HEBT 7755 77— 4
(1989. 7 13)

IntelligentPad
TI2TATATFTAT 727 POAKEERD-DD
V—=IFy FT AT A

H G, SERET., B #
tipE R FE TEHERTER

IntelligentPadid 7 2 7 4 7 A F 4 74 7V 27 FOEBERENEHRO OOV - Fy FTH
o CHYATLTHE, TXTOHIMEE LTHEBENRL, BRI 7 - F7uvrr, (-, (58
L COWEEEFO, WIROBVCIZLVELIMIABS NS, KEoMiclEr o itk HEMO
VAT Y PEREIDITE B & &b, SO OMOBENAK SN S, IntelligentPad it H1 K 2 &3
FTHEDIZ, AFTT, NANR—AFL TRy FI =5, 74— LAN—2, Ny FR— 2 04EBHEOH
ErRMfT 2, 74— AN—2@A—7+ -7y OKEERTIONML, Ny FR—2E+ T
D7+—7y POREEFRERT LI LHTE S,

IntelligentPad
A Tool Kit System for the Synthesis and the Management
- of
Active Media Objects

Yuzuru Tanaka, Takamoto Imataki, Akira Nagasaki

Electrical Engineering Department
Hokkaido University
Sapporo, 060 Japan

IntelligentPad is a tool kit for the storage and visual management of active media objects. It represents
everything as a pad. It associates each pad with a function such as word processing, line drawing,
tabulation, graph drawing etc. Different functions define different pads. Pasting of pads on another pad
defines a new pad that has both an arbitrary layout of fields and a new function composed of the
constituent pads. IntelligentPad provides four ways of managing a large amount of pads, i.e., visual
catalogs of pads, hypermedia networks, form bases, and pad bases. A form base stores pads with the
same format, while a pad base manages all types of pads in the system.

L INTRODUCTION

Some psychologists believe that a shape of a cup affords us
how to handle it. This effect is referred to by ‘affordance’ [1].
We believe that formats of documents and the shape of
deskwork tools also afford us how to manipulate and manage
them. Conventional database systems, however, only deal
with normalized tables. Their restricted representation
structures and operations prevent their advanced
applications to CAD/CAM, CAE, OA, and CAIL Recently, we
see many proposals on various extensions of database
concepts [2]. Among them are semantic databases,
unnormalized databases, abstract-data-type databases,
object oriented databases, and deductive databases. However,
we still lack a general paradigm that associates each object
not only with its operations but also with its visual form of
presentation.

Some proposals have partially implemented such a
paradigm. Office-By-Example (OBE) [3], developed as an
extension of QBE (Query-By-Example), implemented this
paradigm in OA by providing a relational database with good
interfacing tools to business graphs, business letters, and
electronic mails. FORMANGER [4] and FORMAL [5] are
form base systems that provide visual definition, visual
presentation, visual management, and visual retrieval of
document forms. Media Room of MIT Media Lab. is a
forerunner in the spatial management of data [6]. It
hierarchically organizes related documents, and spatially
arranges their access points at each level to map them on a
visual planar space such as a picture, a diagram, a map, or a
floor plan. These visual management systems, however, are
not capable of visually defining new document processing or
representing tools.

Visual definition of tools requires capabilities of visual
program construction. Studies on visual system definitions
are classified into three categories, i.e., (1) visual coaching,
(2) visual programming, and (3) visual management [7].
Visual coaching constructs a program through showing what
we want to do. Visual programming systems are further
classified into two groups. Diagrammatic systems accept
diagrammatic specifications of programs, while iconic
systems uses icons for program composition. Visual coaching
and visual programming systems are, however, concerned
with visual synthesis of information processing mechanisms
rather than with visual representation and manipulation of
information itself.

Besides table and form systems like OBE, visual
management systems include multimedia database systems
{8, 9], and hypertext/hypermedia systems like NoteCards
(Xerox), HyperCard (Apple), and Intermedia {10]. The
concept of hypertext and/or hypermedia systems originated
in V. Bush’s paper published in 1945 [11]. D. C. Engelbart
developed a prototype system in 1963 along this line [12]. T.
H. Nelson was the first who used the word ‘hypertext’ [13].
These research results are mainly inherited by the
researchers at XEROX PARC. Their primary concern was
the development of a personal computer and an active media
system running on it. Among them, A. Kay proposed
Dynabook in 1977 [14]. Smalltalk-80 was developed as a
language to implement active media systems.

Hypermedia systems span networks among documents by
relating an item in a document to another document, and
allow users to navigate the sea of documents along these
links. They lack sufficient facilities, however, for the visual
synthesis of media objects. Current programmable
hypermedia systems use object-oriented languages for the
media synthesis programming. NoteCards has Interlisp D,
while HyperCard has Hypertalk. While Smalltalk-80 has
introduced a lot of concepts and methods in the synthesis of
active media, it lacks a front-end hypermedia system.

IntelligentPad is a visual management system based on the
object orientation paradigm. It associates each object not

only with its operations but also with its physical form. It is
alse a front-end hypermedia system for Smalltalk-80.
IntelligentPad represents everything as a pad. Pads are all
persistent, i.e., they continue to exist in the system unless
deleted. Different pads are associated with different
functions such as word processing, image editing, line
drawing, tabulation, graph drawing etc. Pasting of pads on
another pad defines a new pad that has both an arbitrary
layout of fields and a new function composed of the
constituent pads. It also allows us to overlap images given by
different pads. IntelligentPad initially provides a set of
primitive pads. Its users can define new pads by pasting
existing pads together. Different from the previous
hypermedia systems, it provides us with direct visual
definition methods both for the propagation of operations
among different media objects and for the functional
composition of a new media object from existing ones.

The idea of using the metaphor of pasting pads originated in
the Trillium system developed by A. Henderson in 1986 [15].
The Trillium system was, however, designed to rapidly
prototype controls of photocopy machines, rather than large
interactive systems. The pad metaphor was applied only to a
restricted small set of objects with restricted functions.
IntelligentPad, however, extensively applies this metaphor
to a large variety of active media objects.

Pads can be bound to a book. A book is a pad with paging
functions, a content page, and index pages. It works as a
catalog used for browsing pads. A selection of an arbitrary
item on the content page or the index pages opens the desired
page. In CAD/CAM, CAE, OA, and CAI, we have to deal with
various document types. Among them, we have text,
drawings, images, forms in various formats, business. graphs
and charts, tables, memos and notes. They are all pads. A lot
of deskwork tools also may be represented as intelligent pads.
Some of them are scales, drawing templates, calculators,
phones, computer displays, computer keyboards, video TV
screens, meters, console panels, calenders, blackboards,
cabinets, and book shelves.

IntelligentPad manages pads by providing four different
ways of managing a large amount of pads, i.e., visual catalog
of pads, hypermedia networks, form bases, and pad bases. A
form base stores pads with the same format, while a pad base
manages all types of pads in the system. A pad base is a
database whose records are pads. Queries to a pad base are
also specified by pasting pads.

Section 2 gives the design philosophy of IntelligentPad, while
Section 3 describes its architecture. Section 4 describes some
example pad compositions including a composition of a form
base. Section 5 shows two more different ways of pad
management, i.e., - hypermedia networks and pad bases.
Section 6 concludes this paper and shows some of our future
research plans.

2. DESIGN PHILOSOPHY OF IntelligentPad

2.1 MVC Modeling and Active Media

IntelligentPad deals with two dimensional objects with pad
forms. In IntelligentPad, we are concerned only with
documents and deskwork tools. These objects are virtually
two dimensional, since the arrangement of their access points
such as buttons, levers, and books on shelves is necessarily
planar in their user’s view. :

We believe that the modeling of an object needs to include
two components, i.e., (1) its internal mechanism, and (2) its
external mode of existence. The description of the internal
mechanism consists of its state and its operation, while the
description of the external mode of existence includes its
appearance and its reaction. By its reaction is referred to its
action against the outer stimuli.

In programming languages, data abstraction corresponds to
the modeling. Historically, data types were first introduced

to describe the states of objects. Then, the introduction of
abstract data types has enabled us to describe the state and
operation of each object. These schemes describe only the
internal mechanism of each object..The MVC triple in
Smalltalk-80 has first enabled us to describe, for each object,

not only its internal mechanism but also its external mode of
existence. The model part describes the internal mechanism.

The view part defines the appearance, while the controller
part specifies the reaction.

Objects may have unobservable components of their states.
The modeling of an object needs to distinguish the observable
part from the unobservable part of its state. In this paper, the
observable part of an ob_]ect state is called the observable of
the object.

2.2 Design Philosophy

IntelligentPad was designed based on the following three
principles.

1. Everythingis ahpad. ‘

2. Every pad is persistent.

3. Each pad has its observable value.

4. Eachpadis associated with a fu‘nctiorL
5. Each pad can be pasted on another pad.

In the object-orientation paradigm, everything is represented
as an object with a state and a set of acceptable messages. In
IntelligentPad, everything is represented as a pad, i.e., an
object with a pad form. Each pad has not only its state and
acceptable messages, but also a display view and a set of
direct manipulations on this view. Pads are persistent in the
system, i.e., they continue to exist in the system unless we
delete them. Each pad has the observable part of its state.
The value of this part is called the output of the pad.

Functional differences define various kinds of pads. Some of
them are text pads with word processing functions, drawing
pads with line-drawing functiens, graph pads to represent a
given data set in business-graphs, n digit display pads for
digital display of a numerical value, meter pads for analog
display of a numerical value, switch pads for a binary value
input, button pads for command sending, table pads for
tabular representation and calculation of numbers, and
binder pads to bind various pads together. These are all
primitive pads initially provided by the system, Functions of
these pads will be detailed in later sections.

These primitive pads have the following observable values. A
text pad has as its observable the text string written on it. In
case of a drawing pad, its observable is a:list of the instances
of geometrical primitives. A graph pad has as its observable a
tabular representation of numerical values shown in. the
graph. Both a digital display pad and an analog meter have
as their observable values a single numerical value displayed
on these devices.

A paste operation gives a layout and a functional
composition. For example, a personnel form consists of a
photograph of a person, his name, his present address, his
permanent address, his education history, and his job history.
In IntelligentPad, we may associate each part of this form
with a text pad or an image pad. We can make a personnel
form by pasting these entry pads on a white form pad.
Similarly, a calculator also has a layout of display board and
buttons. We may also consider these parts as pads. The base
pad used in this case has calculation functions. By pasting
these pads on a calculation pad, we can 1mp1ement a
calculator on the display screen.

A pad becomes a subpad when pasted on another pad.
Subpads are dependents of the pad on which they are pasted.
A subpad becomes a pad when it is peeled off and placed on
the desktop, namely on the sereen background.

2.3 Pad Operations)
IntelligentPad defines the following pad operations:
1. Open/close of a pad

2. Property change of a pad

3. Registration and Naming ofa pad .
4. Copying/deleting of a pad

5. Moving of a pad

6. Save/load of a pad

7. Paste/peel of a pad

8.

Tree representation of a composition structure
9. Prinfingofa pad

Each closed pad has an iconic representation. We can design
for each pad an arbltrary icon of an arbitrary size and an
arbitrary painting. An icon may be transparent. A pad is
alive even if it is closed. Closed pads also receive messages to
change their states. A click on an icon opens it. Each pad has
a property sheet on which we can select its properties from
various property menus. Among its properties are its size, the
shape of its boarder, and its shading and pattern. If its
shading is specified transparent, the pad becomes
transparent to show only the texts and pictures on it. We can
not change the property of subpads.

Each pad has its identification code, its registration nuinber,
and its nickname. When a pad is created, the system gives it
a unique identification code. We can register any pad to the
system at any time. The registration of a pad gives it a
unique-registration number. Systém-defined pads are all
registered pads. We can give any pad an arbitrary nickhame
at any time. Each pad keeps the latest nickname. When a pad
becomes a subpad, it keeps its identification code, its
registration number, and its nickname. We can make copies
of any pad and any subpad. A nonshared copy can be used
independently from its original., while shared copies of the
same pad share the same state. A nonshared copy is
automatically given a new identification code, while it
inherits the original's registration number and nickname.
Shared copies of the same pad share the same identification
code, registration number and nickname with their original
pad. A copy of a subpad becomes a pad with all the subpads
pasted over it. The deleting of a pad deletes this pad together
with all the subpads pasted over this pad.

‘We éan move any pad to an arbitrary locatlon on the screen.

We can save and load any pad to and from a secondary
storage device. We can paste a pad on another pad, and peel a
subpad off a pad. These operations are also applicable to
closed pads. The paste location can be arbitrarily chosen if
the left top corner of the subpad lies in the underlying pad. A
peeled subpad becomes a pad with a new identification code.
It keeps its state before the separation, but breaks the
functional composition with the other pad. Once a closed pad
Py is pasted on Py, the dependency between them is kept alive
even after we open P3. We m&iy open Py at any location on the
screen. Since closed pads may be transparent and arbitrarily
large, the pasting of closed pads allow us to span navigation
networks among pads.

For each pad, we can ask the system to show its composition
structure as a tree. If the pad is primitive, the tree has only a
root node with the nickname of this pad. Otherwise, the root
of a tree shows the nickname of the base pad. Each node of
the tree corresponds to a subpad over the base pad, and shows
the nickname of this subpad. For a node corresponding to a
subpad P, its'sun nodes correspond to the subpads pasted
directly on P: A mouse click at an arbitrary node of the tree
selects its corresponding subpad. This enables us to select,

from a composite pad, one of its subpads that mlght be hidden
under another subpad.

We can print any pad on a sheet of paper.
3. IntelligentPad ARCHITECTURE
3.1 APad as an MVC triple

IntelligentPad was programmed in Smalltalk-80. Each pad
was implemented as an MVC triple, where M, V, and C
respectively stand for a model, a view and a controller. An
MVC construct.is a programming style developed in the
Smalltalk-80 culture, though its concept might apply to other
interpretive object-oriented languages as well.

For each pad, its three components play the following roles:
(1) Its model defines its state and behaviors.
(2) Its view defines how it looks on the screen.

(3) Its controller defines its mouse-interactions on the
screen.

We have extended the class View in Smalltalk-80 to define
its new subclasses. Each pad’s view is implemented as an
instance object of one of these subclasses.

In its MVC construct, each pad has an update-propagation
dependency from M to V as well as message-sending paths
from C to V and V to M. A state change of M automatically
updates V. A message-sending path from an object O; to
another object Og is denoted by O;—0g, while an update
propagation dependency from O; to O is represented by
01~703. These are two types of links between two objects.

IntelligentPad assumes that no object may have either
message-sending links to more than one object or update
propagation dependencies from more than one object. The
first restriction simplifies the implementation of a message-
sending link. We may provide each object with a reference
pointer to another object..An update propagation from one
objeet Op to other objects 04, Oy, ..., O, is implemented as
follows. We provide the object Og with a list {0y, Og, ..., Op} of
its dependents. When the object Og changes its state, it also
sends itself an changed message. This makes its. receiver
send another standard message update to all of its
dependents.

3.2 Interrelations among Pads

Between two pads, we may consider two kinds of
dependencies, i.e., an update dependency and a reference
dependency. An update dependency Py—u—P3 defines an
automatic update propagation from a pad P; to another pad
Py, while a reference dependency Py —r—>Pg defines an access
path through which Py accesses Py. These two dependencies
are respectively implemented by an update propagation link
and a reference link from the view of Pj to the view of Pa. As
a special case, it is obvious that both P—u—P and P—r—P
hold for any pad P.

IntelligentPad allows the following three combinations of
dependencies between two pads.

1 Both Py —u—Pg and Pg—r—»P; hold.
(2) Only Py —r—>P1 holds.
3) No dependency holds.

We can consistently define a relation Pyl—-P3 as
Pii—>Py

We say that there exists a pad dependency from Py to Py if
P11->P3 holds. Here, P, is the master and Py is its slave. As a
design constraint, we impose antisymmetry on this relation.
The pad dependency is a partial order relation.

iff Py—u—Pg or Pg—r—Py.

In IntelligentPad, we can set a pad dependency from P; to Pg
by pasting P2 on P;. Each pad is classified into one of the
three categories depending on the dependency set by its
pasting on another pad. A controller pad, when pasted on
another pad, sets the second combination of dependencies,
and works as an input device of its master. A view pad, when

pasted on another pad, sets the first combination of
dependencies, and works as either an 1/O device or an output
device of its master pad. Pads that are neither controller pads
nor view pads are model pads. When pasted on another pad, a
model pad establishes no links to this pad. It is just pasted
without any functional composition. IntelligentPad has MVC
structures not only inside each pad but also among pads.

In IntelligentPad, pads of the same category have the same
interface to their master pads. Every controller pad sends an
input message with a parameter value to its master pad.
Every pad sends all of its update-dependent pads an update
message without any parameter. An update message to a
view pad makes it send back an output message to its master
pad to read its observable or a component of its observable as
an output value from it. The output message is accompanied
by the registration number of the sender pad. These
messages define standard interfaces between pads (Fig. 3.1).

view pad

Py
® 1 update @ | output reg#(Py)
| input v
(only for I/O devices)
Py

(a) A view pad Py works as an 1/0 device or an output
device of P;. (outputis used to read out an output
value from the master pad, while input v is used to
send an input value.)

controller pad

Py
l linputv

Py

(b) A controller pad Py works as an input device of P;.
Figure 3.1 Standard message interfaces between pads.

A pad may have more than one output value, i.e., its
observable may have more than one.component to read.
When we try to paste a view pad on such a multioutput pad, it
shows a list of its possible output items for us to choose one of
them. The selected item is paired with the registration
number of the pasted view pad, and stored in the multioutput
pad. This mechanism allows us to paste multiple view pads
on the same multioutput pad to display different output
items simultaneously.

3.3 Primitive Pads and Their Categorization

New pads can be defined either by Smalltalk-80 programs or
by compositions of existing pads. IntelligentPad causes no
interface mismatch. Pads communicate with each other
through the three standard messages, i.e., input v, update,
and output reg#. Every pad accepts these three messages.
The two messages input v and output reg# sent to a pad P
are forwarded to its master pad if their methods are not

- defined in P. Similarly, an update message to a pad may be

forwarded to its slave pads.

Fig. 3.2 shows some categories of basic pads. Pads in the same
group are replaceable with each other. Replacement of a pad
with one of the same group gives the same information in a
different representation. A digital display pad and an analog
meter are examples of mutually replaceable pads.

view pad pad
categories
|— output pad

numerical

-n digit digital
display
-analog meter
ete.

single numerical view I

multiple numerical view] -line chart
‘bar chart
‘button with light -pie chart ete.
‘text pad
| I/Opad |[-imagepad
-graph pad
table pad etc.
-form pad
' converten .,ange conversion pad
-equality pad etc.
controller pad
| numerical lnumerical controller -le.ver
-dial ete.
-lettering pad
— textual .button
-switch ete.
-addition pad
. -minus pad
— operational |.multiplication pad
-inversion pad
*AND pad i
.OR pad
-negation pad
-enumeration pad
ete.
model pad "
-computation pad
application |-calendar pad
-database
-information retrieval
‘PERT system etc.
‘relation pad
storage folder pad
‘binder pad etc.
virtual ‘printer pad
™" devices -file.server pad
‘mail server pad ete.
L miscellaneous| -insulator pad

ete.

Figure 3.2 Some categories of basic pads.

A binder pad is used to bind pads tegether into a book. An
insulator pad is inserted between two pads to break the
dependencies between them. It is also used as a base pad on
which we may put various pads without setting any pad
dependencies from the base pad to them. Each page of a
virgin white binder pad is an insulater pad.

4. EXAMPLE PAD COMPOSITIONS
4.1 A Composition of a Hand Calculator

In IntelligentPad, we can build a hand calculator by pasting
several kinds of primitive pads on a computation pad as
shown in Fig. 4.1. We first paste a digital display pad D, a
switch pad S, and a set of button pads {B;} on a computation
pad C, and then paste a set of lettering pads {L;} on the button
pads, specifying each of them to be either number buttons or

lettering
pad L;
(controller

digital display pad D (view pad)

lettering ,—g--7
pad L; :.'_, __t./'l

buttom pad B
(controller
pad)

switch pad‘
S /

(controller
pad)

&

T (1 update,
computation pad C (model pad)

| output)

Figure 4.1 A composition of a hand calculator.

operator buttons. A computation pad represents the logic
circuits of the calculator and the case to hold them. Its model
sequentially receives a mathematical expression on numbers
to calculate the result.

A switch pad, when pasted on another pad, resets its state to
‘OFF’. When it is clicked, its state alternates between ‘ON’
and ‘OFF’. The changed state is sent to its master pad C by an
input message. The computation pad C enables its
computation when receiving an input ON message, and
disables it when receiving an input OFF message. A
lettering pad for a numeral i, when clicked, sends a message
input with i to its master pad B. The button pad B passes this
to its master pad C. Similarly, a lettering pad for an operator

_ “o” sends. this operator “o” to the pad C through B. A

computation pad C interprets the sequentially sent numerals
and operators, and changes its state to the intermediate
result of the computation. When C changes its state, this
event is reported to its view pads through the update
propagation link. In this example, the pad C has only one
view pad D. The digital display pad D, when having received
an update message, reads out the intermediate computation
result of C by sending back a request message output
reg#(D) to C. It displays the read out value on its view.

The digital display pad may be replaced with an analog
meter pad. Intermediate computation results are then
displayed on this meter. While a primitive meter has no
range selection mechanism, we can easily attach this
mechanism by providing a range selector pad under the
meter (Fig. 4.2). It is a view pad that works as a master pad of
the meter. Its model stores the current maximum scale. It
consists of a base pad and several button pads. A new
maximum scale is input by one of the button pads. Different
button pads are associated with different maximum scales.
When clicked, a button pad sends its maximum scale value to
the base pad. When a calculator pad sends an update
message to the analog meter, the range selector pad sends
back an output message to read the output value. The range
selector pad calibrates this value with respect to the current
maximum scale, and keeps the result as its output. Then it
sends an update to its master, i.e., the meter pad. This
makes the meter pad read out the output of the range selector
pad. The read out value is then displayed on the meter pad.
We can also easily design an automatic range selector pad.
These manual and automatic range selectors are applicable
to any kind of analog meter pads. These examples show the
highly generic modularity of each pad.

4.2 A Composition of a Chart Board

analog meter
without range selectors

analog meter
without range selectors
0 1
6.5
range analog meter
sele%tor 10| Withrangeselectors

65 6.5

Figure 4.2 An analog meter and a range selector.

We show in Fig.4.3 a hard copy of the display. On its lower
right area, it shows a compesed hand calculator pad. On its

Figure 4.3 A hard cdpy of the display where we composed
a hand calculator.

upper left area, the figure shows a book pad. The book shows
its content page and its first page holding a bar-chart pad. On
its upper right area, the figure shows two analog meter pads
and a lever pad.

This figure also shows another example of a composite pad.
This composite pad works as a line-chart board that is
capable of presenting a numerical table in a line chart. It
consists of a numerical relation pad, a numerical table pad,
and a line chart pad. A numerical table pad gives a tabular
view. Each column is a tuple of numerical values, while each

row represents an attribute. The leftmost column gives
attribute names, while the top row gives a name to each
tuple. A numerical relation pad has a blank pad view and a
model capable of storing a numerical relation. When pasted
on a numerical relation pad, the table pad visualizes the
relation stored in the relation pad. We can transpose the
table if necessary. The table pad also works as a data entry
device for the relation pad. When we insert a value into some
table entry on the table pad, this pad sends this value to the
numerical relation pad to update its model. When the
relation in the'relation pad changes, the table pad
immediately reflects this change on its view.

A line chart pad gives a line-chart representation of the data
set stored in its master pad. When pasted on a numerical
relation pad, it displays, for each tuple, connected line
segments showing.each attribute value. Its. X coordinate
represents a set of attributes, while its Y coordinate
measures numerical values. Instead of a line chart pad, we
may paste a bar chart pad, a pie chart pad, or more than one
of these chart pads. Chart pads pasted on the same pad will
simultaneously present the same data in different chart
forms. After we fill in the table, we automatically obtain its
graphical presentation in the chart pad. If we want, we can
freeze the chart pad, peel it off, and move it to any other
place. Freezing allows us to keep the current state of the pad.

4.3 Composition of a Form Base Pad

A form base pad is also worth mentioning. It allows us to
design a specially formatted form through pasting text and
picture pads on it. Its model stores a collection of key-record
pairs. When a pad is pasted on a form base pad, its
registration number and its contents are paired and added to
this collection in the form base pad. The registration number
works as the key for its paired value. Fig. 4.4 shows this
mechanism. Paste operations give an arbitrary layout of the

\ Member Record Py

photo

Py

Lo ‘ -y Hokkaido Univ.
Sapporo, 060 Japan

M : {(reg#(Py), ‘Y. Tanaka’),
(reg#(Pa), 39, ... (reg#(P2), ...}

Figure 4.4 A composition of a form.

entries. A mouse click selects an entry to fill in. The selected
entry pad receives the following keyboard inputs until it
receives a return code. Then it sends input to the form base
pad to insert a pair of its registration number and the input
text into the collection in the form base pad.

Pads in the file category represent files. They are called
folders. Printers, floppy disks, network servers, and disk files
are all considered as files. Folders are model pads. If we place
an icon of a pad over a folder icon, this pad is sent from the
desktop to the corresponding file.

Among various folders, we have a form folder. This is a disk
file that stores forms of the same type. We can specify the
associated form type by pasting a registered form pad on the
form folder pad. Suppose that this form pad has n entry item
pads Py, Py, ..., P, on it. This form folder stores forms {F;}
with these entry item pads. Forms of other types would be
rejected to store in this folder. A form F; is stored as a

collection {(reg#(Py), vj1), (reg#(Pg), via), ..., (reg#(Py), vin)},
where vj; is the contents of the P; pad on the form pad F;. A
form pad, when clicked, sends its master pad its association
list {(reg#(Py), v1), (reg#(Pg), v9), ..., (reg#(P,), vy} by an
input message. A form folder pad, when sent an association
list {(reg#(Py), vy), (reg#(P3), v9), ..., (reg#(P,,), v,)}, searches
the set {F';} of stored forms for such a form F; in which, for any
J satisfying v;= nil, the entry pad stores the same value as v;.
It keeps the searched list {(reg#(Py), vjy), (reg#(P2), vi9), ...,
(reg#(Pp), v;y)} as its output, and sends its slave view pad an
update. Then the form pad pasted on the form folder reads
out this searched list. It keeps this list as its output and sends
an update to its slave view pads. Each entry pad P; sends
back output reg#(P;) to the form pad. When receiving
output reg#(P)), the form pad searches its output list
{(reg#(P1), v;1), (reg#(Pg), v;9), ..., (reg#(P,), vy} for the pair
(reg#(P;)), v;j) with a keyword equal to the parameter of the
output message. It returns the value v;; to the entry pad Pj,
which displays this value vj;.

This process implements a mechanism that searches a set of
stored forms for the one having, for every specified field, the
same value as the form shown on the folder pad. To retrieve a
specific form from the form folder, we need only to specify the
retrieval condition on the form pasted on the folder pad. A
mouse click on the specifying form starts the search process.
The retrieved form is displayed on the same form pad. We can
make a copy of this form pad to use it elsewhere.

A form folder with a form pad pasted on it, thus, naturally
implements a form base system in the IntelligentPad
paradigm. It allows us to use any pads as parts of a form.
Thus, me may define, for example, a form with a meter as one
of its parts to implement a form base for such forms.

4.4 Arithmetic Card

IntelligentPad has also potential applicability to CAIL
systems. Let us consider, for example, an implementation of a
simple educational card with an arithmetic question as
shown in Fig. 4.5 (a). This card is a self-learning tool that

Give me your answer.

(a) arith. card teaching subtraction

your answer good/bad

Give me your ansyer. . .. P.-+ Jyouranswer good/bad:
Br.ak | P e | S PR

e ol = R
“‘ * '&Epu:-7

P Mycg e sg ey ay nyayn &

AREREE RN
3 ‘ 1
]

(a) arith. card teaching subtraction

Figure 4.5 An arithetic card and its composition.

teaches subtraction. It requests a pupil to give a
numerical answer to a subtraction of two apples from five
apples. If he gives a correct answer, he will get a circle.
Otherwise, he will get a black mark.

In IntelligentPad, this card may be implemented as shown in
Fig. 4.5 (b). It consists of 15 pads including 7 apples. The pad
P, is a model pad with no function but storing an observable
value. The controller pad P is an addition pad that calculate
the sum of its subpads’ observable numerical values. The
controller pad P, is a minus pad that changes the sign of its

subpad’s observable numerical value. The two controller pads
Pgand P, are enumeration pads that count the number of the
subpads pasted directly on them. Each apple is also a
transparent controller pad with an apple picture on it. Thus
pad Py calculates 5 —2 to obtain 3 as its observable. The view
pad Pr is an equality pad that examines if the input value
from its slave controller is equal to the observable value of its
master pad. If the equality holds, the observable. of the pad
takes the true logical value. Otherwise, it takes the false
value. The pad Py is a number pad. When a numerical value
is written on it, P, sends this value to its master pad. In this
example, the master pad of Py has 3 as its observable value,
while the slave controller of Py gives 2. Thus, the observable
of the equality pad becomes false. The view pad P}, displays
either of the two logical values. It is actually a button-with-
light pad. Its display patterns can be arbitrarily designed
with the bit-map editor. The letters and words on this card
are written on text pads pasted on insulator pads, and pasted
on the card. Pupils can delete or add apple pads on the left
hand side to make a new question.

5. MANAGEMENT AND RETRIEVAL OF PADS
5.1 Definition and Navigation of Hypermedia Networks

Hypermedia systems such as NoteCards and HyperCard span
networks among documents by relating an item in a
document to another document, and allow users to navigate
the sea of documents along these links. They use two types of
links, i.e., button-links and word-links. A button-link
associates a media object with a button on another media
object. A click on this button gets the associated media object
on the screen. Buttons may have different sizes. A word-link
associates a media object to an appearance of a specified word
or word string in a text media. A click on this word or word
string gets the associated media on the screen.

IntelligentPad allows us to define these links among pads. A
button-link from a pad P; to a pad Py is implemented by
pasting a shared copy of the iconic representation of Py on Py.
IntelligentPad allows us to change the size of the icon and, if
necessary, to make it transparent. A double click on the icon
opens Py _Since we can use arbitrary number of shared copies
of the same pad, we can associate the same pad with
arbitrary number of different button areas on different pads.
We can also use nonshared copies wherever they are
required.

A word-link mechanism is already built in the text pad as its
primitive mechanism. It provides two modes of association.
Context-sensitive association associates a pad with a
specified word at a specified location in the text, while
context-free association does not specify the location. In the
latter association, wherever we click the specified word, we
get the associated pad on the screen.

5.2 Pad Base and Its Search

Pads are-‘all persistent in IntelligentPad. We need efficient
mechanisms ‘both for the management of pads and for the
retrieval of specified pads. IntelligentPad provides three
kinds of access methods, i.e., browsing, navigation, and
quantification. The binder pad allows us to organize pads and
icons in a catalog form. We can browse such catalogs to find
desirable pads. The capability of spanning two kinds of
hypertext links among pads allows us to organize pads in
networks, through. which we can navigate to find the pads in
search. A form base allows us to find required pads by
specifying the quantification condition satisfied by these
pads. Each form base, however, stores pads with the same
format. Thus form bases cannot meet our needs to manage all
types of pads in an integrated way. IntelligentPad provides a
special folder called a pad base to meet such needs.

A pad base is a database in which stored records are all pads.
IntelligentPad may define any number of mutually exclusive
pad bases. Pad retrieval from each pad base requires some
method to quantify the pads to find. IntelligentPad has

adopted the Query-By-Example approach for the
quantification.

Each pad has its nickname, registration number, composition
structure, and the observable values of its constituent
subpads. Each of these may appear in retrieval conditions.
The registration number of a pad specifies its type. We will
define the signature of a pad as follows. It is a tree with a pair
of a registration number and a value at each node. Its root
node has a pair of the registration number and the observable
of the base pad. Each son of its root has a subtree
representing the signature of a composite pad that is directly
pasted on the base pad. Thus, a composite pad in Fig. 5.1 (a)
has its signature as shown in (b).

Py Pig Py
- =

Py Py
.~

\

Py

\

base pad

(a) composition structure

(reg #(Py) obs(Py))

T

(reg#(P1) obs(Py)) (reg #(Pg) 0bs(Pg))

TN |

(reg#(Pyy) 0bs(P11)) (reg#(Py2) 0bs(P12)) (reg#(Pg1) obs(P21)) .

reg#(P) : the registration number of P
0bs(P) : the observable value of P

(b) pad signature
Figure 5.1 a composite pad and its signature.

The pads to retrieve can be quantified by partially specifying
their signatures. Such a specification partially specifies a
signature tree, remaining some of its nodes, subtrees, and/or
the observable values of some nodes unspecified. Figure 5.2
(a) gives an example partial pad specification, while Figure
5.2 (b) shows a pad representation of the same partial
specification. In Fig. 5.2 (b), each pad P; except Pg must be
selected among those with the same registration number
reg#;. The pad Py is a special pad only used in queries. It
specifies no condition except the existence of a pad at its
level. We can find these pads P; by specifying their
nicknames or by browsing a pad catalog. The shaded pads in
the figure indicate that their observable values are not
quantified. We can shade any pad by a mouse click on it. The
pad representation of a partial specification is called a basic
pad query.

For example, a shaded computation pad with a shaded digital
display pasted on it may be used as a query to retrieve every
composite pad with a digital display pad pasted on a base
computation pad. The retrieval result includes various hand
calculators with different sizes and layouts. If we further
specify the digital display pad value to be 5.0 in the above
query, the retrieval result excludes such a pad with its
display value different from 5.0. IntelligentPad uses such a
pad representation as a basic query to each pad base. It
retrieves all the pads with signatures satisfying the partial
specification.

(reg#o —)

TN

(reg#l -) -

(reg#11 —) (reg#21 0.3)

(a) a partial specification
of signatures

(b) pad representation of the partial specification

Figure 5.2 a composite pad and its signature.

For an insertion of a pad into a pad base, we only need to
place the icon of this pad over the pad base icon. For issuing a
query, we may open the pad base and paste the pad query on .
it. We can also relate a pair of two basic pad queries to satisfy
some conditions. These two queries may or may not be issued
to the same pad base. IntelligentPad allow us to specify
either an equality/inequality relation between an observable
in one pad query and an observable in the other, or a
dependency relation between the two pad queries by pasting
the icon of one of them on the other. In both cases, the system
applies the nested loop algorithm to perform such complex
queries. Update queries can be also specified in similar ways.

6. CONCLUSION

In this paper, we have proposed a system for visual synthesis
and visual management of active media objects.
IntelligentPad represents everything as a pad. It associates
each pad with some function. The pasting of pads on another
pad visually defines a new pad with an arbitrary layout of
fields and a new function composed of the constituent pads.

Each pad is implemented as an MVC triple. Its model defines
its state and behavior. Its view defines how it looks on the
display screen, while its controller defines its mouse-
interaction. Pads are classified into three categories.
Controller pads, when pasted on other pads, work as their
input devices. View pads, when pasted on other pads, work as
their output devices or I/O devices. The remaining pads are
model pads.

Through some examples, we have shown the highly generic
modularity of pads. Each pad works as a standard part-or
attachment. It works as a generic software module that
modifies the state, the behavior, or the visual image of
another pad. The capabilities of IntelligentPad will further
increase as we compose more pads.

IntelligentPad provides four ways of managing a large
amount of pads, i.e., visual catalogs of pads, hypermedia
networks, form bases, and pad bases. A form base stores pads

with the same format, while a pad base manages all types of
pads in the system.

IntelligentPad may also be considered as a system
integration tool. We may consider any application program
as a model, and provide this with an appropriate view and an
appropriate controller. We can, thus, defines a new pad. We
call these view and controller a pad interface. Provision of an
appropriate pad interface will allow us to use an arbitrary
application program in the integrated environment of pads.

This system integration capability indicates a further
extension of IntelligentPad. The model of a pad may not
necessarily be implemented in Smalltalk-80. Smalltalk-80
running on UNIX allows us to implement any pad model in
another language such as C. We may also consider pads as an
extended window system. -

ACKNOWLEDGEMENT

We would like to express our thanks to Dr. Adele Goldberg of
ParkPlace Systems for her discussion with us. We also thank
Messrs Kazushige Oikawa, Seiichirou Kamishiro, and
Hayaki Watanabe of Fuji Xerox for their introduction of
Smalitalk-80 Culture to Japan and to our laboratory.

REFERENCES

[1] Gibson, d. d., The Ecological Approach to Visual
Perception, Houghton Mifflin Comp. Boston, 1979.

[2] Arav, G, and Clifford, J. (eds.), New Directions for
Database Systems, Ablex Publishing Corp. NJ (1986).

[3] Zloof, M. M., ‘QBE/OBE: A Language for Office and
Business Automation,” IEEE Computer, Vol. 14, No. 5
(May 1981), pp. 13-22.

[4] Yao, S. B., Hevner, A. R., Shi, Z., and Luo, D.,
‘FORMANAGER: An Office Forms Management
System,” ACM Transactions of Office Information
Systems, Vol.2, No.3 (July 1984), pp. 235-262.

[5] Shu, N. C., ‘FORMAL: A Forms Oriented Visual

Directed Application Development System,” IEEE

Computer, Vol.18, No.8 (Aug., 1985), pp. 38-49.

Negroponte, N., ‘Media Room,” Proc. of the Society of

Information Display, Vol. 22, No. 2 (1981), pp. 109-113.

{71 Shu, N. C., Visual Programming, Van Nostrand
Reinhold, NY, 1988

[8] Christdoulakis, S. et al., ‘Multimedia Document
Presentation, Information Extraction, and Document
Formation in MINOS: A Model and a System,” ACM
Transaction on OIS, Vol. 4, No. 4 (1986), pp. 345-383.

[9] Woelk, D., et al. ‘Multimedia Information Management
in an Object-Oriented Database System,” Proc. of the
13th VLDB Conference, Brighton (Sept. 1987) pp. 319-
329.

[10] Meyrowitz, N., ‘Intermedia: The Architecture and
Construction of an Object-Oriented Hypermedia System
and Applications Framework,’” ACM OOPSLA ’86
Conference Proceedings (1986), pp. 186-201.

[11] Bush, V., ‘As We May Think,’ The Atlantic Monthly,
Vol.176, July 1945, 101-108.

{12] Engelbart, D.C., ‘A Conceptual Framework for the
Augmentation of Man’s Intellect,” In Vistas in
Information Handling (Howerton & Weeks Eds.), Vol.1,
Washington, D.C., Spartan Books, 1-29.

[13] Nelson, T.H., ‘A File Structure for the Complex, the
Changing, and the Intermediate,’ Proc. of the ACM
National Conference, 1965, 84-100.

[14] Kay, A. and Goldberg, ‘A., Personal Dynamic Media,’
IEEE Computer 10(3), March 1977, 31-42.

[25] Henderson, A., ‘The Trillium User Interface Design
Environment,’ Proc. of CHI '86, 1986, 221-227.

[6

—

