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I. INTRODUCTION

The problem of designing digital filters can be
divided into two steps as approximation and
synthesis. Since these two interrelated steps
have been studied separately until now, many
redundant computation steps are involved in the
traditional design procedure. To design digital
filters more efficiently, the authors have
proposed a direct design method 1), The basic
idea of the direct design method is based on a
"balanced - approximation method" proposed by
Kung(z) and an equivalent relation between
balanced realizations and optimal realizations
(minimum roundoff noise realizations) of digital
filters(1), This method can perform the
approximation and synthesis simultaneously with
much less computational complexity. Resulting
filters of this direct design method can
approximate given impulse responses closely. In
addition, they are always guaranteed to be stable,
nearly optimal and free of overflow oscillations.
Moreover, in Ref. (3), the authors have shown
that this direct design method can also be

“extended to design CRSD (causal, recursive and
separable in denominator) 2-D digital filters.

Over the recent years, much research work has

been carried out in the area of multi-dimensional

digital filters. Although the main research

effort has focused on 2-D digital filters, the

study on 3-D digital filters is being expected in

many areas such as moving picture or photo
processing, seismic or  geophysical data
processing, and so on. In this paper, we will

extend the direct design method to design CRSD 3-D
digital filters.

This paper is arranged as follows. Sec. 2;
some preliminaries about CRSD 3-D digital:

gives
filters. Sec. 3 and Sec. 4 propose,
respectively, a balanced approximation method and
a synthesis method of optimal realizations of CRSD
'3-D digital filters. Since the basic ideas are
direct extensions of those used by Lashgari, et
al. 4 and Kawamata and Higuchi the main
results will be given without detailed
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Sec. 4 is concluded by showing the

derivation.
absence of overflow oscillations in the optimal
realizations of CRSD 3-D digital filters. In Sec.

5, we first reveal the equivalent relation between
balanced realizations and optimal realizations of
CRSD 3-D digital filters, and then propose the
direct design method on the basis of this relation
and the balanced approximation method given in .
Sec. 3. At the end of this section, a numerical
example is given to show the wvalidity of the
direct design method. Finally, Sec. 6 gives some
concluding remarks.

In this paper, the following partial ordering
will be used for integer 3-tuples:

(1,3,%) < (p,q,1) iff i<q, j<q and kgr
(i,3,k) = (p,q,1) iff i=p, j=q and k=r
(iyj)k) < (P’Q;r) iff (i,J,k)S(Pszr)

and (i,j,k)#(qu,r)-
1)

I1. STATE-SPACE REPRESENTATION OF
CRSD 3-D DIGITAL FILTERS

In Refs. (6) and (7), some basic concepts about
3-D digital filters have been studied. Due to
limited space of this paper, these concepts will
be adopted without explanation. The filter to be
studied in this paper is of the following form:

x"(1,3,k) = A x(i,3,k) + B u(i,j,k) (2.1)
y(i,3,k) =C x(i,j,k) +d u(i,j,k) (2.2)
where
B, 3,k) *(i41,5,k)
x(1,3,k) = |xV(4,3,k) [, x"(4,3,k) = | xV(i,j+1,k)
x%(i,j,k) x“(i,3,k+1)
(2.3)
Aj; O 0 by
A=) Ay Ayy O , B = by, C= (cl,cz,c3).
A31 A3p Agz b3

(2.4)

and where xh(i,j,k), x¥(i,j,k) and xd(i,j,k) are



the f-th order horizontal state vector, the m-th

order vertical state vector and the n-th order
depth state vector, respectively, wu(i,j,k) and
y(i,j,k) are the scalar input and the scalar

output, respectively, and Ajj-A33, bj-b3, and cj-

cy3 are coefficient matrices with appropriate
dimensions. Further, we restrict ourselves to
filters whose impulse responses satisfy the

following causality condition:
hi,j,k =0, for i < Oor j<0or k<0, (3)

The transfer function of this kind of filter takes
the following form:

N(zy,2,23)

H(Zl,ZZ,Z3) = (4.1)

Dl(zl)DZ(ZZ)DB(ZB)
under the initial conditions

x1(0,3,k) = 0, xV(i,0,k) = 0 and x%(i,3,0) = 0
for (i,3,k) » (0,0,0). (4.2)

Thus, we call it a causal, recursive and separable
denominator (CRSD) digital filter, and denote it

as CRSD(A,B,C,d) for simplicity. The block
diagram is shown in Fig. 1.
Calculating the impulse response of CRSD(A,

B,C,d) explicitly under the initial condition (3),
we have

by jk =
(ciA;1p; for i>0, j=0 and k=0
cohpd by for i=0, j>0 and k=0
c3A3§-1b3 for i=0, j=0 and k>0

{ c3ag5Tagpa03 by for i=0, j>0 and k>0
c3A35 1A314,171by for 1>0, j=0 and k>0
corpd ag1a1 7 by for i>0, >0 and k=0
LFsAsg"1“32A23_1A21A1%_1b1

for i>0, j>0 and k>O. (5)

There are an infinite number of realizations

with the same transfer function or  impulse
response. Specifically, if CRSD(A,B,C,d) is a
realization of H(zl,zz,z3), then, by any

equivalent transformation x(:'L,j,k):’{_1
can get a new realization CRSD(T™"AT,T
where

x(iij,k), we
~-'B,CT,d),

T=T1®T2@T3 (6)
and Tl’ T2 and T3 are § x 9, mxmand n X n

nonsingular matrices, respectively, and
expresses the direct sum of matrices.

Fig. 1 Block diagram of separable denominator
3-D digital filter

I1I. APPROXIMATION OF CRSD 3-D DIGITAL FILTERS

Similar to 2-D digital filters, the controlla-
bility matrix G and the observability matrix O of
a 3-D digital filter are defined as follows:

G = [8(1’090)18(290:0)9---!g(Lyoyo)’g(0:19O),
...,8(L,1,0),...,8(1,4,0),g(0,0,1),
g(1,0,1),...,8(L,M,N) ], M

Ot = [f(0,0,0),f(0,0,l),...,f(0,0,N),f(O,l,O),
£(0,1,1),...,£(0,M,N),£(1,0,0),£(1,0,1),
cens £(L,M,N) ] (8)

where L, M and N are integers, and

g(i,j,k)= Ai—l,j,kBl,0,0 + Ai,j—l,kBO,l,O
+ Aiyjyk_lBO$0’1 (9.1)

£(i,3,k) = (cal 3Kyt (9.2)
and where, Ai’j’k, Bl,O,O’ etc. are defined in a
similar way as 417 and Bl,O’ etc, of 2-D digital
filters 4

For CRSD 3-D digital filters,
two matrices explicitly, we can get

computing these

6={0_6_ o pn (10
0 0 G3pn
where _ _ 1,-
Gy = [bys Aypbyseees AF710q] (11.1)
by = by (11.2)
Gy = [bys Agpbyyeens A i,] (11.3)
by = [by, AyiGq] (11.4)



G3 = [b3, A3zbz,..., Ag§ Ibs] (11.5)
b3 = [b3, A31Gy, A32G2], (11.6)
and - .
: 103(N+1)
0= 0o (M+1)1 70
01(L+1); 0 ' o0 (12)
m n
where . N
< - [«
01 = ClAll y Cl = O3A31 (13.1)
“ee 02A21
B P |
C1A1]
(S, ] _ (e
0y =] SAy , cy = o (13.2)
. 3432
M-l
LYY N
N
c3
03 = €3A33 » C_3 = C3 (13.3)
= N-L
c3A33

and where O0;(L+l1), 0,(M+1) and O3(N+1)  are
obtained from 01, 0, and O3 by substituting L, M
and N with L+1, M+l and N+1, respectively.

Now let us define three 1-D digital Filters
DF(A11,b1,€1)s DF(Apy,57,55) and DF(Ag3,53,c3),
with controllability and observability matrices
given by  (01,Gy), (02,G5)  and (03,G3),
respectively. Then, the controllability and the
observability of a CRSD 3-D digital filter are
completely determined by these 1-D filters. In
this paper, we will call these 1-D digital filters
the characteristic filters of the corresponding
CRSD 3-D digital filter.

From the definition of characteristic filters,
we can see that the coefficient matrices Ayq, A9y
and A33 of a CRSD 3-D digital filter are the same
as the transition matrices of the corresponding
characteristic filters. Further, from Egs.(11)
and  (13), we can easily get the following
relations between other coefficient matrices:

bj= First column of b;, for i=1,2,3 (14.1)
c; = First row of Ty for i=1,2,3 (14.2)
1
—d 4
+ - otc IN+1

Ay = by 6} = 0¥c; (14.3)

ST et - och
A3) = by G] = Ofc; (14.4)

_ L+l —

= 5ot - of

Ay = by G} = Ofcy (14.5)
where ()% expresses the pseudo-inverse of a

matrix, and (¢)*' (()I1 ) expresses the operation
of shifting a matrix for i columns (rows) leftward

(upward), and filling the right columns (bottom
rows) with zeros.
Computing the impulse responses of the charac-

teristic filters explicitly, we have

h o= gle
hi = c1A117hg
= [:i,0,0’ :i,O,l’ hi,OEZ’ <ees by goNs
1,1,00 Bi 1,15 «-eshy 1 N
Tl by oy yIt o (15.1)
ht = CzAl?lg_lEz N
0,5,0 M1,5,0 -+ B 50
= [P0,3,1 h1,,1 e bpy (15.2)
P0,5,1 B1,3,1 +ees bp, N
and
k-1
hy = c3A357 by
= ho,0,ks 11,0,k +++s h1,0,ks ho, 1,k

b1k oo oohr ks ho 2,k vees

o hpod (15.3)

where P, hY and hﬂ are the impulse responses of
DF(A11,B1,51)} DF(Agy,By,85) and DF(Ags,B3,T3)
respectively.

Thus, if the desired 3-D impulse response
hi,j,k is given, then the desired impulse
responses of the characteristic filters can be
obtained using Eq. (15). From these impulse
responses, we can find the characteristic filters

by any time-domain approximation method of 1-D
digital filters, and then the desired CRSD 3-D
digital filter can be immediately obtained using
(14).  Adopting Kung's method for finding the -
characteristic filters, we have the following
algorithm for approximating CRSD digital filters.

Algorithm 1:

Suppose that the specification is given by
hy 3,k? (O,O,O)g(i,j,k)g(L,M,N)f then the desired
filtér is obtained by the following steps.

Step 1: Form the impulse responses hg (i= 0,1,
of the characteristic filters using (15).

Step 2: Form the Hankel matrices from h}, hg and
hi as follows:

hoph 7
b} h3 ... nf

Bofnl nlb ..o (16.1)
oo ..o
(h{ hj ... hy

V=iny n§...o0 (16.2)
hy 0 0
(pd 1o )
hl h2 .. hN

d-1nd nd...0 (16.3)
o ..o




Step 3: Find the characteristic filters using
Kung's method. For illustration, we will only

show how DF(A;1,bj,cy) is found.
The singular value decomposition (SVD) of @
is as follows: :

= Uy Bl U TS (17)

where Uyy, Ujpop,
matrices, and

Vi1 and Vjp are orthogonal

(18.1)

b = ( O, yeeey )
1! L 2 ai (18.2)

Big = (%41 Hy20--0)

and where o;'s are the singular values of the ¢h,
and satisfy

0 2 0p2eess
and 0 >> og,1 for some f < L. (19)

Then, the coefficient matrices of DF(AII;EE’EE)
can be found by

( Zﬁl/zUﬁ)(Un 512

App (20.1)

| = First colum of £;1/2v;% (20.2)

El = First (N+1) x (M+1) rows of U;q Zl%/z
(20.3)

Coefficient matrices of DF(AZZ’bZ’CZ) and
DF(A33,b3,c3) can be found in a similar manner.

Step 4: Find the coefficient matrices of
CRSD(A,B,C,d) by using Eq. (14), where

-1/2 -1/2
05 = Z,7H 2058, and 0% = Ij] /2y4%

-1/2
6f = Vi1 572, and 65 = vy I7Y/2

(21)
and where Uyy, Vop and Zy7, and U3% and I3p are
obtained from the SVD of d " ed,
respectively.

IV. SYNTHESIS OF CRSD 3-D DIGITAL FILTERS

In this section, we will analyze the roundoff
noise in CRSD 3-D digital filters, and then give a
method for synthesizing optimal realizations.
Since the basic ideas are simple extensions of
those used by Kawamata and Higuchi in Ref. (5), we
will not discuss the problem in detail, but give
the main results only.

4.1 Variance of Roundoff Noise in
CRSD 3-D Digital Filters

Due to roundoff after multiplication, the
actual CRSD 3-D digital filter implemented by a
finite wordlength machine is described by

E'(1,3,k) = A X(1,3,k) + Bu(i,j.k) + a(i,j.k)
Y(i,3,k) = CX(4,3,k) + du(i,j,k) + B(i,i.,k)
(22)

where ?(i,j,k), and‘;(i,j,k) are the actual state

vector and the actual output, respectively,
a(i,j,k) and B(i,j,k) are, respectively, error
vectors generated due to roundoff after

multiplication in (A,B) and (C,d).
Subtracting (2) from (22), we obtain the output

error  Ay(i,3,k)= 3(i,3,k)-y(1,3,k) as
e'(i,j,k) = A e(i,j,k) + o(i,j,k) (23.1)
Ay(i:jsk) =C e(irj:k) + B(isjyk) (23-2)
where
e(i,i,k) = %(i,3,k) - x(i,3,k). (23.3)

Assume that the product quantization errors are
white noise and are statistically independent from

source to source, and from point to point. Then
we have
; (i, 3,k)| { alp,q,0)]®
B(i, 3.k | { B(p,q,T)
= 0%8;_p j-q,1-r block diag(Q",0%,0%,q)  (24)

where E[ s+ ] is the expectation, o%=2"2¥ is the
variance of each noise sources and w is the word~
length, §; i,k 1s the Kronecker delta, and Q

a dlagonal matrix whose i-th diagonal element is
the number of noninteger coefficients of the i-th
rows of Ay; and b@' anddin a similar way, the
diagonal matrices Q' and Q%, and the scalar q are

defined for (A21,A22,b2), (A31,A32,A33,b3) and
(Cl,Cz,C3,d), respectively. Under the above
assumption, we can obtain the variance of

roundoff noise by following a similar procedure
used in Ref. (5). The result is given by

E[ 2] = c’21‘-I‘£Qh1»1h] + Ptr[QWY] + Atr[Qdwd]
+ o“q (25)

and Wl are referred to as the
vertical and depth noise matrices (or

where Wh, wv
horizontal,

observability gramians) of CRSD(A,B,C,d),
respectively, and satisfy the following Lyapunov
equations:

h _ 4 tyh t d t
W= A TWAL) + ApfWYAY + AgfWOAsy + cfey
v o_ tyv tyd t
W o= A22W Azz + A32w A32 + cjco

d _ A tyd £
W= A33w A33 + c3c3.
(26)

4.2 22 Norm Scaling
It is desirable that,
digital filter is synthesized,
in this filter. To prevent the overflow problem,
state variables must be scaled. In this paper,
the 1, norm scaling is adopted, and it is
performed via equivalent transformation such that

the following constraints are satisfied:

when a state-space
no overflow occurs

| —84—



(Kh)ii =1, (Kv)jj =1 and (Kd)kk =1 27)
where (o );; is the i-th diagonal element of the
matrix, and Kh, KV and K4 are the horizontal,
vertical and depth covariance matrices (or
controllability gramians) of CRSD(A,B,C,d) which

satisfy the following Lyapunov equations:

KR = apqkPA Y 4 bbb
KV = A22KVA25 + AlehAz% + bzb'z:

d dy t hy t t t
K" = A33K"Ag3 + AqK A3T + A32KVA32 + bgb3.

(28)

4.3 Synthesis of Optimal Realizations

From Egs. (10)-(13), (26) and (28) we can
easily get the following relations by using the
properties of solutions of the Lyapunov equations:

KM= 6160, KV = 6,65, K9 = 6465 (29.1)

h t s
W 070;, W

]
I

050,, wd = ofo, (29.2)

provided that L, M and N are suff1c1ently large.

Thus,  (KP,W), (RV,WY), and (k9,wd) are the
controllability gramians and observability
gramlans of the characteristic filters

DF(All’bl’Cl)’ DF(A22’b27C2) and DF(A33,b3,C3),
respectively.

From Eq. (25), we can ea51ly see that the

roundoff noise of CRSD(A,B,C,d) can be minimized
by minimizing the first three terms independently.
These three terms, in turn, can be minimized by
optimizing the characteristic filters. Thus,
applying Hwang's synthesis method(8) to the
characteristic filters, we can get the optimal
realization of CRSD(A,B,C,d). That 1is, the
equivalent transformation T =(T)@® T, @ T3)
required to minimize the roundoff noise of
CRSD(A,B,C,d) can be obtained by finding Ty, Ty

and Tg_ separately by applying Hwang's method to
DF(A]I bl,cl), DF(A99,by,cy) and DF(A33,b3,C3),
respectively. For instance, T; can be found as
follows:

= LRy MUt (30)

where the nonsingular matrix Ly, the orthogonal
matrices R; and Uj, and the diagonal matrix N
are, respectively, as follows:

LiLE = &P (31.1)
RE(LWML) )Ry = diag(f, oF,...,qf) (31.2)
My = diag(hg1, A1gs--esAg)s
= zay/lap1/? (31.3)
J~1
U (AU, = 1 for 1=1,2,...,0 (31.4)

4.4  Absence

where O 's are the second order modes of DF(Ay7,
bp,ep).

The normalized minimum variance of
noise is then given by

roundoff

E[ Ay2 ]mln

2 m
= (T 05)?/0 + (feme1)( 3 85)%/m
i=1 j=1

n
+ (Lmind1) (2 v)2/n + (Qeminsl). (32)
k=1

where B's and Y's are the second order modes of
DF(A99,b,,c7) and DF(A33,b3,c3), respectively.

of Overflow Oscillations
in Optimal Realizations

In the previous subsection, we have proposed a
synthesis method of optimal realizations of CRSD
3-D digital filters. In the following, we will
show that these optimal realizations are also free
of overflow oscillations, in addition to minimum
roundoff noise. First, we have the following
theorem:

Theorem 1: A realization CRSD(A,B,C,d) of a CRSD
3-D digital filter is free of overflow oscilla-
tions under zero input conditions if its
coefficient matrices satisfy

lasals <10 agally <1 ana faggly < 1.
(33)
Proof: Consider the realization CRSD(4,B,C,d)

which satisfies (33). For simplicity, let us
denote the spectral norms of jits coefficient
matrices Ajy-A33 as ryj-r33. -All these values are
finite because the coefficient matrices are real
constant matrices. Under the zero input condition,
any realization of a CRSD 3-D digital filter with
overflow nonlinearity can be described by

T(i,3,k) = I[a(E-1,5,0)]

XV(1,3,6) = £[Ag 301, 3-1,k) + ApfRV(4,5-1,k)]

F(1,5,0) = £90A5{70(1, 3,k-1) + A3 XV (L, 3,k-1)
+ Agqxd(d, 3,k-1)]
(34)
where the nonlinear vector functions fh[ v], £Y[-]

and f£4 [ » ] representing overflow characteristics
satisfy the following properties, respectively,

o) | < e, for p=1,2,...,1
IfWE)iSIEF for q=1,2,...,m
and
[g2® | <] g for r = 1,2,...,n
for any scalar & (35)

and where the initial states are bounded as



%200, 3,k) ||, < By <o,  for all 350, k>0

IXV(1,0,k)||; < By <oo, for all i>0, k>0

for all i>0, 3j>0.

[¥4¢1,1,0)||5 < Bg <oe,
%300 < 5 -

From FEgs. (33)-(36), we have the following

inequalities
Ishci, 1,000, = lehpa -1, 3,01,
< "Aliih(i—l,j,k)ﬂz

A i3, 5,0,

[}

178N

r11By S

v, 3,00l = IV ARG 31,k

+ A% (1, 3-1,0 1|l
< A R, 3-1,K)+Ap %Y (1, 5-1,1) [l
= la14,357(0,3-1,1)
+ Agphg A 3E(0,5-2,k) + ...
+ Ay 7ay4,338(0,0,1)

+ Azﬂ.xw(i,o,k)llz

< R2r21rﬁBl + rngz (38.1)‘
where . 1
Ry = “Im + Agg .ot Azg “2
<1 +.r22 + .. + rzé_l
< 1/(1-r39)
for any integer j>0. (38.2)
Similarly
“§4(i.j,k)“2 Nedrag w01
+ A3é§v(i-j’k‘1)
+ Ay¥3(1,3,k-D1|l;
< 833, 5,k-1)
+ AgoXV(i,5,k-1)
+ A1, 3. k-D
< RargyriiBy
+ RgrayRyroyriTh
. : k
+ R3r32r2%B2+r33B3 (39.1)

where .
Ry = [|T, + Agg + «ov # A3§'1“2

< 1/(1-r33)

Thus, from Egs. (33), (36), (38.2) and (39.2), we
have
lim “‘;h(i’j:k)nz =0
i—poa for any integer j>0 and k>0
1im ||XV(4, 3,k = 0
1,j~» 0o for any integer k>0
and )
lim ";Ed(ifj!k)uz = 0.
i,j.k—> 060
(40)
Therefore
lim ¥(i,3,k) = 0
iy e for any integer j>0 and k>0
lim %¥(i,j,k) = 0
i,j~roo for any integer k>0
and
1im ®4(4,1,k) = O.
i,j,k=—roe (41)
Equation (41) shows that the state vector of the

realization CRSD(A,B,C,d) with overflow non-
linearities converges to zero. Therefore, this
realization is free of overflow oscillations under
zero input condition. //

It has been proved that the coefficient matrix
of the optimal realization of a 1-D digital filter
DF(A,B,C,d) satisfies(®

fall, <1 (42)
and the strict inequality holds if all the second
order modes of this filter are distinct. Using

this fact and Theorem 1, and recalling that a
realization of a CRSD 3-D digital filter is
optimal iff its characteristic filters are optimal
in the 1-D sense, we can conclude that optimal
realizations of CRSD 3-D digital filters are also
free of overflow oscillations.

V. SPATIAL-DOMAIN DIRECT DESIGN METHOD
OF CRSD 3-D DIGITAL FILTERS

In the previous sections, we have proposed
an approximation method and a synthesis method of
CRSD 3-D digital filters. In order to design CRSD
3-D digital filters more efficiently, in this
section, we will propose a direct design method
which can perform the approximation and synthesis
simultaneously with much less computational
complexity.

5.1 Relation between Balanced Realizations and

Optimal Realizations of CRSD 3-D Digital Filters

In 3-D case, a realization of a CRSD 3-D
digital filter is called balanced iff its control-
lability and observability gramians satisfy

khyh
KVwY

L}

diag(gy,09se+.,0Q)
diag(By,89,...,8)

[}



ded = diag(Yl,Yz,...,Yn)

(43)
where oy, B and Yy are the square roots of the
eigenvalues o% Khwh ™ XYWV and kdwd, respectively,
and are called second order modes of the
corresponding CRSD 3-D digital filter. Since
k), (&Y, W) and  (k4,Wd)  are  also
controllability and observability gramians of the
characteristic filters, we can also say that a
realization of a CRSD 3-D digital filter is
balanced iff its characteristic filters are
balanced in the 1-D sense.

From the discussion of Sec. 3.2, we know that
the optimal realization of CRSD 3-D digital
filters can be synthesized by separately finding
optimal realizations of their characteristic
filters. Therefore, if the balanced realization
of a CRSD 3-D digital filter is given, the optimal
realization can be obtained by applying the
equivalent transformation given in Ref. (1) to
each characteristic filter. That is, the optimal
realization of a CRSD 3-D digital filter can be
obtained from its balanced realization by the
following simple equivalent transformation:

T = block diag(p}/2ut,0l/2ut, 0}/ 2uk) (4b)
where

m n

P = Zui/y, Py = z Bj/m, Py = I Yk/ﬂ (45)
i=] j=1 k=1

and Ups

U, and Uz are found from Eq. (31.4) or

similar equations.

5.2 Direct Design Method of CRSD 3-D
Digital Filters

From the definition of balanced realizations,
it is clear that state-space digital filters
resulted from the approximation method of Sec. 3
are nearly balanced realizations, because each of
the characteristic filter obtained by Kung's
method is nearly balanced(Z). Using the equivalent
transformation (44), and the approximation
proposed in Sec. 3, we have the following direct
design algorithm:

Algorithm 2:

Step 1 and Step 2 are the same as those in
Algorithm 1,

Step 3: Instead of Eq. (20), the following
equation is used:

_1/2 ¢ /2yt
Ayp = U Y2 Dy 52

le/zUl(First column of 21%/2V1%)

(First (L+1) x (M+l) rows of

2]
=
[

vy 5172 el 2t
(46)
Epefficient matrices of DF(A22;Eé;€2) and DF(A33,
b3,Eé) can be found in a similar manner.
Step 4: Instead of Eq. (21), the following

equation is used:

_1/2 -1/24 t
0f = 03/ 20,( 71/ 2u,%)
0% = 031/ 25 Z3I1/2U35)
~1/2y,1/2
of = (vyp 5720} 208

6f = (V1 Zp7l/?)e}/2uf.
(47)
5.3 A Numerical Example

In order to show the validity of the direct
design method, in the following, we will give a

numerical  example. The specification to be
approximated in this - example is the impulse
response of a Gaussian filter given by
B,k = RO RS
0.256322exp[-0.083203((i-5)% + (j=5)
+ (k=5)9)]
for (O,O,O)S(iaj,k)ﬁ(losw,10)
0 otherwise,
(48)
This filter is designed as follows. First,

form the impulse response and the Hankel matrices
of the characteristic filters using Eqs. (15) and
(16), and then find the SVD of the Hankel
matrices. Since the impulse response is
symmetric, the three groups of singular values are

the same and given by

i=js] 1 2 3 4 ceen

4.0339 {1.7212 ] 0.4907 | 0.1008 | ....

Since ag>> 0y, B3>>B 4 and Y3>> Y4, we -set the
filter order be (3 x 3 x 3). Then, from the SVD
of  the Hankel matrices, a nearly optimal
realization of the desired CRSD 3-D digital filter
is found using Egs. (14), (46) and (47).

The coefficient matrices of the nearly optimal
realization so designed is given in Table 1. For
comparison, two other realizations with the same
impulse response are also listed in this table.
The impulse response and the frequency response of
the ideal Gaussian filter are shown in Figs. 2-4,
and those of the (3 x 3 x 3)-th order 3-D digital
filter obtained by the direct design method are
shown in Figs., 5-7. In addition, to gain some
more insights about the characteristics of the 3-D
digital filter in this example, . the contour plots
of the ideal Gaussian filter and those of the

filter designed are also given in Figs, 8 and 9.
The approximation error is given by
1 -
max hi,j,k - hi,j,k = 0,02047. (49)

Further, the roundoff noise to output signal
ratios of the three realizations in Table 1 are



Fig, 2 Impulse response of the ideal Gaussian filter
(1=5)
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Fig. 3 Frequency response of the ideal Gaussian filter
' (a=0)

50

-
[=1

1H (w . wg. wg)!
N w
(=) o

AMPLITUDE RESPONSE

5

1 I 1 —t

T T T 1
0.00 0.10- 0.20 0.30 0.40 0.50
NORMALIZED FREQUENCY (<o /2 77)

Fig. 4 Frequency response of the ideal Gaussion filter
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Fig. 5 Impulse response of the (3x3x3)-th order
3-D digital filter designed in the example
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Fig. 6 Frequency response of the (3x3x3)-th order
3-D digital filter designed in the example
(wy=0)
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3-D digital filter designed in the example
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Fig. 8 Contour plots of the amplitude response

of the ideal

Gaussian filter (-12dB)
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the example

Table 2 Roundoff no

ise to signal ratio

Realization

Noise to Sigpal Ratio
E[ 4y21/E[y%] (o?=1)

Canonical Realization 863.691604
Optimal Realization 72.195071
Nearly optimal

72.195211

Realization

Fig, 9 Contour plots of the amplitude response
of the (3x3x3)-th order 3-D digital filter
designed in the example (-12dB)

given in Table 2. The relation between roundoff
noise to output signal ratio and the wordlength
is shown in Fig. 10. In Fig. 10 and Table 2,
the output signal variance E[y%] is the value
obtained by injecting a normal white signal with
zero mean and unit variance into the filter, and
can be evaluated by

E[y2] = cykhel + cpkVeh + cqrdefs d2. (50)
From Fig. 10 and Table 2 we can see that the
roundoff noise of the nearly optimal realization
is almost the same as that .of the optimal
realization, Moreover, the spectral norms of
transition matrices Ajj, Apy and A3y of the nearly
optimal realization are

“A11\lz = 122 112 = Hasslly = 0.919394 < 1.

Thus, from Theorem 1, the nearly
realization obtained can also
oscillations.

(51)

optimal
suppress overflow

VI. CONCLUDING REMARKS

In this paper, the design problem of causal,
recursive and separable denominator (CRSD) 3-D
digital filters has been studied. By introducing
the 1-D characteristic filters, we have proposed a
balanced approximation method and the synthesis
method of optimal realizations of CRSD 3-D digital
filters. Further, on the basis of the balanced
approximation and the equivalent relation between
balanced realizations and optimal realizations of
CRSD 3-D digital filters, we have proposed a
direct design method in the spatial domain. This
direct design method can result in stable state-

space digital filters which are nearly optimal
with respect to roundoff noise, and free of
overflow oscillations. Efficiency of direct

design method has been shown by a numerical
example. Further, this direct design method can
also be extended to multi-dimensional case, and

this will be discussed in other papers.



Table 1 Coefficient matrices of digital filters in the example (d = 1.1 x 10‘4)

Realization Matrices
0 1 0 0 0 0 0 0 0
0 0 1 o] 0 0 0 0 0
0.3993 -1.4720 1.9940 O 0 0 0 0 0
Canonical 0.0000 0.0000 0.0000 O 1 o] 0 0 0
A = 0.0000 0.0000 0,0000 O 0 1 0 0 0
Realization 0.1436 -0,0275 0.1039 0.3993 -1.4720 1.9940 O 0 0
0.0000 0.0000 0.0000 0.0010 -0.0002 0.0007 O 1 0
0.0000 0.0000 0.0000 0.0005 -0.0001 0.0003 O 0 1
0.0055 -0.0011 0.0040 0.1437 -0.0276 0.1040 0.3993 -1.4720 1.9940
BE= 0 0 0.2046 0 0 0.0079 © 0 0.0003
C = 0.0020 -0.0004 0.0015 0.0531 -0.0102 0,0384 1.3740 -0.2496 0.9898
0.6023 0.2280 0.0909 O 0 0 0 0 0
0.0909 0.6957 0.4709 O 0 0 0 0 0
0.2280 -0.4075 0.6957 O 0 0 0 0 0
Optimal 0.3550 0.3435 -0.1297 0.6023 0.2280 0.0909 O 0 0
A= -0.1297 -0.1255 0.0474 0.0909 0.6957 0.4709 O 0 0
Realization 0.3435 0.3324 -0.1255 0.2280 -0.4075 0.6957 O 0 0
0.0136 0.0132 -0,0050 0.3550 0.3435 -0.1297 0.6023 0.0909 0.2280
0.0132 0.0128 -0.0048 0.3435 0.3324 -0.1255 0.2280 0.6957 -0.4075
-0.0050 -0.0048 0.0018 -0.1297 -0.1255 0.0474 0.0909 0.4709 0.6957
Bt = -0.5811 0.2124 -0.5624 -0.0223 0.0082 -0.0216 -0.0009 -0.0008 0.0003
C = -0.0018 -0.0017 0,0006 -0.0462 -0.0447 0.0169 -1.2020 0.4392 -1.1630
0.7001 -0,4921 -0.0054 O 0 0 0 0 0
0.3525 0.6831 -0.3574 O 0 0 0 0 0
0.1022 -0.0679 0.6104 O 0 0 0 0 0
Nearly -0.2123 0,0093 -0.1182 0,7001 -0.4921 -0.0054 O 0 0
A = -0,2597 0.0114 -0.1446 0.3525 0.6831 -0.3574 0 0 0
Optimal 0.5475 -0.0241 0.,3048 ©.1022 -0.0679 0.6104 O 0 0
0.0215 -0.0009 0,0120 0.5597 -0.0246 0.3116 0.7001 0.3515 0.1019
Realization -0.0009 0.,0000 -0.0005 -0.0247 0.0011 -0.0137 -0.4936 0.6831 -0.0679
. 0.0120 -0.0005 0.0067 0.3125 -0.0137 0.1740 -0.0054 -0.3574 0.6104
Bt = 0.2766 0.3382 -0.7132 0.0106 0.0130 -0.0274 -0.0011 0.0000 -0.0006
C = -0.0022 0.0000 -0.0012 -0.0580 0,0025 -0.0323 0.5730 0.6987 -1.4730
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