HEEA HHAEES FIREE
IPSJ SIG Technical Report

2006—0S—103 (14)
20067871

Ta—fdiz kb a— K94 XEIRO DD
.74/ﬁ v IV FA*Z%& ,

- Iver STUBDAL 'ﬂﬁm

‘r&mﬁm#—%ﬁl&”ﬁ F223-8522 maiﬁimuz B 3-14-1

E-mail: iver@am.ics.keio.acjp .

HOEL To—dad ﬁa;&&m—}nt;#oiuyw,\: K#Jxomﬁ%ii‘ébawa)——m’ébéey
oo dTa—@4it By oy Z72MVA I LICEY Bl I - AN KR THBVEREALERTS 2.
LA IR TVEH, ERICHB ALY AT AICAV S DL, IV NA T EOFFLWERMAETH S, 23]
HR74 vH-TYV > RERAVTTO J—zAquwm%siﬁz‘lﬁmﬁr%&azﬁu’é@?éa‘-&&ﬁ%—m. J)%;,r—
ERWwAZ 2T, -’Fﬂll%‘?r%: FREAIRT S 2 eMTER,

¥ -9 -F ‘xa - s, 3 - FE#&. 74

Y H-F VY NER

A Fmgerprmt Based Method for Reducing Code Size on Architectures
Supportmg Echo Instructions.
Iver STUBDAL'and Hideharu AMANO'

tDept. of Information and Compmcr Science, Keio University 3-14-1 HlyOShl Yokohama, 223-8522 Japan
E-mail: iver@am.ics. kelo ac.jp C

i

Abstract Echo Instructions have been introduced as a technique to allow reduction of software code size for memory-
constrained embedded devices. Bitmask Echo instructions are an imprpved type of Echo Instructions that uses a bitmask to
improve compression potential compared to the original. As embedded architectures begin to adopt Echo Instructions, new
techniques are' needed to generate code that takes full advantage of this technology. This paper presents a method for
exhaustively searching a program for instructions that can be replaced with echo instructions, by using fingerprints to quickly

‘

identify potential matches. Programs transformed this way see an average reduction in instruction count by around 11%
Keyword Echo Instructions Code Density Fingerprint Compression

1. Introduction.

Electronic devices mcorporatmg embedded computers have
become a common part of daily life in the modern world.
Because of pressures to keep these computers small and
inexpensive, software developments on such platforms are
faced with a number of constraints which are no longer
major issues for software.developed for normal computers
like desktops and servers. One of these constraints is
program code size. Embedded computers often have limited
memory, and if software can be made smaller, more
functionality can be added to a device. While recent and
future higher-end devices, such as mobnle phones and digital
cameras may have relauvely large amounts of memory and
computing power, as prices for the cheapest, least powerful
embedded processors fall, gntxre]y new applications become
possible, and these systems will be subject to similar
constraints as the higher-level systems of the previous
generation. In other words, technological advances are
unlikely to make the issue of code-size in embedded

systems go away.’

Another feature of embedded systems is the limited
requirement ‘for ‘binary software compatibility between
devices. Each device usually only runs software installed by
the manufacturer at production time, and this software is
usually unchanged throughout the life of the device. This
makes it simpler to introduce specialized hardware,
including ha(dware that supports code sizé reduction. One
such approdch is echo instructions [1][2], introduced in
2002, Echo instructions provide an architecture for the
compression of programs by replacing multiple instancés of
redundant instruction sequences with references to a single
remaining occurrence. Only requiring relatively sifmple
hardware changes to be 1mplememed echo instructions
should be an attractive option for designers of new
embedded ‘processors. To fully exploit the code-size
reduction potential of echo instructions, appropriate methods
to generate code with echo instructions are necessary.

— 103 —

This paper presents such a method based on partitioning a
program being transformed with echo instructions into as
many separate sequences as possible, and using fingerprints
(3] to select matching sequences for replacement.

2. Background ‘ R L

Fraser [1] introduced the echo instruction as a way 1o
directly execute compressed bytecode programs. This
compression works by replacing repeated occurrences of a
sequence of instructions with references — Echo Instructions
- to the first instance of the sequence. Echo Instructions

consist of a pair (length, offser) where offset is the distance -

from the echo instruction to the referenced sequence and
length is the number of clements to repeat. When an echo
instruction is encotintered in the program' code, execution
jumps to the point referenced by offset, and length
instructions are executed before execution returns to the

position following the echo instruction (Figure 1). This is.

similar to how LZ77 compression works. Fraser achieved
about a 30% reduction in code size with this method:

[t 59,510 > 512
DIV $11 52 > 81
ADD $10 #1 > §10
BNE $10 -6

LD $7 ’5??3 >82
- |RBoesilszixn g3

KUL $3 $8 > $4.

ADD $4 $5 > $6

SUB 55 $2 > $8

. Bcpo 3. -4
SUB §¢ §7 > $a
RET

Figure 1: Example Echo Instruction. The next 3 instructions are
retrieved from the position 5 steps back in program code.

Lau et al [2) proposed the use of echo instructions for
embedded applications, and introduced the bitmask echo
instruction. Bitmask echo replaces the length field with a
fixed length bitmask, to allow the conditional exclusion of
some instructions in the referenced sequence. This increases
the. potential for code size reduction, since the referenced
sequence does not need to be identical to the sequence
replaced, merely similar. Figure 2 shows how a block of
code is replaced by an echo instruction referencmg another
block with similar datafow, the bitmask is used to exclude a
single unmatched instruction, Lau.et al applied echo
instructions to Alpha ISA binary code, a RISC based
architecture similar to typical embedded processors, and
made substantial use of binary rewrmng to increase the
number of matches. A version’ of the SimpleScalar([4]
simulator, modified to support echo instructions, was used to
vcnfy transformed programs and evaluate theu' performance.
Lau et al achieved a 15% code'size reduction with negligible

T

impact on performance. They attributed the lesser size
reduction compared to Fraser's work to the difficulty of
compressing register based binary code as opposed to
bytecode.

Brisk et al [5] made an eariy report on a framework to
identify targets for echo replacement on the intermediate
representation level of a compiler, before register allocation.

- They estimated potential code size reduction using this

method to be from 35-25%.

SUB $4 $7 > $8
ADD $4 $5 > $6
MUL $§ $10 > $11.
DIV $11 $2 > §3
AbDsi 27§

ADD $1 52 > §3
ADD $4 $5 > $6
sub $h° §7 ¥'sa:

ECEO 10111 trgt’

\ .
Frgurz 2: Brtmask Echo cxamp!e Source mgwn is neplaced by an
echo instruction réferencing corresp instructions in the
target region. bne unmatched uuma;non is excluded by the

" bitmap.

‘Wi et al [6] Applied echo instructions to the Intel x86 ISA,
and achieved 12-20% code size reduction. They found that a
CISC architecture with variable length instructions such as
x86 is a particularly suitable subject for echo instructions.

3. Fingerpnnt based echo match

. An mteresung property of bitmask echo mstmcnons is that

by using the bitmask to mask-out control flow instructions,
such as branches and jumps, from the target region, it is
possible to match instructions straddling several different
basic blocks. Since matching is not limited to these naturally
bounded areas of a program, the number of possible matches
increases dramatically. While existing algorithms used for
eliminating redundancy in programs can also be used with
echo instructions, better results should be possible with an
approach that gm beyond the original structure of the target
teglons

A key insight when searching for'matching regions is to
recognize that the regions need not be identical, they merely
need to have the same effect when executed. The exact order
of the instructions in the targeted region'is not critical, as
long as the system's registers and memory is left in' the same
state after execution of the replacement region, as they
would have been after cxecution of the original region.
Cleatly searching for matches by comparing instructions one
by one as they appear in-a program will fail to detect'a
substantial number of matches. Furthérmore, by applying
bitmask echo instructions to a region, the-effect of executing

— 104 —

the region will change, further increasing | the number of
possnble matches ,

To illustrate the number of potential matches that can be
referenced by an echo instruction, cons:der a block of 10
mstrucuons Since any combmanon of instructions in the
reglon can be referenced by a bitmask echo, the number of
potentially” semanucally different target regxons in the block
is equal to the number of possible combmauons of “or” and
“off bits in a 10-bit sequence. Even if we ignore all
sequences containing only one “‘on” bit, since nothing will
be gained in code size by replacing a single instruction by an
echo. and require that the first bit in every sequence be one,
smce a sequence targeung location x withy “off” bis at the
head will always semanucally equal a sequence targeting
location x+y with y “off* instructions at the tail end, there
are still 870 valid sequences of 10 bits, each correspondmg
to a potential echo target region. While there may be a
number of duplicates among this number, there is clearly a
large potential for finding matches suitable for echo
instructions. Figure 3 shows two possible echo target regions
that can be found in an example 10-instruction block

Original block: trgt 1| 2 1: echo 0110100011 ¢rgt
(MUL $9 $10 > §11 1{1 [MuL $9 §10 > §11
DIV §11 §2 > §1 t| o DIV $11 $2 > §1
ADD §10 #1 > $10 01 ADD $1 §2 > §3
BNE $10 #-6 0|0 ADD §4 $5 > $6
LD $7 #5PF3 >8$2 01 8UB §4 $7 > §8 I
ADD §1 §$2 > §3 1|0 2: echo 0011010101 trgt
MUL $3 $8 > $4 ol 1 Iwmw s s10 > 511
ADD $4 $5 > $6 1|1 |abp $10 1 > $10
SUB $4 §7 > $8 1|0 |[LD $7 #5PF3 >$2
RET 0|0 MUL $3 $8 > §4

ADD $4 $5 > §6
Figure 3: An example oj two five instruction echo instructions

targeting different parts of the same target block, using the bitmask
to select instructions.)

To take full advantage of the code-reduction opportunities
offered by echo instructions, a method that can expose
semantic similarity between regions and efficiently process a
large number of mgxons is needed, This paper presents an
method based on a two-part approach; first the instructions
in a region are sorted to identify semantic equality, and then
fingerprints [3] are calculated for each region, these allow
matching regions to be identified quickly. The method has
been implemented with the same target platform (Alpha) as
Lau's [2] work. The echo instructions used have a 16 bit
signed offset value, and a 10 bit bitmask.

3.1 Algerithm

The basic operation of the method can be described as
follows:

The program code is parsed from start to end.

» For each instruction in the program, the following
block of 10 instructions is split into all possible
sequences. '

o These sequences are sorted while maintaining
dependence between instructions.

e A fingerprint is calculated for each region, and
entered into a lookup table.

» Once the maximum amount of regions addressable
by an echo instruction has been processed, regions
are parsed again from the start. of the program,
sorting and calculating fingerprints for all
continuous sequences of up to 10 instructions.

o Fingerprints are used to look for matches among the
processed target regions, attempting to find longer
matches first :

e Matches found are replaced by echo instructions.

e Parsing of both target and source regions continue
until end of program is reached.

e Target regions too far from the current parse

position to be addressed with 16 bits are removed

from the lookup table.

3.2 Dependence-based sort.

As established, for two regions to be matchable by echo
instructions, they have to have the same effect on the system
state after execution, as but there is no requirement that any
intermediate states are identical, the exact order in which the
instructions are executed in each region need not be the
same. To uncover regions which are semantically identical,
each instruction is assigned a value and the instructions in a
region are sorted based on this value, but without violating
dependence between the instructions. As long as dependence
in a region is maintained, reordering the instructions will not
change the semantic effect of executing it, while the sorting
will result in regions that are semantically the same also
having the same instruction order. Note that no instructions
are actually reordered in the transformed program, the sorted
regions are merely logical constructs to help uncover
identical regions.

Echo target regions are calculated from a block by first
using the bitmask to mask out any control instructions with
“off” bits, and then sorting the sequences possible by
placing all combinations of “on™ and “off” bits in the
remaining positions in the bitmask. Echo source regions are
continuous instruction sequences, up to the number of bits
in the bitmask in length, that do not contain any control
instructions,

In detail, the sorting algorithm works as follows:

¢ Find the lowest value independent instruction not
yet selected, and add it to the sorted list

e Add any instructions dependent only on instructions
already in the list, until no more instructions can be
found

e Repeat from begmmng until all mstmcuons

- 105 —

selected.

Figure 4 'shows a step-by-step example of the sorting
process. .

Initial block Lowest value independent
) instruction selected
MUL $9 $10 > $11 NUL $9 $10 > $11
DIV $11°§2 > §1 DIV $11 $2 > §1
ADD $1° $2 > §3 ADD$1 $2 > §3
ADD $4° $5 > $6 : >‘ss
SUB $4 §$7 > §8 SUB $4 $7 > §8
IR
Lowest value independent Lowest vﬂuc tndependent
instruction selected instruction selected,

* dependent found

NUL $9 $10 > $11
DIV $11 §2 > §1
ADD $1 $2 > §3
ADD $4 $5 > $6
8B 54 47> 5

ADD $4

$5 > $6 ADD 84 $5 > §6
sUB $4.. 87"
Dependent selected, Dependent selected,
dependens found sort finished

MUL §9 $10 > $11
DIV $11 §2 > $1
ADD $3 §2:> §3 - -
ADD $4 $5 > §6
| |suBsa s71>s8

$9 $10 > §11

ADD $4 §5 >'$6
SUB $4 $7 > $8

ADD $4 $5 > $6
SUB $4 $7 > $8
MUL $9 §10 > $11
DIV §11 §2'> $1

'ADD $4 $5 > §6
/SUB §4 $7 > $8
MUL $9 $10 > $11
DIV §11 $2 > §1
ADD 1.7 §2- > §3.
Figure 4: Examples showing how two apparently dissimilar 5
instruction regions are found to be identical after sorting.

3.3 Fingerprint matching

As mentioned, the fingerprint is a hash value calculated
from the instructions in a sorted echo region. While like any
hash value, there is no guarantee that two regions with the
same fingerprints are identical, there is a high prqbabﬂny
that they do, and this can be verified by a more thorough
comparison. By keeping a table of the fingerprints of
potential target regians, it is possible to find matches for
source regions quickly and efficiently. Once a match has
been identified, two actions are taken; the instructions in the
source region are replaced by an echo mstrucuon referencing
the matching target region, and all target regions overlapping
the transformed source region are removed from the table of
potential targets — these regions no longer exist in their
uriginal”foqn. and are thus no longer possible echo targets.

In addition to the fingerprint table, a second table is kept to
keep track of which target regions are found at what
lccauons in the program. This allows for the easy removal of
target regions at a parllcular point in the program, such as
those overlapping a region that has been replaced by an echo
instruction, and those that are no longer addressable by a 16
bit value from the current program position. Since the
address part of a bitmask echo instruction is a signed 16 bit
value applied as an offset to the current program counter, for
programs, only instructions less than 32768 (2'%/2) positions
from the current location can be referenced. There is a
“sliding window” of target regions reachable from a given
location in the program, and as the processing of the
program being transformed progresses, regions are removed
from the top and added from the bottom of the window..

4, Evaluation

To evaluate the results of this method, a number of
programs from the Mediabench[4] benchmark suite were
compressed. Mediabench contains a variety of mostly signal-
processing programs, quite representative of typical
embedded applications. Compilation was done using
Compagq C compiler version 6.4-008 with the -O2 flag. The
results of compressing these benchmarks with the method
presented is shown in Figure 5.

a6 5118
65932 6635
86836 8705
80020 8578
- 60832 6575
74004 8703
70476 . 7883

f‘igurc 5: Compression results for individual programs.

The average compression ratio is roughly 89%, with
minimal variation between the different programs. This
shows that the method presented in this paper is able to

— 106 —

uncover a good amount of redundancy, it falls somewhat
short of the 85% compression ratio achieved by Lau. While
this is discouraging, it is worth noting that Lau's approach
performs significant program transformations such as
register renaming, and makes use of three different kinds of
bitmask instructions, while the method in this paper
performs a more straightforward match and replace
algorithm that doesn't change the program apart from the
addition of echo instructions. Further research is needed to
determine if combining the method presented in this paper
with such more complex techniques will yield significant
improvement.

5. Conclusion

While a decent amount of redundancy in the benchmarked
programs have been uncovered, an average code size
reduction Of 11% does not compare favorably with existing
work. It appears clear that simply replacing instructions in an
existing program with echo instructions is not sufficient, to
take full advantage of echo instructions it is necessary to
perform significant rewriting of the program. Further
research is needed to determine if the method presented in
this paper can achieve better results if combined with such
rewriting techniques.

Acknowledgments
Thanks to Jeremy Lau, Stefan Schoenmackers, Timothy
Sherwood and Brad Calderi for the modified SimpleScalar.

6. References

[1] C. Fraser. “An instruction for direct interpretation of
LZ77-compressed programs,” Microsoft Technical Report
MSRTR-2002 90. ftp://ftp.research.microsoft.com/pub/tr/tr-
2002-50.pdf.

{2] J. Lau, S. Schoenmackers, T. Sherwood, B. Calder,
“Reducing code size with echo instructions,” CASES,
October 2003, 84-94

[3] J. Howard Johnson. Identifying redundancy in source
code using fingerprints. CASCON *93 , 171-183, 1993.

[4] D. C. Burger and T. M. Austin. The SimpleScalar tool
set, version 3.0. Technical Report CS-TR-97-1342,
University of Wisconsin, Madison, June 1997.

[5} Brisk, P., Nahapetian, A., and Sarrafzadeh, M.
Instruction Selection for Compilers that Target Architectures
with Echo Instructions. Int. Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2004, 229-
243.

[6) Youfeng Wu , Mauricio Breternitz, Jr. , Herbert Hum ,
Ramesh Peri, Jay Pickett, Enhanced code density of
embedded CISC processors with echo technology,
Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system

- 107 —

synthesis, September 19-21, 2005, Jersey City, NJ, USA,
160-165

[7] Lee, C., Potkonjak, M., Mangicne-Smith, W. H.
MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems. Int. Symp.
Microarchitecture (MICRO-30), 1997, 330-335.

