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1. INTRODUCTION

Real-time programs are characterized
by the necessity to interact with events
occurring in an environment external to
the computer in accordance with specific
timing constraints. Real-time programs
frequently involve some type of parallel
execution of processes, being it true
parallelism as in the case of
multiprocessor systems, or realized by a
time-shared processor in the case of
single processor systems. This internal
parallelism is usually allied with the
necessity of responding to a variety of
nondeterministic requests from the
environment. Therefore in modelling real-
time processing systems, the ability to
characterize the temporal behavior of the
events taking place outside the computer,
and the ability to describe the
mechanisms for scheduling and
synchronization of processes as well the
timing properties of the program are of
fundamental importance.

For nonreal-time seqguential or
parallel programming, abstract models
have been proposed for the derivation of
general properties of programs [1,2,3].
Also flowchart programs and fragments of
sequential and parallel programming
languages have been succesfully used for
the development of formal verification
techniques [4,5,6]. However, these models
are not suitable for real-time
programming for two main reasons: first,
execution times in the program are nobt
considered; next, external events with
its corresponding time constraints are
not represented. Although some techniques
have been presented to express timing
requirements in real-time systems
[7,8,9,101, a model for real-time
computation representing the program and
its external environment in an integrated
form is still being pursued. Such model
should be powerful enough to represent
important aspects of actual systems and
at the same time simple enough to be
manageable,

In this paper we propose a new model
for real-time programs. In the model a
set of concurrent processes executed by a
time~shared single processor interacts
with a set of input tapes and a set of
output tapes representing their
environment. Each process in the program
is associated to one input tape and one
output tape. The input tapes represent
temporal sequences of stimuli to the
program, and the output tapes represent
the temporal sequences of responses from
the program to the environment., The flow
of time 1is made explicit by the
introduction of a nonnegative integer
variable to represent the computation
state of the program as a function of
time. Processes access their tapes
through reading heads and writing heads
which move unidirectionally scanning
sequentially the cells of the tapes
according to the flow of timé., Stimuli
for a process are modeled as a sequence
of symbols representing data,
interspersed with subsequences of a
special symbol called blank which act as
time intervals separating successive
stimuli. Each output tape records the
responses generated by its corresponding
process as a sequence constituted of
symbols written by the process
interspersed with subsequences of blanks
corresponding to time intervals during
which the process does not execute output
statements.

In the proposed model the correct
behavior of a real-time program is stated
in terms of generation of correct
temporal sequences of responses for given
sequences of stimuli; both terminating
and cyclic computations are unified in a
single concept.

The rest of the paper is composed as
follows: In Section 2 the syntax of the
model, hereafter referred to as RTPP
(Real-Time Parallel Program), 1is
introduced. In Section 3 we define the
semantics of RTPPs using the concepts of
computation state and computation
sequence. We also introduce important
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properties for RTPPs such as termination,
data overrun, deadlock and correctness.
In Section 4 we discuss in detail, as a
case study, a real-time version of the
Producer-Consumer problem [11]. Section 5
ends with a summary and some remarks.

2. RTPPs SYNTAX

We define a Real-Time Parallel
Program (RTPP) as a pair (P,F), where
P =(P1,”¢,Pn) is an n-tuple of
processes and F = {f1,”.,fm} is a set
of m symbols called flags. Each process
in P is a finite sequence of instructions
I;. Each instruction has the form
i.<statement>, where i is the position of
the instruction in the sequence and
<statement> is one of the following.

assignment:
vy <-- E(yqreeeryy)

test:

if plyqse.eryy) then a
delay:

suspend(£(yqse..,vK))
synchronization:

signal(qg)

wait(g)
input/output:

input(ys)

output(}j)
termination:

halt

In the statements above, yq,...,vy
are the program variables of the RTPP;
the domain of the variables is Z, where %

is the set of integer numbers;
f(y1,.“,yk) is a total function from 2
to %; ﬁ(y1,.",yk) is a total predicate
from %" to {false,true}; g € F; and y. €

{y1,“., yk}. In a test statement “if
P(¥qreee,yy) then a", a is called "jump
address" of the statement. Every process
of an RTPP must satisfy the following
conditions.

(i) The jump address of a test statement
must exist.

(ii) The last instruction of a process
must consist of either a termination or a
test statement.

[Example 1]: An example of RTPP is shown
in Figure 1. The RTPP consists of
processes "Producer"” and "Consumer", and
flag "f". Producer reads symbols from its
input tape (see 3.1(4) for input tapes)
and inserts it in a circular gqueue.
Consumer transfers symbols from the queue
to its output tape (see 3.1(4)). Producer
and Consumer are synchronized by flag f£f.
The program variables are n, x, y, hd,
tl, and the array b. B and C are positive
integer constants representing the
capacity of the gqueue and a
characteristic delay in Consumer
respectively. The symbol 'e' is used as a
kind of end marker.

" "Although for readers familiar with
usual concurrent program models
ProducerConsumer may seem to work
correctly, it does so only under some
conditions. The program is different from
the conventional one at the point that
the input may be continuously fed to
Producer. In Section 4 we will return to
this example.

ProducerConsumer = ((Producer,Consumer),{f})

Producer:
1. signal(f)
2. input(x)
3. if n=B then 3
4. wait(f)
5. bl[hd] <-- x
6. hd <-- (hd#1) mod B
7. n <-- n+1
8. signal(f)
9. 1if x#'e' then 2

10, halt

Consumer:
1. if n=0 then 1
2.  wait(f)
3. y <-- b[tl]
4., tl <-- (tl+1) mod B
5. n <-- n-1
6. signal(f)
7. suspend(C)
. 8. output(y)
9. if yt'e' then 1

10. halt

Fig. 1. ProducerConsumer: an RTPP for a real-time version of

the producer-consumer problem.
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3. EXECUTION OF RTPPs

In this Section the semantics of
RTPPs will be presented. First we give an
intuitive introduction and afterward we
define the semantics formally using an
interpretive model.

3.1. RTPP Processes and their Environment

(1) Time and Processes' States

RTPPs are executed in connection to
the flow of time represented by a running
time variable t. There is one location
counter associated to each process of an
RTPP. Execution begins at time instant
t=0 with each location counter pointing
at the first statement of 1its
corresponding process. During each time
interval (t,t+1), where t 1is a
nonnegative integer value of the time
variable (hereafter called time slices),
the RTPP machine selects one process for
execution and executes the statement
pointed at by its corresponding location
counter. At the time of selection each
process can be in one of the following
"execution states":

"r": ready;
"s": suspended for a time interval;

"£,": waiting for flag £;, where
i=1,c00,Mm;

"3d": waiting for data;
"h": terminated.

The RTPP machine selects for execution
the process in "r" state which does not
have executed statements for the longest
time, i. e. the RTPP machine selects
processes for execution according the
round robin scheduling mechanism; 1if
there is more than one process in the
same condition, the choice occurs at
random; if there is no process in "r"
state, the RTPP machine only executes an
imaginary NOP (no-operation) instruction
in an imaginary process. The diagram in
Fig. 2 shows the possible transitions of
execution states for an RTPP process.

(2) Assignment and Test Statements

Execution of an assignment statement
vy <-- f(y1,".,yk)" has the effect of
changing the value of the variable y; to
the new computed value f(y1,.",yk) and
incrementing the location counter of the
process which executed it.

A test statement "if plyqreees¥y)
then a", if the predicate p is false at
the time of execution, has the effect of
incrementing the location counter of the
process; otherwise the value of the
location counter becomes a.

(3) State Control Statements
When a process executes a delay
statement "suspend(f(yq,...,yx))" in the
time slice (t,t+1) with £(yq,...,vy)>0
the effect of the statement is to

input statement

data available
wait(f;) statement
signal(f.) statement
termination statement
delay statement

end of time

1z
2:
3:
4
5:
63
7

Fig. 2. State transition diagram for
an RTPP process.

increment the location counter and to put
the process in "s" state until the time
instant t+1+£(yq,e.e,¥g)i at t+l+
£(Yqsse+sYy) the RTPP machine puts the
process in "r" state. In the case
E(YqseeerVYiILO the statement just
increments the location counter of the
process.

The effect of synchronization
statements in connection with its
arguments (flags) 1is analogous to
operations P and V on binary semaphores.
During execution of an RTPP each of its
flags is either in "on" state or "of£"
state. When a "wait(g)" statement is
executed in a time slice in which g is in
"on" state the location counter of the
process is incremented and g is put in
"off" state; otherwise the location
counter is incremented and the process is
put in "g" state until the execution of a
“signal(g)" statement by other process.
When a "signal(g)" statement is executed
the location counter of the process which
executed it is incremented and if there
are processes in "g" state the one that
has been in this state for the longest
time is put in "r" state; if there is no
process in such situation the flag g is
put in "on" state.

Execution of a termination statement
puts the process which executed it in h"
state.

(4) Input/Output Statements

The input/output structure of RTPP
machines is shown in Fig. 3. There is one
"input tape", one "input register" and
one "output tape" corresponding to each
process of an RTPP. Input and output
statements in a process are related to
its corresponding input tape and output
tape respectively.

The tapes are divided into cells and
are infinite to the right. Each cell of
an input tape contains one symbol of the
set TS = Z U {¥}, where ¥ & Z is a
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Fig. 3. Input/output structure of RTPPs.

special symbol called "blank". The
contents of the input tapes don't change
during the execution of an RTPP. When the
execution of an RTPP starts, all cells of
its output tapes are empty. To scan the
cells of each input tape there is one
"reading head", and to write symbols on
the output tapes there is one "writing
head" for each tape.

At t=0, when the RTPP starts to
execute, each head is over the leftmost
cell of its corresponding tape. At all
subsequent values of the time variable t
all heads move one cell right, Hence in
the time slice (t,t+1) each head scans
the (t+1)-th cell of its tape. At the
beginning of a time slice the cells that
are under the reading heads are analysed
and all symbols different from }f are
transferred to the corresponding input
registers, At t=0 all input registers
contain the blank symbol.

Execution of input statements
proceeds in the following way. Let ‘c' be
the contents of the input register of a
process which is going to execute the
statement "input(x)"., If c#¥ ,i.e., c is
nonblank, the effect of the statement is
the assignment of the value ¢ to the
variable x, the assignment of ¥ to the
input register and the incrementing of
the location counter of the process., If
c=p the process is put in "d" state until
the beginning of a time slice in which
the reading head corresponding to the
input register scans a valid symbol and
transfers it to the input register; at
this time the RTPP machine puts the
process in "r" state, and the next time
it is selected for execution the
statement is re-executed as in the former
case. Note that in the later case, if
before the re-execution of the statement
another nonblank symbol is scanned by the
reading head, the symbol in the input
register is written over by the new one;
this phenomenon is called "data overrun".

The behavior of RTPPs concerning
output statements and output tapes is as

follows. In time slices in which no
output statement is executed the RTPP
machine writes blank symbols on the cells
of the output tapes that are under the
writing heads. In case a statement
"output(x)" is executed, the value of the
variable x is written on the cell of the
output tape of the corresponding process
which is under the writing head, the
location counter of the process is
incremented and blanks are written on the
cells of the other processes.

Input tapes and output tapes
constitutes the external environment of
an RTPP. The input tapes act as temporal
sequences of stimuli for the RTPP and the
output tapes record the corresponding
temporal sequences of responses to the
environment generated by the RTPP. The
blank symbols represent time intervals
between successive stimuli or responses,

3.2 Interpretive Model for RTPPs

In this Section, we formally define
the effect of an RTPP by giving an
abstract interpreter. The interpreter
executes .an RTPP by changing the current
computation state of the RTPP into the
next computation state. We start with the
definition of Computation state.

Computation state of an RTPP

R = ((PT,...,Pn),{f1, eeayf£ 1) is an 8-
tuple (LC,TC,PS,FG,IR,0S,Y,t), where
(i) LC = (lc1nawlcn) is the vector

of location counters corresponding to the
n processes;

(ii) TC = (tc1,,”,tcn) is the vector
of time counters corresponding to the n
processes. The domain of values for
tc1,...,tcrl is Z;

(iii) PS = (ps1,.",psn) is the vector
of execution states of the n processes.,
The domain of values for PS{reees,PSy is
{r,s,d,h,f ressrfp}, where "r" stands for
ready, "s" for ssuspended for a time
interval, "d" for waiting for data, "h"
for halt, and f; for waiting for flag fi;
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(iv) FGCF is the set of on flags;

(v) IR = (ir1“.”irn) is the vector
of input registers corresponding to the n
processes. The domain of values for
irqeee,iry is 2 U {B};

(vi) 0S = (081,...,08y) 1is the vector
of output sequences corresponding to the
n processes, where 0S1,...,0S are
strings of symbols of the set 2 U {B}
such-that |osq| = ... = |osp| = t (see
viki); ;
(vii) Y = (Yqreeeryy) 1is the vector of
values of the varig%les of the RTPP. The
domain of values for Y is Z7;

(viii) t is a nonnegative integer called
time instant.

The computation state cgy=((1,
eees 1) (0,000,0), (T ,0ce,1), s yeses Ay
(0,0..,0),0), where represents the
empty string, is called initial
computation state of the RTPP.

Vector of input tapes for an RTPP R
= ((PqreeesPp)y {f1sc00,fp}) is an n-
tuple (it1“.”itn) of infinite sequences
of symbols of the set Z U {¥}. Let IT=
(itq, ...,ity,) be a vector of input tapes
for an RTPP R=((P1,.n,Pn),{f1, '"'fm))’
Computation sequence for R with IT is an
infinite sequence CpsCqrees of
computation states of R, where cy is the
initial computation state of R and for
any j»0 cy,.q is obtained from c; and IT
by applyfng them to procedurg "next"
given below.

The procedure next(c,IT) 1is
presented in a notation similar to the
programming language Pascal [12]. The
symbols "(*" and "*)" are used to enclose
comments. The curly brackets "{" and "}"
are used to indicate wvariables of the
type set. An assignment of the form "x :=
select(S)" means the assignment at
random of one of the elements of the set
S as a value for the variable x (this
type of statement introduces
nondeterminism in the computation state
transitions, therefore different
computation sequences may exist for an
RTPP with the same vector of input
tapes).

procedure next{var c: computation state;
IT: vector of input tapes);

procedure exec(x:integer;
var c:computation state;
IT: vector of input tapes);
(*Py is the process to be
executed, where PQ is the
imaginary process¥)

begin

(*if x=0 just append one blank at
the right of each output sequence
and exit¥*)
if %x=0 then
for j:=1 to n do osy := 0S4 . B!
else
begin :
(*if the statement to be
executed is not an output

—157—

statement then append one blank
at the right of each output

sequence®)
if statement(lcy)#
‘output(y;)' then
for j:=1 to n do
oSy i= 0S4 . B
case statement(lcx) of

vy <-- f(y1,un,yk)H

begin
vi = E(Yqreecryy)s
léx := lcx1+ 13 ko
tey =1

end

'if plyqre-es¥y) then a':

begin
if p(y1,...,yk)=true
then
lcy = a
else lc, := lc, + 13
tey, =1
end

'suspend(f(yq,...,¥K)) "¢
begin
if £(yq,eess¥g}>0 then
begin -
PSy = S;
togt=E(yqreeesyy)+t
end;
le, = lc, + 1
end * %

'signal(g)':
begin

(*find processes that
waiting the

have been
longest time¥*)
PF := {j|P;, € P and
psy= %nd
(# u?Pu € P and
Ps,=9 and
tc,.<tcy )}
if PP thén
begin
3 := select(PF);
(*put P. in r state¥)
psy =T
end
else FG := FG U {g};

(*put g in on state*)
Loz e
x T
end
'wait(g)':
begin

if g € FG then
FG:=FG-{g} [(*g off¥)

else ps,, = g;

ch = fcx+1;

tey =1

end

'input(y;)':
begin
if iry=
psy ¢
else
begin

hen

o
=4



1.,

"output(y;)':
begin
0S8, = OS, - V:;
fo? Je=1 gg n éo
if j#x then
os;:=o0s:.'B';
loy 2 1c2% 1;
tCX := 1
end

'halt': psy := h
end (*end of case¥)
end
end (*end of exec*)

begin (*begin of next*)

(*update input registers¥*)
for j:=1 to n do
begin
irj c= it.[t];
(*if P. is waiting for data
activa%e it*)
if psj=d then psy = T
end;

(*find processes that have been

waiting the longest time¥)

PE := {j|P; € P and ps,=r and
(FulP, d P and ps,=t and
tcu<tc~)};

if PE#§ then x := select(PE)

else x := 0;

(*execute statement*)
exec(x,cs,IT);

(*decrement time counters of
processes which are in r, s, 4, f1,
vony fm state*)
for j:=1 to n do

if ps, € {r,s,d,f1,“.,fm} then

tcj = tcj -1

(*reactivate suspended processes
where time counters have reached
zero*)
for j:=1 to n do

if PS4 =S and tcj=0 then psy 3= rj

(*increment time instant¥*)
t s=t + 1;

end (*end of next*)

3.3 SOME PROPERTIES OF RTPPs

Here we summarize some conseguences
of the mechanisms for process scheduling
and handling of flags adopted in
procedure "next". Also the concepts of
“termination", "data overrun",
"deadlock™, and "correctness" for RTPPs
are introduced.

(1) Process Schedulling and Handling of
Flags

The algorithm used by procedure
"next" to select a processes for
execution in a given time slice gives
highest priority to processes which have
been waiting for the longest time. The
following property is an immediate
consequence of this observation.
[Property 11: For any given process in
"r'" state, the maximum number of time
units between two successive selections
for execution is the number of the
remaining processes which are not in "h"
state, if the process remains in "r".

Flags are handled according to the
same priority scheme adopted for process
scheduling, i.e., when two or more
process are waiting for the same flag g
and other process executes a "signal(g)"
statement, the process that has been
waiting for the longest time is put in
"r" state; therefore we have the
following property:
[Property 2]: For any given process
waiting for a flag g, the maximum number
of times a "signal(g)" statement has to
be executed to put the process in "r"
state is equal to the number of the
remaining processes which are not in "h"
state.

(2) Termination, Deadlock, Data Overrun

A computation state in a computation
seguence of an RTPP is a final
computation state if and only if its
vector of execution states is equal to
(h,...,h). An RTPP R terminates for a
vector of input tapes IT if and only if
in any computation sequence for R with IT
there exists a final computation state.

A computation state in a computation
sequence of an RTPP is said to be a
deadlocked computation state if and only
if its vector of execution states is an
element of {h,fq,...,f }" - {(h,...,h)}.
Note that, by the definition of "next",
if the current computation state is final
or deadlocked the following computation
state remains in the same situation,

Let CS be a computation sequence for
an RTPP R with vector of input tapes IT.
We say that data overrun occurs in CS if
and only if there is a computation state
csy in CS such that the contents of the
in%ut register of some process is not a
blank and the symbeol in the (j+1)-th cell
of the input tape corresponding to the
process is not a blank. Occurrence of
data overrun means that a symbol in an
input register is written over by another
symbol before being removed by the
corresponding process., Data overrun is a
typical phenomenon which may occur in an
incorrect real-time program.

(3) Correctness
Let IT = (it1,,“,itn) be a vector
of input tapes for an RTPP R, and let OT=
(otq,e..,0t,) be a vector of infinite
sequences of symbols of 2 U {B}. OT is a
vector of output tapes generated by R
with IT if and only if there exists a
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computation sequence for R with IT such
that for any computation state c¢; the
components of the vector of output
sequences are prefixes of the
corresponding components of OT.

Let A and B be total predicates
about vectors of infinite sequences of 2
U {P} compatible with an RTPP R. We say
that R is correct with respect to A and B
if and only if for any IT such that A(IT)
is true then, for any OT generated by R
with IT, B(OT) is true. The predicates A
and B are called input predicate and
output predicate of the RTPP
respectively.

4, CASE STUDY: THE PRODUCER-CONSUMER RTPP

Now we return to the RTPP
ProducerConsumer of Example 1. In this
Section, we mainly discuss about data
overrun and conditions in which
ProducerConsumer works correctly.

4.1. The "ProducerConsumer” RTPP

Our program {(Fig. 1) works with
processes Producer and Consumer being
executed in parallel. Producer reads
symbols from its input tape and inserts
it into a queue. Consumer repeatedly
takes a symbol from the queue, suspends
itself for C time units and transfers the
symbol to its output tape. Accesses to
the qgueue occur in a mutual exclusion
fashion by the use of the flag f. Both
processes halt after the symbol 'e' is
processed.

The queue of size B is implemented
using the array Db[O0]l,..., b[B-11;
vVariables hd and tl are used as indexes
of the head (insertion extremity) and
tail (removal extremity) of the gueue
respectively; n is used as a counter for
the number of symbols in the gueue; and B
and C are positive integer constants.
Note that at t = 0, by the definition of
initial computation state, all the
variables have value zero, all processes
are in "r" state and all flags are in
"off" state.

The input tapes for Producer are
supposed to be constituted of the
nonblank symbols 's;', ..., 'sp', and 'e'
in this order and interspersed with
strings of blanks (data separators);
Consumer is expected to generate output
tapes similar to the input tapes of
Producer. The output tape of Producer and
the input tape of Consumer are not
referred to in the program and will be
ignored in what follows.

4.2, Conditions to Avoid Data Overrun

One necessary condition for the
correct behavior of ProducerConsumer is
the execution of the main loop of
Producer (instructions 2-9) to occur
within a number of time slices small
enough to assure that every symbol in the
sequence Sqje.esSp is read by Producer

(instruction 2) before being overwritten
in the input register by its nonblank
successor in the irput tape.

Here we determine the relations that
must exist between the number of nonblank
symbols in the input tapes of Producer,
the data separation, and the constants of
the program, to assure the nonoccurrence
of data overrun in the input register of
Producer.

We assume input tapes of the form

q g g
it = B 'sqB Zspeeesp¥ FleBB..n.,

where:
Sqr eesr Sp and e are nonblank;

e & {sqsecerspyls

Aqr eesr A4 2 D

(1)

and perform a case analysis according to
the value of m, the number of nonblank
symbols in the input tape.

(1) m arbitrarily large.

[Notation]: We indicate that the j-th
instruction of process Pj is executed in
the time slice (t,t+1) by "select(t)=
(Pi,j)"; "select(t)=(0,0)" means that
there is no process in "r'" state during
(t,t+1).

Let (to,t0+1) be the time slice at
the beginning of which a symbol s, is
transferred from the input tape to the
input register of Producer, t, >ty be the
minimum value of t such that select(t,)=
(Producer,2), and (t;,t;+1) be the time
slice at the beginning of which the next
nonblank symbol, sj,.q, is transferred to
the input register. Clearly, in order to
prevent s, from being overwritten by 5441
it is necessary and sufficient that

ty > Epe
From tgy to tj the contents of irp
(Producer's input register), lcP and lc
(location counters of Producer an
Consumer respectively), and the contents
of the cell scanned by the reading head
of Producer, have the temporal behavior
shown in Fig.4.

From the format of the input tape we have

(2)

nooty -ty - 1. (3)

Therefore the minimum value of n for
ghich no symbol is overwritten is given
v

n,i. = (€. -

min r totmax = (Ey) - to.

r'max
(4)

To determine (t,)p., we have to consider
all possible values of the computation
state at t, and, for each of them, all
possible subsequences of computation

states from ty to t,.. To avoid the
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Fig. 4. Temporal behavior of ProducerConsumer from t,; until t;.
investigation of all possible cases, ty g ty + 25
instead of the exact value of( tr)max' we
estimate an upper bound for it by . . . . .
supposing that at t=ty we have:
select(to) = (Producer,3); leq = 6; and n tg < ty + 23
= B, 1. e, the gqueue is full.
Let t', be the value of t, under the tg { tg + 3;
hypothesis stated above. Affhough we
cannot assure that there exists a t10 € tg + 25
computation sequence containing a
computation state satisfying such . . B . B
hypothesis it is clear that for any
possible computation sequence we have the B3+ 25
(t ) pax € (8 P maxe (5) and consequently
To estimate (t' ),,, We use the £y & tg + 31 + C, (6)
graphs in Fig.5, where the nodes )
represent the values of the location Considering the inequalities (4), (5) and
counters and the time instants on the (6) we get
edges are the time instants at which the
statements corresponding to the source Npin < 31T + C (7)
nodes are selected for execution. By
Property 1 and the treatment given to Therefore the condition n » 31 + C is

delay statements in the procedure "next"
we get the following relations

t1 < to + 3 +C + 1;

tos tg+2, ..., tg-1

sufficient to assure that every sz, 1 ¢ J
{ m, is read by Producer. The symbol ‘e'
is clearly read because it is the last
symbol transferred to the input register
of Producer. Note that this result holds
for any value of B, the capacity of the
queue.

Consumer

Fig. 5. Graphs for estimation

tg < 7N
o s o —— = 6 fr—— = 7 )
N_/ N7/

of (t'.)

rimax (case (1)).
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(2) m + 1 g B.

The input tape of Producer has m + 1
nonblank symbols, and the capacity of the
gueue is enough to accomodate all of
them. Therefore the test statement in
line 3 of Producer never succeeds.

Similarly to what was done in case
(1), we estimate an upper bound for
(ty)paxe Here the worst case for the
computation state at t, is: select(ty)=
(Consumer,1); lcp = 3; and n 4 0. he
graphs for estimation of (t', ),y are
shown in Fig.6. The following
inequalities hold

ty $ tg + 11+ 23
ty ¢ tq + 25
t3 ¢ ty + 25

t'y & t3 + 25

and consequently
t'y L g + 19 (8)

Finally, considering (4), (5) and (8) we
get

npin € 19 (9)

Therefore if the capacity of the queue is
greater or equal to the number of
nonblank symbols in the input tape of
Producer, the condition n 3 19 is
sufficient to assure that all of them are
read.

(3) m + 1 ¢ M, where M > B is an integer
constant. .

Here we estimate the minimum data
separation n sufficient to prevent symbol
overwriting in . the input register of
Producer as a function of the maximum
number of nonblank symbols (M + 1).

The rate of transfer of symbols to

the variable x of Producer given by

1
vp = ———— (symbols/time unit).
n + 1
(10)

Supposing the gueue never becomes empty
while Producer is active, the number of
time slices reguired by the main loop of
Consumer to remove one symbol from the
queue is upper bounded by the constant 22
+ C (this value can be obtained like in
1). Therefore symbols are removed from
the gueue at a rate not less than

1
vg = === (symbols/time unit).
22 + C
(11)

Consequently, after the first symbol is
inserted in the queue, the number of
symbols in the queue increase at a rate
not greater than

vor = Vp - Ve ) (12)

By (10),(11), and (12), considering also
the first symbol inserted in the queue,
we get the following sufficient condition
for the gueue never becoming full

M
I ¢ B (13)
vVp
or :
(C + 22) ¥ (M - B + 1)
n > - 1.
M

(14)

Therefore, condition (14) is sufficient
to assure that all nonblank symbols are
read by Producer.

Consumer

Fig. 6 Graphs for estimation of (t',)

rimax (case (2)).
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4.3. Correctness

Here we outline a proof that the
RTPP ProducerConsumer is correct with
respect to the following predicates.

A (Input Predicate): The input tapes for
Producer have the form (1) with the
additional conditions m+1 ¢ B, and n }
19. These conditions correspond to case
(2) in Subsection 4.2; for cases (1) and
(3) the proof is practically the same.

B (Output Predicate): The output tapes
generated by Consumer are such that the
nonblank symbols are s1 p eeey s

'e'; their order is the same as in the
input tapes of Producer; and the minimum
data separation between two consecutive
ones is constituted by at least C blanks.

[Lemma 1] For any computation sequence CS
of ProducerConsumer, with any input tape
of Producer satisfying the input
predicate, all nonblank symbols of the
input tape of Producer are read and
inserted in the queue.

Proof: The conditions m+1¢B and n»19 in
the input predicate correspond to case
(2) in Subsection 4.2. Therefore the RTPP
is overrun free with respect to any input
tape of Producer satisfying the input
predicate, and all nonblank symbols are
read (transferred to variable x of
Producer) and subsequently inserted in
the queue.

[Lemma 2] Let (t,t+1) be a time slice and

Q(t) be the sequence of symbols defined

by

Q(t)=A, if n(t) = 0;

Q(t)=bltl(t)l...bl(ti(t)+n(t)-1) mod BI,
if n(t) # 0.

For a given computation sequence CS let
T'(CS) be the set of values the time
instant t such that Producer is not in
the middle of an insertion in the queue
and Consumer is not in the middle of
removing a symbol from the queue, i. e.,

T'(CS) = {t € Z| select(t) ¢

{(Producer,6), (Producer,7),
(Consumer,4), (Consumer,5)}}.

Let X(t), with t ¢ T'(CS), be the
sequence of symbols inserted in the ,Jueue
until t; and let Y(t), with t € T'(CS),
be the sequence of symbols removed from
the gueue until t. Then, for any
computation seqguence CS and any t €
T'(CS)

Y(t) . Q(t) = X(t),
where Y(T) . Q(t) represents the

concatenatlon of the sequences Y(t) and
Q(t).

Proof: For any t € T'(CS) claims (a) and
(b) below can be proved by induction on t
€ T'(Cs).

Claim (a): hd(t) = {tl(t)+n(t)) mod B.

Claim (b): |Y(£)|+n(t)

With claims (a) and (b), lemma 2 can be
proved by induction on t € T'(CS) with a
case analysis according to the statement
selected for execution at a given t €
T'(CS). Note that only the cases
select(t) = (Producer,5) and select(t) =
(Consumer,3) must be considered, in the
remaining ones the values of X, Q and Y
are not affected.

[Lemma 31 For any computation sequence
CS, all symbols inserted in the gqueue by
Producer are removed from the queue by
Consumer and transferred to its output
tape.

Proof: By lemma 1 all nonblank symbols in
the input tape of Producer are read and
inserted in the gueue. After the symbol
'‘e' is inserted in the queue, the test
statement in line 9 of Producer is
executed with x = 'e'; the test fails and
the location counter of Producer is
incremented. Consequently, the next time
Producer is scheduled for execution, a
termination statement is executed and
Producer is put in "h" state.

Let (tP,tP+1) be the time slice in
which Producer is put in "h" state; for
any t ) tp we have X(t) = SqeseSpee Let
Q(tp } = Z and Y(tp ) = W. By 1nduct10n on
the length of 2 1t can be shown that
there exists tgy 3 tp such that ot H
0. Therefore, for any computation
sequence CS there exists a time instant
t such that Y(t) = X(t) « A = sq...spe.

[Theorem] RTPP ((Producer,Consumer),{f})
is correct with respect to predicates A
and B.

Proof: By lemmas 1, 2 and 3 all the
nonblank symbols in the input tape of
Producer are transferred to the output
tape of Consumer preserving their order.
After removing a symbol from the gqueue,
and before writing it on the output tape,
Consumer always executes the statement
"suspend(C)" in its 7-th line, and
consequently each nonblank symbol in the
output tape is always preceded by least
C + 1 blank symbols. After the symbol 'e'
is written on the output tape, the test
statement in line 9 of Consumer is
executed with v = 'e', the test fails and
the location counter of Consumer 1is
incremented. The next statement executed
by Consumer is a termination statement,
therefore all the symbols following ‘e
in the output tape of Consumer are
blanks.
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5. Summary and Final Remarks

A program model for real-time
processing systems has been presented.
The model formalizes a real-time program
as a set of concurrent processes time-
sharing a single processor and
communicating between themselves by use
of shared variables and synchronization
signals. The environment of the program
is conceptualized as a set of temporal
sequences of stimuli to the processes,
and a set of temporal sequences of
responses generated by the processes. The
correctness of the programs is stated in
terms of generation of correct seguences
of responses to given sequences of
stimuli from the environment.

Given a description of the temporal
behavior of the environment, in the form
of sets of input tapes, the behavior of
the RTPP can be analysed to verify if it
generates output tapes which correspond
to the required sequences of responses.

An important topic with deserves
further research is the development of
verification methods for RTPPs. In
connection with the verification methods,
two problems that deserve a more
systematic approach is the verification
of nonoccurrence of data overrun and
termination of processes.

This work was partially supported by
a Scientific Research Grant-in-Aid from
the Ministry of Education, Science and
Culture, Japan.
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