HERTY -5 275+ 80—13
(1990. 1. 286)

A%) RIFIE SR b DRI 2 7 AlcDnT

EREE BREE K5 E=
IR TR

‘ HMEUEEEr RT3 A=) HYFFHEBEE DD, HLHE L X 7L 2RET 5, g
RET 5 A2) BYHIHEERER, TFL 2087 a - TR I 2RO A Y e A~OHFT 7 w228
WHER AT Y VR F LTH B, BIEOHMT. HE¥HNEy F OERY bD A€) BGFIE EEIE S EERH
BETH D5, COFEBEEESROHEBICMAMT s iick), AALHIEPPRICMLC L HTES
FLeRHE 27 62 BETE 5, ARG TR, Bic, CofEE»HEe71 L LTERIEL, 208
HEtEhe>wThEHT 3,

On a New Supercomputer

with a Memory-Based Parallel Computation Engine

Naofumi TAKAGI, Yasuhiko TAKENAGA and Shuzo YAJIMA
Faculty of Engineering, Kyoto University
Yoshidahonmachi, Sakyo-ku, Kyoto 606, Japan .

We propose a new supercomputer with a memory-based parallel computation engine which accel-
erates computations for solving combinatorial problems drastically. The memory-based parallel com-
putation engine is a memory system in which several memory cells can be accessed in parallel through
partial address decoding. Using today’s technology, we can build a memory-based engine with the
capacity of several gigabits. Attaching this engine to an ordinary serial computer, we can construct
 a new supercomputer which solves combinatorial problems efficiently. We also f§rma.lize the proposed

supercomputer as a computation model, and investigate its computational power.

1 Introduction

A lot of combinatorial problems which we often en-
counter in several engineering areas are NP (Nondeter-
ministic Polynomial time) complete or NP hard. Many
researchers believe that the computation time to solve a
problem of this kind on a serial computer is proportional
to the exponential of the size of the problem instance.
Many researches are being carried out to develop su-
percomputers to accelerate scientific numerical computa-
tions. Vector processors are now widely used and several
parallel processor machines have been developed. How-
ever, a vector processor is a kind of serial computer and
requires a large amount of time to solve a hard combi-
natorial problem. A parallel processor machine requires
impractically many processors to solve such a problem
efficiently. In this report, we propose a new supercom-
puter with a memory-based parallel computation engine
which accelerates computations for solving combinato-
rial problems drastically.

Recent progress in the large-scale integration of semi-
conductor memory is remarkable. 4Mbit DRAM LSI’s
are available, and 16Mbit ones are developed in labo-
ratories. Memory systems with the capacity of several
gigabytes are built for vector processors. Although mem-
ories are originally for storing data, many. researchers are
aware that highly parallel computation can be obtained
by adding some functions to ﬁlemories [1, 2]. Several
kinds of functional memory such as content addressable
memories have been proposed and developed [3]. In this
report, we consider a new type functional memory, by
which we can achieve extremely parallel computation.

The memory-based parallel computation engine pro-
posed in this report is a memory system in which several
memory cells are accessed in parallel through partial ad-

dress decoding. In the engine, 2" different processings

can be carried out on 2" memory cells through n ac-
cesses according to their addresses, and therefore, expo-
nential speed up can be obtained. Using today’s technol-
ogy, we can build a memory-based computation engine
with the capacity of several gigabits, and can realize ex-
tremely parallel computation. Just attaching this engine
to an ordinary serial computer, we can solve combinato-
rial problems efficiently.

We also investigate the computational power of the
proposed supercomputer. We first formalize the pro-
posed supercomputer as a computation model called an
FRAM. Then, we show that the class of problems which
can be solved by the FRAM within polynomial time is
equal to A}, i.e., the class of problems which can be

solved by a deterministic polynomial time bounded ora-

. cle Turing machine with an NP oracle [4]. A} includes

the classes NP and co-NP.

In the next section, a memory-based parallel compu-
tation engine is proposed. In Section 3, a new super-
computer with this engine is proposed. In Section 4, the
computational power of the proposed supercomputer is

considered.

2 A Memory-based Parallel Computation En-

gine

We propose a memory-based parallel computation
engine. The engine is a memory system in which several
memory cells are accessed in parallel through partial ad-
dress decoding. It has three inputs, i.e., an instruction,
an address and a mask input, and one output. It accepts
three instructions, RESET, WRITEL and SEARCHO.

In the RESET operation, 0 is set to all memory cells.
In the WRITE1 and the SEARCHO operation, an ad-
dress and a mask are fed, then the memory cells whose
addresses match to the fed address except the masked

bits are accessed. (An address bit is mask when its cor-

responding mask bit is 1.) More than one cells may be ac-
cessed at the same time. In the WRITE1 operation, 1 is
written to all accessed cells in parallel. In the SEARCHO
operation, the engine outputs 1 when there is at least one
cell that stores 0 among the accessed cells.

A memory LSI for the engine is a modification (sim-
plification) of a content addressable I;lemory LSI[3]. It
consists of five blocks, i.e., a memory cell array, a word
operation block, a bit operation block, a search result
gathering block and a control block. The memory cell
array is a two-dimensional array of memory cells. Fig.
1 shows a static-type memory cell. We can design a
dynamic-type memory cell by removing the flip-flop and
the B; line from the static-type one. (A mechanism for
refreshing is required in a dynamic-type memory LSI.)
The word and the bit operation block include a word
and a bit address decoder, respectively. The address de-
coders are modifications of those in an ordinary memory
LSI. Several W S; (word-selected) and BS; (bit-selected)
lines may be activated at the same time in accordance
with the mask. Fig. 2 shows the search result gathering
block.

In the RESET operation, every W;, every X;, and
every B; line are set to 1 and every B; line is set to 0.
Then, every D;; becomes 0. In the WRITE1 operation,
each W; and each X; line are set to WS; and BS; re-
spectively, and every B; and every B; line are set to 1
and 0 respectively. Then, the D;;’s whose corresponding
WS; and BS; are 1 (the accessed cells) become 1. In the
SEARCHO operation, every M; line aﬂd the G line are
precharged, each Kj line is set to BS; and every W; and
every X; line are set to 0. Then, the output becomes 1
if and only if at least one D;;, whose corresponding W S;
and BS; are 1, is 0. Otherwise, the output is 0.

Using today’s technology, it seems easy to fabricate

the proposed memory LSI with the capacity of 1Mbits or

more. We can build a memory-based computation engine
with the capacity of several gigabits by the above mem-
ory LSD’s, in a similar way to building a main storage
using ordinary random access memory LSI’s. The ma-
jor differences are that the engine requires mechanisms
for partial address decoding and for gathering the search
result. This engine can also be used as an ordinary ran-
dom access memory system with a slight modification,

and thus, can be used as an extended main storage.

3 A Supercomputer with a Memory-Based Par-

allel Computation Engine

Attaching the memory-based computation engine
and adding the three instructions; RESET, WRITE1
and SEARCHO to an ordinary computer, we can build
a new supercomputer which solves combinatorial prob-
lems efficiently. We can obtain exponential speed up in
combinatorial computations using the engine.

As an example of solving a hard combinatorial prob-
lem on the proposed supercomputer, we show a linear
time algorithm to solve CNF-SAT which is a well-known
NP-complete problem. CNF-SAT is a problem to answer
whether there is an assignment for the variables that sat-
isfies the given CNF (conjunctive normal form) Boolean
formula. Here, we consider k-variable CNF-SAT.
[Algorithm CNF-SAT] -

Step 1: Perform following (1) and (2) for each sum-term.

(1) Make an address and a mask according to each
sum-term. In the mask, let the bits corresponding to the
variables included in the sum-term be 0 and the others
be 1. In the address, let the bits corresponding to the
variables appearing as negative literals in the sum-term
be 1 and the others be 0.

(2) Execute a WRITEL1 instruction with the address
and the mask made in (1).

Step 2:

(1) Make a mask such that the lowest k bits are 1
and the others are 0. Make an address whose bits are all
0.

(2) Execute a SEARCHO instruction with the address
and the mask made in (1).

If the output of the engine is 1, the answer is ’yes’.

We assume that the computation engine is reset by
a RESET instruction before the execution of the algo-
rithm. In Step 1, for each given sum-term, we check the
assignments for variables which do not satisfy the sum-
term by writing 1 in the corresponding memory cells. For
example, for a sum-term z5 + £, + z, in a five variable
CNF Boolean formula, we make the mask 0...01100 and
the address 0...00010, then write 1’s in the four corre-
sponding cells, i.e., cells at 0...00010, 0:..00110, 0...01010
and 0...01110. After Step 1, only the memory cells, which
correspond to the assignments to the variables that sat-
isfy the given formula, keep 0. Therefore, in Step 2, we
examine whether there is such a cell or not by searching
0. The computation time to solve CNF-SAT is propor-
tional to the number of sum-terms in the given formula.

When we havé a memory-based computation engine
with the capacity of 4Gbits, we can solve CNF-SAT with
up to 32 variables very efficiently. We can also accelerate
the computation to solve CNF-SAT with more than 32
variables drastically. It is well known that many com-
binatorial problems are reducible to CNF-SAT. We can
solve some of those problems efficiently on the proposed
supercomputer.

By the abo.ve algorithm, we can only know whether
there is a truth assignment or not. We can get a truth
assignment by adding the following procedure to the al-
gorithm.

[Procedure GET]

Perform following (1) through (3) while there is a 1 in

the mask.

(1) Change the most significant 1 in the mask to 0.

(2) Execute SEACHO operation.

(3) If the output of the engine is 0, change the address
bit corresponding to the mask bit changed in (1) to 1.
(Note that initially it is 0 from Step 2 (1).)

The assignment corresponding to the final address is
one of the answers. o

We can get another truth assignment by executing
WRITE] operation with the final address and the final
mask (all 0) and then performing Step 2 and [Procedure
GET). Repeating these operations, we caﬁ get all truth
assignments.

As another example, we consider the eight queen
problem. This problem is well known as a problem that
requires a trial-and-error or backtracking algori.thm. On
the supercomputer with the memory-based engine, it can
be solved straightforwardly. We put one queen on each
row and express the position (the column number) of
each queen by a 3-bit binary number. Namely, we ex-
press all arrangements of the eight queens by 24 bits
(eight 3-bit numbers). There are unsuitable arrange-
ments among them, and therefore, we check the unsuit-
able arrangements.

[Algorithm 8-QUEEN]

Step 1: For every combination of two rows, i.e, the i-th
and the j-th row where i < j, perform the following (1)
and (2).

(1) Make a mask in which the bits corresponding to
the i-th and the j-th row are 0 and the others are 1.

(2) For every unsuita.ble position pair in the combina-
tion of the two rows, perform following (2-1) and (2-2).
{For each position on the i-th row, there are at most
three unsuitable positions on the j-th row, i.e., on the
same column and on the same diagonal lines.)

(2-1) Make an address in which the bits correspond-

—100—

ing to the rows are the column numbers of the unsuitable
position pair and the others are 0.

(2-2) Execute a WRITEL1 instruction with the ad-
dress and the mask made in (2-1) and (1) respectively.
Step 2:

(1) Make a mask such that the lowest 24 bits are 1
and the others are 0. Make an addres; whose bits are all
0.

(2) Execute [Procedure GET] to get a queens’ ar-

rangefnent. (m]

4 The Computational Power of the Supercom-

puter

To investigate its computational power, we first for-
malize the proposed supercomputer as a computation
model. The model consists of a RAM (Random Access
Machine), a memory-based computation engine and a
search result register, as shown in Fig. 3. The RAM
is one of the most common serial computation model
[5]. The memory-based engine is basically the same as
that we proposed in Section 2, but we assume that there
are infinitely many memory cells, and therefore, assume
that the address and the mask are infinitely long. The
search result register is a 1-bit flag. 0 or 1 is loaded au-
tomatically into the register according to the result of a
SEARCHO instruction. We call this model an FRAM.

Table 1 shows the instruction set of the FRAM.
The instructions except SEARCHO and WRITET1 are the
same as those of an ordinary RAM. The search result reg-
ister can be an operand. SEARCHO and WRITE]1 are
instructions which use the memory-based engine. The
contents of the operands are regarded as binary numbers
and 0’s are assumed in the higher bits out of consider-
ation. Namely, when n-bit binary numbers are given as
‘opera,nds, the 2" memory cells at the positions from 0

through 2" — 1 are processed. All memory cells of the

engine initially store 0. The computation time on the
FRAM is defined to be the number of executed instruc-
tions.

We will show that the class of problems which can
be solved by the FRAM within polynomial time is equal
to A}, i.e., the class of problems which can be solved by
a deterministic polynomial time bounded oracle Turing
machine with an NP oracle [4].

We first show the following lemma.

[Lemma 1]

All the sets in NP U co-NP can be accepted by the

- FRAM within polynomial time.

Proof

All sets in NP are reducible to CNF-SAT within poly-
nomial time by a RAM. CNF-SAT can be solved in the
same way as [Algorithm CNF-SAT] shown in Section
3. Since it takes O(k) time to make an address and a
mask in Step 1 (1) on the FRAM, it requires O(mk)
time to solve k-variable CNF-SAT where m is the num-
ber of sum-terms. Thus, all sets in NP can be accepted
within polynomial time. Since the FRAM can see that
an input is rejected, it is also clear for a set in co-NP. O

Now, we show the following theorem on the compu-
tational power of the FRAM.
[Theorem 1]

The class of sets accepted by a polynomial time
bounded FRAM is identically A}.
Sketch of Proof

We show that an OTM (oracle Turing machine) with
an NP oracle and the FRAM can simulate each other
within polynomial time. The basic idea of this proof is
that a series of instructions to the memory-based engine
corresponds to an oracle for CNF-SAT.

“First, we show a simulation of polynomial time
bbound'ed OTM with an NP oracle by the FRAM. Except

the query state, the simulation technique is the same as

—101—

that in a simulation of a Turing machine by a RAM [5].
When the OTM enters the query state, the FRAM re-
duces the contents of the oracle tape to CNF-SAT. Since
the oracle set of the OTM is in NP, it can be reduced to
CNF-SAT within polynomial time by the FRAM with-
out using the memory-based engine [6]. CNF-SAT can
be solved within polynomial time by [Algorithm CNF-
SAT]. Therzefore, a polynomial time bounded OTM with
an NP oracle can be simulated by the FRAM within
polynomial time.

Next, conversely, we show a simulation of the FRAM
by an OTM with an NP oracle. The instructions of the
FRAM except WRITE1 and SEACHO are the same as
those of a RAM, and can be simulated by a deterministic
Turing machine within polynomial time [5], when they
do not refer to the search result register as an operand.
The results of the computations on the engine are re-
ferred to only through the search result register. The
OTM enters the query state only when the search re-
sult register is referred to as an operand. Whenever the
FRAM executes a WRITE1 instruction or a SEARCHO
instruction, the OTM writes the contents of the address
and the mask int§ the oracle tape. As is shown in [Al-
gorithm CNF-SAT), they correspond to a CNF Boolean
formula. Therefore, the content of the search result reg-
ister is given by a CNF-SAT oracle. Therefore, the poly-
nomial time bounded FRAM can be simulated by the
OTM with a CNF-SAT oracle within polynomial time.

a

5 Conclusion

-We have proposed a mew supercomputer with a
memory-based parallel computation engine for acceler-
ating combinatorial computations. We can solve several
hard combinatorial problems very efficiently by the pro-,

posed supercomputer. We can achieve extremely parallel

computation by using recent progress in the large-scale
integraﬁon of semiconductor memory. The function that
we added to a memory, i.e., the parallel accessibility
through partial address decoding, is very interesting as a
new function to be added to functional memories [7, 8].

We have also investigated the computational power
of the proposed supercomputer. We have formalized the
computer as a computation model and have shown that
the class of problems which can be solved by the model
within polynomial time is equal to AS. The model is
very interesting as a new computation mod‘el because of

its simplicity and realizability.

References

[1] T.Kohonen, Content Addressable Memories. 2nd ed.,

Springer-Verlag, 1987.

[2] L. Chisvin and R. J. Duckworth, ” Content-addressable
and Associative Memory: Alternatives to the Ubig-
uitous RAM,” IEEE Computer, vol.22, pp.51-64, Jul.
1989.

[3] T. Ogura, J. Yamada, S. Yamada and M. Tan-no,
? A 20-kbit Associative Memory LSI for Artificial In-
telligence Machines,” IEEE J. Solid-State Circuils,
vol.24, no.4, pp.1014-1020, Aug. 1989.

[4] L. J. Stockmeyer, "The Polynomial Time Hierarchy,”
Theoretical Computer Science, vol.3, no.1, pp.1-22,
1977.

[5] S. A. Cook and R. A. Reckhow, " Time Bounded Ran-
dom Access Machines,” J. Computer and System Sci-

ences, vol.7, no.4, pp.354-375, 1973.

[6] S. A. Cook, ”"The Complexity of Theorem Proving
Procedures,” Proc. 3rd Annual ACM Symposium on
the Theory of Computing, pp.151-158, 1971.

—102—

(7

(8

M. Ohkubo, H. Yasuura, N. Takagi and S. Yajima,
”A Hardware-Oriented Unification Algorithm Using
a Content Addressable Memory,” Trans. Information
Processing Society of Japan, vol.28, no.9, pp.915-922,
Sep. 1987 (in Japanese).

H. Yasuura, T. Tsujimoto, and K. Tamaru, "Func-
tional Memory Type Parallel Processor Architecture
for Combinational Problems,” Trans. Institute of Elec-
tronics, Information and Communication Engineers,

vol.J72-A, pp222-230, Feb, 1989 (in Japanese).

WS

i

B Kj Xj i
Wi
1 flip-flop -~
| G o T oy N - e
Dy3 Dj;
M;

Fig.1 A design of the memory cell (static-type).

Address

Random Access Memory-based

Maching Mask Engine

Search Result Register

Fig.3 A scheme of the FRAM.

—103—

G

TJ }— Precharge

Y

Output
Fig.2 A design of the search
result gathering block.
Table 1. The instruction
set of the FRAM.
Instructions
LOAD operand
STORE operand
ADD operand
S.UB operand
READ operand
J _U MP label
JZERO label
JGTZ label
WRITE1 operl, oper?
SEARCHO oper],oper2
ACCEPT
REJECT

