w4 ruara—4% HER 33-1
HEMy -7 F+ BIER 5 -1
(1984. 11. 5)
CONCURRENT SILICON SYSTEMS

Prot. Iann M. Barron, Chief Strategic Officer, INMOS INTERNATIONAL PLC.

CONCURRENT SILICON SYSTEMS

The subject of my lecture is a wafer of silicon. Not just the wafer, but the
potential that it offers for building more powerful computing and analytical

devices.

A wafer of silicon four inches in diameter contains some 256 64K dynamic RAM
chips; it is a masterpiece of modern technology and a minor work of art. On

that wafer - which would cost less. than $500 to manufacture - there are some
40 million transistors, which represents two megabytes of random access memory
or 500 16 bit microprocessors. Of those 40 million transistors, some 39999800
are perfect and there are 200 imperfections or thereabout. The strategy in

manufacturing has been to cut up the wafer into small sections to avoid these

imperfections, making available just small chips that we see in current equipment.

Clearly with the development of technology and the exploitation of redundancy
we can look forward to using not merely a small area of the chip but the whole
wafer.

If we look at the amount of memory that we can get on a single chip compared
to the amount of processing, we see that to a first. order of approximation
1 MIP occupies about the same amount of silicon area as one kilobyte of memory.

Now that is a vefy interesting ratio because if we look at the existing computers

we see a very different ratio between processing and memory. It is conventionally
regarded ' that processing is expensive and memory is cheap; the result is that

we have computers with many megabytes of memory attached to single processors.

A simple examination of silicon suggests that this is no longer the right

relationship.

VLSI complexity creates a challenge for us. There are a vast number of devices
available on a wafer of silicon. We need to devise ways to structure systems

to exploit this capability. This means that we must create tools to exploit

concurrency and to manage complexity.

Looking at the capability of devices over the past 25 odd years that silicon
has been processed, we see an exponential growth in the number of devices
available in an integrated circuit. Complexity has increased by an order of

magnitude every five years and there is a remarkably good fit to an exponential

curve.

That increased capability has come about from three factors. The linear
dimensions of the artifact put onto silicon have been reducing in size by
about an order of magnitude every fifteen years. Of course, since there

are two linear dimensions in the design, that factor counted twice. The

third factor is that the area of a silicon chip has itself been increasing,
again at an order of magniture every fifteen years.

If I look at the use of components in conventional systems, and I have taken
the example of computers, we see again an exponential growth in the performance
of the systems. The trend line to the mid 1980's indicates that our super

computers will have a computing capability of the order of 100 to 1,000 million
instructions per second and that the mainframe computers in standard use

will have a computing capability of the order of 10 to 100 million instructions

per second. We also see that the humble microprocessor, a simple device
which is becoming ubiquitous, itself has the potential' computing capacity
of 1 to ‘10 million instructions per second. The performance of the humble

microprocessor will be no less than the performance of the super computers
of the mid 1960's.

Look forward towards the things that we might like to do in the future, such
as speech recognition of a substantial vocabulary, or recognition of images
in a complex pattern, or accessing very large databases of information.
The computing requirements become large. Those examples were not chosen

at random. They are the targets that have been set by you Japanese in your

Fifth Generation Programme to be achieved by 1990.

While it may not be possible to describe the algorithms that will be used
to achieve these ends, it is possible to make estimates of the computing

power that will be required. Such problems are estimated to require between

10 and 1000 Gips, here a GIP is 1000 million instructions per second.

It is reasonable to take the view that, just as it has been said in the past
that there is an infinite market for bits of information for storage, so
there will be an infinite demand for MIPS of information for processing.

But if we look at those. targets in relation to the trend line for the fastest
computers, there will be a serious mismatch if we follow the techniques that
we have been using so far. There is no possibility of providing the kind
of computing power that 1is estimated to be required. This means that if

we want to address problems of the order of magnitude cited, we must adopt

some new strategy.

Indeed, the development of silicon capability calls for a need for architectural
change. = We can' increase the complexity of a system by a factor of 10 every
five years but only increase its performance. by a factor of 10 every: fifteen
years. This immediately suggests that ‘the architecture of systems ought

to be restructured in order to exploit the complexity that is available.

Clearly we would 1like to use more components for a given system and this
means - that we must devise ways of exploiting concurrency, so our. problems
can be solved with various parts. being done simultaneously. But -when we
look ‘at computers we immediately run into a problem - that the computer
architéctures that we useltoday are inherently sequential. Indeed the whole
basis of computing science has been to. take a problem and to analyse it into
a sequence. of steps which the computer then -solves. It has been observed

by Carver Mead of Caltech that sequential systems will not Dbe adequate for

the future and he suggests there are an additional four orders of magnitude

of computational capability‘ available through concurrent - systems. There
may only be one thing wrong with that statement. He may have under estimated
the potential.

Concurrency in COmputers can be exploited in a number of different ways.

We can try to hide the use of concurrency and this is the approach that
has ‘been adopted largely up to the present. ‘The simple way of hiding

concurrency is to use pipelining in which the various élements of a programne

are processed stage by stage in order to get a faster computational rate. -

The - second method of attempting to hide concurrency is to use vectorisation.
There are problems - particularly large numeric problems-which involve numerical
operations not on single values but on vectors, and as a result these operations
can be carried out concurrently on all the elements of the vector. The
techniques that are used are to. take existing programs and to identify this

potential for concurrency and then to build a computer and write a compiler

to exploit the characteristic.

A third possibility is to use the concept of dataflow. In a conventional
computer the instructions are performed one after another in a sequence defined
by the programmer. In a dataflow machine the sequence of instructions is
determined not in a preordained fashion but by the availability of the data
relating to the instruction, so that instructions are executed in whatever
order the computer thinks best, given the availability of data.

’ Regrettably all of these techniques suffer from a basic problem that the

original programs being used were built and designed for sequential computers.

The alogrithms used also tend to be sequential in nature and not to have

as much concurrency as perhaps alternative solutions to . the. problem could

have. So that while we may get a computer to exploit the concurrency that

is available in programs as they stand, this is wunlikely to generate a

substantial improvement in capability.

The next thing that one could do is to make the concurrency available exlicitly

to the programmer, so that he controlled and decided what computations were

to be done where in the computing system. We do not at the moment have mamy
programming languages that can express these concepts effectively. At INMOS
we have been working on the development of a concurrent programming language
called occam which provides precisely this kind of explicit capability.

The work on occam has been done by David May in conjunction with Professor
Tony Hoare 'from Oxford University and is based upon earlier work by Tony

Hoare on communicating sequential processes.

Now there is a third way in which we can exploit concurrency. There are
some . problems which have the potential for considerable implicit concurrency.
The natural examples are the declarative languages which are being proposed
for fifth generation computing systems. Such languages have neither the
concept of sequence nor concurrency in them, and in creating an evaluation
of a problem in such a language the compiler .can create a concurrent solution
equally as well as a sequential solution. Indeed since the solution is

basically to create a search through a tree in the solution space, that search

can well be carried out concurrently.

One of the key questions one must ask is at what level should concurrency
be put into computer systems. I have already mentioned the idea of data
flow. At this level of concurrency an attempt is made to exploit some operations

in a computer ‘in parallel - the basic additions and. subtractions and
multiplications. The difficulty with doing this is that there is a very
substantial overhead associated with implementing this concurrency and it

does appear that the overhead is high in relationship to the improved

performance that is obtained.

Another alternative is to attempt to create concurrency at the program level

by getting large scale programs to interact. Concurrent systems that are

built at the moment using languages 1like Ada are operating at this level.

However, INMOS have come to the conclusion that if one wishes to exploit
silicon effectively, there is an intermediate level which is characterised
in computer programs by being at the procedural level, where the procedure
is probably an object which 'has between 10 and 100 conventional computer

instructions.

We need to build a capability to exploit the idea of concurrent computing
at this level. In the past circuits have been designed at one of two levels

of abstraction. At the lowest level they have been built from transistors
using analog signalling techniques to communicate between the devices, using
a set of design rules based upon conventional electronics. If we move up

a level in complexity to build systems with say between 10 and 100 devices
as a basic building block, then we can use the logic gate. A logic gate,
of course, is a specialised circuit which admits only a binary signal as
an input, rather than a general analog signal, and generates a binary signal

as its output.

Now the significant thing- about the logic gate is that there is a calculus

available, Boolean algebra, for describing the behaviour of connections of

such gates. At the moment all systems are designed basically using that
concept. That was fine when one had a relatively small number of components

in an electronic system. However you will remember that our wafer of silicon

offers the potential of 40 million devices and that is far too many to manage

in terms of this kind of design process. So we would like a rather larger

building block from which to create our systems.

The INMOS proposal .is that building block :should.be a simple computer, which
we call a transputer, which has formalised . communication so that the

communications between transputers. can be regarded as communication of the

information. Then one needs a set of design rules for interconnecting such

. 1 .
systems, and these can be created in terms of our occam calculus, which can

also be regarded as a programming language.

A transputer is a simple formalised computer. It contains processing memory
and " formalised communication. It is designed to be a programmable component
and it will execute a concurrent programming language. Communications between
one transputer and another will use the communications model in the language

and the transputer will behave like a process as defined within the language.

The basic concept is the idea of a process. A process can be regarded as
a black box with input signals and output signals. The behaviour of a process
is only visable. through the signals it receives and transmits. It may have
an internal structure which can consist of more processes with the same

properties.

If we consider. at the programming language that we require, we can extend
the 1ideas in conventional computing languages or .introduce a number . of
constructors. The first of these constructors, for sequence, indicates that

we will have our processes carried out one after another - which of course

is just the way that a conventional computer operates. . The parallel constructor
on the other hand says that' a set of processes will be carried out together
and the constructor will not be completed until all of. the. processes have been

completed.’

Within the language we retain the concept of expression evaluation as a primitive
process where we evaluate an expression and set the result of ‘that to a variable
equal “to the ‘result of the evaluation. ‘We have added further ‘concepts. The
first concept is ‘the idea of output “to a communication. channel ahd the ‘second

matching concept is one of input from a communication channel. ‘' Communication

is synchronized.

Imagine twoO ©pocesses that are executing and ‘are going to- communicate on ‘a

channel. Communication will only occur when the first process 'is ready to
output and the second process is ready to input. 0f course, one of the two
processes will become ready first and must wait until the second process 'is

ready before the communication occurs.

The final basic concept we need to add is the concept of an alternative construct
where we allow input not from a single channel but from a set of channels,
and ‘the input that is selected is the first one that is available. .What we have
done is to add to conventional computing languages those primitives that actually

exist ‘'in a. computer, 1like input and output and interrupt,. so that .a language

of this sort actually matches much more exactly the way that real computers work.

The system model we are adopting is to say that concurrency and communications
are represented explicitly in the language. A program is represented in terms

of concurrent processes which communicate using point to point communication

channels. Clearly one obvious implementation of a program in occam is to
take a network of computers;, or transputers, each one representing a parallel
process with the connections between them mirroring the communication channels
in the 1ang\iage‘. We can also execute the same program on a single transputer
by time sharing the concurrent processes. And, of course, since we can move
between these two extremes we can find any point between the limit. We can

select -a subset of. processed and put ‘them onto one transputer and another
subset of processes and put them onto a second transputer so that' we can actually
choose - after a program is written - to map “the problem ‘onto a computihg

network with a varying amount of concurrency.

There -is an - interesting analogy: with an approach that @ already exists in
computing,; where a problem is mapped onto a real memory system of a:particular
size - - thée concept of virtual memory. It has proved very useful. - Now we

have the opportunity of virtual processing.

INMOS has created a calculus for designing systems out of processes, where

one can implement a process either as program or as a logic configuration.

A transputer, in .this context, is a special process which can emulate any

other process when given the description of that process as an occam program.

So we have created yet another degree of flexibility. An occam program can
be implemented either in hardware or in software, or we can take some of the
processes ‘and put them into hardware and leave others in software. One can

choose any kind of performance tradeoff that is required.
(The lecture will contain some examples in more detail at this point)

So where does this get us to? If we go back to our wafer of silicon, we can
get onto that something like 256 transputers, giving us a megabyte of memory
and 2.5 giga instructions per second. The capability of a concurrent computing

system of this sort can achieve the targets that are required for Fifth

Generation Computing applications, using a collection of transputers where
the number of elements is perhaps 1,000 to 10,000. That might seem a lot,
but if you think how many memory chips there are in a conventional computer
you suddenly realise that putting 10,000 transputers together creates a system

which is no larger than a conventional computer. So I think we have an exciting

time ahead of us.

We can build computers which will provide us with a power a step function
above the computing power we have had available. These computers will work

effectively not only with numerical calculations but with declarative languages,

so they can be wused directly for Fifth Generation Applications. But to do
it we have to introduce a new type of computing component, the transputer,

which can be interconnected to build these powerful systems. (end)

