicated data. In ad-
dition, the overheads to obtain this dependency infor-
mation should be low to ensure write performance.

We chose a file system using journaling technique
for two reasons.

o File systems used in a production environment
need to provide efficient asynchronous metadata
updates and fast recovery by using journaling or
Soft Updates technique, and almost all of them
adopt journaling.

e As described in detail later, a journaling mecha-
nism enables the dependency information to be
easily inferred because of the simplicity of the
data structures. Soft Updates also provides effi-
cient asynchronous metadata updates and fast re-
covery, though it uses more complex mechanisms
and data structures for such a functionality.

In this paper, we present the detailed algorithm for
Ext3, as a case study. The Ext3 file system uses on-
disk structures similar to those of the Fast File System
(FFS) [7], and it enhances them for journaling func-
tionality. It is probably the most widely used journal-
ing file system in Linux.

The journaling technique records all metadata oper-
ations to a log before the data modified by these oper-
ations are written to disk. If the system crashes, opera-
tions recorded in the log are replayed to restore the file
system to an accurate state.

The ext3 file system does not implement the jour-
naling functionality for itself but uses the Journaling
Block Device (JBD), which provides the common func-
tionality necessary for journaling file systems in the
Linux kemel. The ext3 file system allocates some
blocks exclusively for the JBD log. We call such a
block a journal block. The ext3 file system consists of
file systems block and journal blocks. The size of a file
system block is equal to that of a journal block.

We explain here the default behavior of the ext3 file
system, which requires the JBD to record metadata
changes in its log asynchronously.

An important property of the JBD for TARM is that
it records the entire copy of the blocks that have been
modified instead of recording the individual metadata
operations. That is, the JBD has no knowledge about
how system calls modify metadata. It just records
modified blocks due to system calls. This simplifies
the JBD’s design.

The ext3 file system merges metadata changes due to
several system calls into a single transaction. That is,
when several system calls change the same metadata
within a certain period of time, the ext3 file system
overwrites them and then the JBD records the last state
of the metadata in the log. This means the ext3 file



l:l Metadata block
Revoke block
D Descriptor bloch
. Commit block

HEEE ' =EEE

Transaction ID : 5

Journal blocks

Transaction ID : 6
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system cannot isolate the changes of each system call
in a single transaction.

Figure 3 shows an example of the JBD log. Suppose
that the JBD restores the ext3 file system to an accurate
state after a system failure by using the log. A square
in the figure represents a single journal block.

Besides a metadata block, JBD use three types of
Jjournal blocks internally: revoke, descriptor, and com-
mit. Thus, journal blocks are divided into the following
four types.

metadata block a metadata block is a modified meta-
data block during the transaction. It can be re-
played during recovery, that is, written to its ac-
tual location on disk.

revoke block A revoke block is used to prevent
deleted metadata blocks from being replayed dur-
ing recovery.

descriptor block A descriptor block tells the JBD
where the following metadata blocks are written.

commit block A commit block represents the end of
a transaction.

The log in Figure 3 has one finished transaction
and one unfinished transaction. The fifth transaction,
which has the revoke block and four metadata blocks
between the descriptor and commit blocks, is finished.
Therefore, the JBD writes these metadata to disk un-
less the revoke block tells it not to do so. By contrast,
the sixth transaction, which does not have the commit
block, is unfinished. The system crashes before record-
ing all metadata modified during the sixth transaction.
Therefore, these metadata in the log are ignored.

3.2 TARM Algorithm

To simplify the explanation, we start from a situation
in which logical volumes on primary and secondary
storage systems are synchronized.

3.2.1 Initialization

When the host mounts a journaling file system stored
on a logical volume, the primary storage system needs
to identify journal blocks by using the knowledge such
as the on-disk data structures. That is, the primary stor-
age system must know their actual locations on disk.

The JBD log is stored as a file, called journal file
(it is not visible or accessible to users). Identifying
journal blocks consists of two phases.

Firstly, the primary storage system reads the su-
perblock in the fixed location on disk to know the inode
number of the journal file.

Secondly, the primary storage system reads the in-
ode table, which includes the journal file inode, and
identify journal blocks by using the knowledge of the
disk inode structure.

The JBD log is stored inside the file system itself by
default, however the JBD can be configured to store
journal blocks in an external block device. In this case,
the external block device must be one of logical vol-
umes that the primary storage system provides.

3.2.2  Accessing the primary storage

The primary storage system needs two logical vol-
umes. One is offered to the host, and another is used as
the TARM log. the TARM log stores updated data that
is sent to the secondary storage system later.

The primary storage system performs the following
operations upon receiving a write request from the ini-
tiator host.

1. The primary storage system updates the block on
the logical volume and records it, its block num-
ber, its length in the TARM log.

2. The primary storage system waits for both I/O
completions.

3. After the completions, the primary storage system
notifies the host that the write request has finished.

When the primary storage system receives a read re-
quest, it simply sends some of data on its volume to the
initiator. There is no need to access the TARM log.

3.2.3 Transferring updates to the secondary stor-
age

All writes go to the tail of the TARM log. A back-
ground process transfers the writes to the secondary
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storage system and remove them. This allows the
TARM log to wrap around.

To ensure that the replicated data are recoverable,
before a commit block in a transaction is written to the
secondary storage system, all changed between the first
descriptor block in the same transaction and itself must
be written.

Firstly, needs a way to find the descriptor and com-
mit blocks among journal blocks.

The JBD puts a magic number in the first four bytes
of the revoke, descriptor, and commit blocks. It puts
the number for identifying the types of journal blocks
in next four bytes. In addition, the JBD guarantees that
the magic number never appears in the first four bytes
of the metadata blocks stored in the journal blocks.

As explained before, the primary storage system
identifies which sectors are used as journal blocks at
startup. Thus, the primary storage system can easily
find commit journal blocks.

The primary storage system uses task attribute fea-
ture in the iSCSI protocol to update commit journal
blocks in a precise order on the secondary storage. The
iSCSI task attribute is identical to the SCSI task at-
tribute to be used to control the write ordering. Thus,
TARM does not need any specialized procedures on
the host or the secondary storage system.

Propagation of changes in the primary volume to the
secondary volume can be triggered by various policies,
such as the amount of changes in the primary volume,
the elapsed time from the last synchronization of two
copies, or the space in the TARM log.

4 Related work

Some of remote mirroring products available on
the market support asynchronous remote mirror-
ing [8][9][10].
mote mirroring system that transparently and asyn-
chronously replicates data in a consistent state and en-
ables secondary storage systems to write data in a fa-
vorable order by using the knowledge of a general jour-
naling file system.

However, we are unaware of a re-

SnapMirror [11] is an asynchronous remote mirror-
ing technology. It periodically generates snapshots of
the data on the primary storage system, and then asyn-
chronously sends them to a secondary storage system.
It exploits the characteristics of the WAFL file sys-
tem [12], which is updated atomically by using tree-
structured on-disk data structures, to ensure the con-

sistency of the replicated data. By contrast, TARM is
designed for a general journaling file systems, which
do not provide such a functionality.

Note that SnapMirror and TARM are designed for
different storage architectures. Whereas SnapMirror
is an asynchronous solution implemented by the file
system, TARM is one implemented at a storage sys-
tem. That is, while SnapMirror is a storage system for
Network Attached Storage (NAS), TARM is one for
a Storage Area Network (SAN). A host uses a remote
file system protocol such as NFS to access a storage
system for NAS. On the other hand, a host uses any
local file systems to access a storage system for a SAN
with a block level protocol.

The iSCSI protocol encapsulates the SCSI protocol
into the TCP/IP protocol, and it carries packets over
IP networks. Whereas the widely used SAN proto-
col, Fibre Channel, uses specialized networking hard-
ware, the iSCSI protocol uses commodity IP networks.
Therefore, it can be used as an inexpensive SAN proto-
col and also as a wide area storage protocol that moves
block data over IP networks.

Ji et al. provide an analysis of the various design
choices for remote mirroring [13]. They also provide
the design of an asynchronous remote mirroring pro-
tocol, Seneca, which ensures the consistency of repli-
cated data. Their protocol is general, that is, useful for
various applications such as file systems and databases.
It assumes that applications use special procedures for
remote mirroring to ensure the consistency of the repli-
cated data. Unlike TARM, it does not provide transpar-
ent replication feature.

Starfish [14] transparently replicates data over mul-
tiple storage sites. It optionally uses asynchronous
updates to increase data availability and write perfor-
mance. However, it does not address the consistency
of replicated data with asynchronous updates.

One aspect of our design that we would like to im-
prove further is data placement. Myriad[15] achieves
the same level of disaster tolerance as a typical single
mirrored solution, but uses considerably fewer phys-
ical resources by employing cross-site checksums in-
stead of direct replication.

The Semantically-Smart Disk System (SDS) [16]
uses the detailed knowledge of how the file system is
using a SDS storage system to improve performance.
It mainly addresses how to discover the file system’s
structure automatically. By contrast, we assume that
TARM knows the file system that the host uses on the
storage system.



TARM algorithm is designed for journaling file sys-
tems. It would be hard to extend and apply the al-
gorithm to other file systems. However, journaling
technology is used by most of the successful file sys-
tems in the production environment, such as the Linux
ext3 file system, the Solaris Unix File System, SGI's
XFS, IBM’s Journaling File System (JFS), Microsoft’s
NTFS, and Apple’s Mac OS Extended file system
(HFS+). We believe the TARM algorithm is generally
applicable.

S5 Conclusion

Block storage systems lack the knowledge about the
relationship among blocks. Thus, ensuring the con-
sistency of replicated data with asynchronous remote
mirroring needs a host to use specialized procedures
with a storage system or a storage system to maintain
the write ordering across the entire data set. Our pre-
liminary experiments show that mirroring performance
significantly suffers from the constraint on the write or-
dering. They indicate that getting rid of the write or-
dering constraint is essential to achieve a high level of
performance.

The TARM storage system is designed for journal-
ing file systems and transparently and asynchronously
replicates data across multiple storage sites. It does
not require any procedures or special features from the
host and the storage systems. TARM ensures that the
replicated data are recoverable after catastrophic fail-
ures and to permit the secondary storage to write re-
ceived data in a favorable order.

TARM uses cross-layer optimizations to ensure the
consistency of replicated data. It acquires enough in-
formation to achieve it by using the knowledge of the
file system. We described how TARM achieves such
features by taking a popular journaling file system,
Ext3, as examples.
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