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Abstract SIMD architectures are interesting for massively parallel execution of logic programming
languages. In this paper, we first motivate this conjecture. Then, in order to see what kind of SIMD
architecture is suitable, we compare implementations of Flat GHC for two computers, representatives of
two very different SIMD architectures: One is Hitachi’s vector parallel supercomputer, S-820. The other
is Thinking Machines’ Connection Machine. For 5-820, we have measured a real implementation. For
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the Connection Machine, we use a detailed instruction-level simulator for measurement.

1 Introduction

Parallel logic programming languages, such as GHC
[17], are attractive for efficient execution on parallel
computers, because of their relative simplicity and ex-
pressive power.

For massively parallel computers, with thousands of
parallel processes, it is especially important that lan-
guages are simple, so that overhead is minimized. In
order to investigate exactly how efficiently logic pro-
gramming languages can be implemented, and what
the bottlenecks are, we have chosen to implement the
language Flat GHC. We selected this language since it
seemed to be one of the simplest of its kind, and since it
has been shown to have reasonable expressional power,
e.g. [2].

After converting Flat GHC programs into an even sim-
pler, intermediate language called Fleng [9], we execute
programs by an interpreter. Care has been taken so
that this interpreter consists of only vector operations.
The interpreter algorithm is essentially the same for
both S-820 and Connection Machine implementations.

(The fine details of Fleng, and the translation from
Flat GHC are described in detail in different papers
[9], [10}, [12]. Such knowledge is not necessary for the
understanding of this paper.)

We find that S-820 is much faster than the current Con-
nection Machine for our implementation but that this
is essentially because of much faster hardware. More
importantly, the S-820 does not scale easily to larger
degrees of parallelism, while the Connection Machine
does, so the Connection Machine does seem promising
for the future.

First we will give a quick review of GHC, Fleng, and
vectorization of the Fleng interpreter.

1.1 Flat GHC and Fleng

A Flat GHC program looks just like a Prolog program,
but contains an commit operator in every clause body.
If we think of this operator as a Prolog “cut,” the exe-
cution of Flat GHC becomes very similar Prolog, with
the difference that several clauses may be executed in
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parallel.

The goals in a clause body in front of the commit sym-
bol are called guard goals. A Fleng clause is similar
to a GHC clause, but there are no guard goals. Also,
even if execution of a body goal fails, it will not af-
fect any other goals being executed. These two points
are very important for minimizing the implementation
overhead of the interpreter.

Fortunately, Flat GHC can still be automatically trans-
lated into Fleng by a reasonably simple process. The
conversion can be done essentially by partially evalu-
ating unification as far as possible in the guards, and
replacing calls to system predicates with slightly mod-
ified versions.

1.2 Vectorization

For efficient vectorization, or “SIMD” -fication, all code
in the interpreter loop should be vectorizable. This
makes it important to make interpreted programs ho-
mogeneous, and minimize the number of different op-
erations.

This has some consequences such as that it seems that
structure sharing is more suitable than structure copy-
ing, since copying is hard to vectorize. The penalty
in the form of increased time for garbage collection is
also expensive. The state of a process must be small,
since we are considering very high degrees of paral-
lelism (tens of thousands). It also seems advantageous
to represent data structures by binary cells, rather than
varisized records, to improve homogenelty of the imple-
mentation.

The general structure of our interpreter is not unlike
that of a traditional Prolog interpreter, and even less
different from that of a Flat GHC or Fleng interpreter
[10]. The main difference is that all processes who want
to do the same operation are collected, and their data
are operated on as vectors, where the N-th elements
are data belonging to process N.

1.3 Related work

Kanada [6],[7] uses a compiled approach for executing
OR-parallel Prolog search programs on a supercom-
puter. We suggested implementing an AND-parallel
committed-choice language as a tight loop vectoriz-
able interpreter for a supercomputer {9], and for the
Connection Machine [11]. Tatsuguchi {16] has used
this approach to implement OR-parallel and restricted
AND-parallel interpreters for a vector parallel super-
computer. Bawden and Agre [1] have implemented a
'non-communication version of Scheme on the Connec-
tion Machine. However, we don’t know of any compar-

ative study of implementation of the same language on
both a pipelined supercomputer, and the Connection
Machine.

1.4 . Paper overview

In section 2, We will first describe the building blocks
we are going to use for implementation. Then we
demonstrate the convenience of the SIMD approach, by
showing methods for mutual exclusion and distributed
unification (variable binding) in section 3. The basic
structure of the interpreter is outlined in section 4. In
section 5, we show benchmark results of the two im-
plementations, and finally, in section 6, we discuss the
results.

2 Vector Operation Primitives

For SIMD computers, we ¢annot not use jump instruc-
tions or procedure calls. In order to execute opera-
tions conditionally for individual processors, we must
allow all operations to be conditional on a flag or mask
operand: If the mask is true, the operation is executed
as usual, but if the operand is false, the operation be-
comes a no-op. For instance, a conditional instruction
move(s,d,m) takes the three operands: source s, des-
tination d, and mask m. This instruction would for pro-
cessor i move the contents of memory location s[i] to
location d[i], iff the flag m[i] is set to true.

Such an opération exists in the machine language of
S-820. It is automatically generated by the compiler,
from a Fortran program such as:

D010 I =1,
IF (M(I)) D(I) =
CONTINUE

s(I)
10

Here, data is only moved locally inside a process, not
between different processes, if we think of the collection
of the i-th vector positions as a process.

We would like to have the following similar “tradi-
tional” instructions, with their obvious interpretations,
as part of our SIMD instruction set:

(distribute a scalar
constant to all processors),
(arithmetic),

movs(s,d,n)

add(s1,s2,d,m),
sub(s1,s2,d,m),
mul(s1,s2,d,m),
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div(si,s2,d,m)

and(s1,s2,d,m) (bitwise boolean and),
or(si,s2,d,m) (bitwise boolean or),
xor(si,s2,d,m) (bitwise boolean xor),
movmask(ms,md,m) . (move mask),
cplmask(ms,md,m) (complement mask)

These operations either already exist for the Connec-
tion Machine, or can be easily implemented [3], [4].
They are all in the machine instruction set for the S-
820.

We also want to have a few instructions for comparison.
The result of the comparison is stored in a mask vector:

cmpeq(s1,s2,md,m) (equality),
cmpre(si,s2,md,m) (inequality),
cmplt(si,s2,md,m) (less than)

The following operations come in handy, although de-
finable in terms of the previous operations:

adds(s1,s2,md,m) (add scalar to vector),

When we need fully general 1oad and store opera-
tions, we use the operations load_1i_tomany(s,x,d,m)
and store_many_to_1(s,d,x,m).. The speed of these
pairs of instructions differ by a logarithmic order in
the number of processors, for the Connection Machine.
store.many.to_1 introduces non-determinism by stor-
ing values in the destination by overwriting, without
control of which of the values are written. This opera-
tion is useful for arbitration of parallel processes.

For 5-820, the list vector operations do not distinguish
these cases.

We also need to be able to count or enumerate all pro-
cessors with their corresponding mask bits set. The
count(d,m) operation counts the number of mask bits,
and fills d with this value. enumerate(d,m) could be
described in Fortran as:

TMP = 0O
DO 10 I = 1,N
IF (M(I)) THEN
TMP = TMP + 1

‘ t D(I) = TMP
cmpegs (s1,52,md,m) (compare scalar with vector), ENDZEF)
cmpnes(s1,s2,nd,m) (analogous), 10  CONTINUE

ormask(ms1,ms2,md,m) = (inclusive or of masks)

We would also like to have instructions which enable
processes to communicate with each other by writ-
ing to, and reading from each other’s local memory.
We introduce two new instructions for this purpose,
store(s,d,x,m), and load(s,x,d,m).

In Fortran, store can be expressed as:

DO 10 I = 1,N
IF (M(1)) D(X(I)) = S(I)
10 CONTINUE

load can be defined as:

DO 10I=1,N
IF (M(I)) D(I) = s(X(I))
10 CONTINUE
The S-820 has so called list vector instructions; with
which these can be vectorized.

For the Connection Machine, we assume here that
store never tries to store two data in the same lo-
cation, i.e. that all x[i] for which m[i] are true, are
different. We assume the same thing for the load in-
struction, so that it will never try to read several times
from the same processor. The reason why we restrict
these operations is that these operations become very
costly with the full generality.

On the S-820, such operations can be vectorized, al-
though it is often a better idea to compress vectors
first, and then enurerate them by looking at the vec-
tor index after compression.

Finally, we would like some instructions for tag extrac-
tion and testing: :

TAG(s,d,m) (extract tag),
- ISVAR(s,md,m) (check if variable),
ISCONS(s,md,m) (check if cons)

These operations are all local. They can easily be de-
fined in Fortran by using the other available instruc-
tions.

3 Why SIMD?

We will give two convincing examples, where an SIMD
approach is considerably simpler than a MIMD ap-
proach. These examples are in fact relevant in many
other parallel programming contexts than logic pro-
gramming. .
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3.1 Mutual exclusion

Mutual exclusion of a number of processes which want
to write some certain memory position, is implemented
by letting processes write their index into the cell they
request. Then they read back the cell’s contents. If the
value read back equals the index, permission is granted.

The code for mutual exclusion looks in principle like
this:

D0 10 I = 1,N
CONTENTS(DEST(I)) = I
10 CONTINUE

DO 20 I =1,N
IF (EXCLUDE(DEST(I)) .EQ. I) THEN
CONTENTS(DEST(I)) = VALUE(I)
ENDIF
20 CONTINUE

For the Connection Machine, the sequence would be:

store_many_to_1(i,contents ,dest)

load_1_to_many(contents,dest,tmp)

cmpeq(tmp, i, mask)
store(value,contents,dest)

3.2 Distributed unification

In distributed unification, we have the problem of bind-
ing a variable to another, with a directed binding. Un-
less we are careful, it might happen that several vari-
ables which are bound asynchronously are bound in a
circle. This is not acceptable, but avoiding it is hard;
if we try to lock both variables, we risk deadlock. An-
other way is to impose a permanent ordering on all vari-
ables, and make sure that variable bindings are bound
in the direction specified by the ordering. This scheme
can work, but leads to substantial overhead.

For an SIMD implementation, we only need a tempo-
rary ordering during the binding of the variables. After
binding, the ordering may safely be forgotten. No cy-
cles can be created by binding variables, assuming that
they have been fully dereferenced before binding. (This
is not obvious, but is perhaps most easily seen by ob-
serving that the fact that variables are bound in tree
structures is an invariant.)

4 The Interpreter

For vectorization, as much code as possible in the inter-
preter loop should be vectorizable. This makes it im-
portant that interpreted programs are homogeneous,

and that the number of different operations is mini-
mized. This has some far-reaching consequences for the
implementation: First, compilation to machine code is
not possible in general, since compilation implies spe-
cialization, and makes execution inhomogeneous. On
the other hand, an interpreter performs general opera-
tions, which can be applied to many elements at a time.
Second, structure sharing is more suitable than struc-
ture copying, since for copying is hard to vectorize, and
the overhead becomes quite expensive. The penalty in
the form of increased time for garbage collection is also
expensive. Third, the state of a process must be small,
since we are considering very high degrees of paral-
lelism (tens of thousands). For this reason, we cannot
use linear stacks: With one stack area for every vec-
tor element, the memory requirements would be gigan-
tic, even for a supercomputer. Necessary memory cells
have to be allocated from a common memory pool,
and kept together by pointers. Fourth, representing
data structures by binary cells, rather than varisized
records, improves homogeneity of the implementation.

The general structure of the interpreter is not unlike
that of a traditional Prolog interpreter, and even less
different from that of a Flat GHC or Fleng interpreter.
The main difference is that all processes who want to
do the same operation are collected, and their data are
operated on as vectors, where the N-th elements are
data belonging to process N.

The interpreter consists of three blocks: AND, OR,
and UNIFY.

Each block takes a queue of processes as its input and
produces a new queue of processes, ready to be exe-
cuted by the next block.

The AND block takes trees of goal literals as input and
pairs the goals with predicate definitions. It also adds
a shared Trust-cell. It executes built-ins for arithmetic.

The OR block inputs pairs of goals and definitions,
and produces pairs of goals and candidate clauses. It
creates new environments, and “pre-commits” environ-
ments which are used for active unification.

The UNIFY block handles unification both (passive
and active). It also handles dereferencing, variable
binding, and commitment. For successful unifications,
new goals are produced for the AND block.

5 Benchmark Results

We have implemented the basic interpretation algo-
rithm as a C program, which is macro expanded into
a Fortran program for the S-820. For the connection
machine we have implemented an emulator of the in-
structions in C. :
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By running concatenate-type benchmarks through
the interpreter, and counting the executed instructions,
we found approximate values for the different classes of
instructions, as shown in the table below. For the S-
820, we used a system timer for computing the total
scalar and vector CPU-time.

We considered concatenate suitable as a benchmark,

since it is defined and executed in the same way in most -

logic programming languages.

5.1 The S-820

For a degree of parallelism of about 1000, the reduc-
tion frequency of the S-820 was approximately 500 kHz.
Raising the degree of parallelism over this level, did not
seem to affect the reduction frequency very much.

By optimizing the S-820 interpreter, we could speed up
the interpreter by a factor of about two, to 1.1 MHz.
By varying the degree of parallelism, we produced the
following diagram of the reduction frequency as a func-
tion of degree of parallelism for the optimized version
(note that the scale is lin-log):

1.0 Inference
: frequency [MHZ]
08 —
06 —
0.4 —
02 — DegreeLof
Parallelism
I T T
1 10 100 1000

5.2 The Connection Machine

Detailed instruction timing of the Connection Machine
has not been published as far as we know, but by “re-
verse calculating” from the data spread through the
articles [3], [4], [14], we have made the estimations as
_given in the following table:

Instruction group Time [us]
mask operations 1
mov, add, etc 12
enumerate 200
count 400
mul 380
div 380
store 450
load 900
store_many_to_1 15,000
load_1_to_many 15,000

Running the benchmark on the Connection Machine
simulator produced the following total instruction
times:

Total time
per process
Instruction group Frequency reduction [ms]

mask operations 341 0
mov, add, etc 625 8
enumerate 107 21
count 11 4
mul 5 2
div 5 2
store 318 143
load 136 122
store_many_to_1 11 165
load_1_to_many 130 1,950
Total 1,689 2,417

The peak process reduction frequency for a 4 MHz-
clock, 65,536-processor Connection Machine will thus
be approximately 65,536/2.417 Hz ~ 27 kHz. For lower
degrees of parallelism, the reduction frequency will be
proportionally less.

6 Discussion and Conclusions

It is clear that S-820 is much faster than the current
Connection Machine, mainly depending on the S-820’s
much faster hardware. The simulation data shows
clearly that execution time for the Connection Machine
is dominated by load_1_to_many. Since the “physical”
parallelism of the S-820 is rather small (the number
of pipelines times the number of pipeline stages), the
load_1_to_many type contention is not as serious for S-
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820 as it is for the Connection Machine. However, even
if the time for store many_to._1 was reduced to that of
store, and load_i_to.many to that of 1oad, the speed
would increase by a factor of just 5.7.

If the Connection Machine were built with the same

" state-of-art device technology as the supercomputer S-
820, allowing the same clock frequency (250 MHz), the
maximum process reduction frequency would rise to
about 1.7 MHz. ‘

These numbers suggest that for our implementation,
a 65,536-processor Connection Machine would have a
performance comparable to that of S-820, and sequen-
tial computers [15], if built using the same clock speed.

Our interpreter is certainly not optimal, so improving
it will also improve the reduction frequency. But since
the dominating factor for execution time depends on
reading the user program, using the load_i_to_many
instruction, which must be done by any kind of inter-
preter, so changes are not likely to radically alter our
estimates.

Although it seems the current Connection Machine is
slower than S-820 for this implementation, it is im-
portant to note that the Connection Machine is easily
scalable to a larger number of processors, while the S-
820 is not. Thus, it seems that a Connection Machine
architecture has bright outlooks for the future.
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