HE®T —F7 79+ 095—13
(1992. 8. 19)

ENFFIEERE AP1000) —< AN R—F 2 —F
Toa) X LDOMRE |

I. Chuang, $##/L {#&
(B) BIEUTZEeT
monkey@mit.edu, lions@flab. fujitsu.co.jp

199247 H 228

N2 DT vty 3 RFEELE) —<ANA A—F 2T TAT I XA Atk NxN HBROBEFIE
i AP1000T2N 72— T 3al—3a v TELLLeRT. /J—<A =93 TATYXLK
SHLTARE Y E—=SERET L ANWDT, BEF— N~y FRREn COEDHELDFE, /—<1

PTG RTATY) ZALACHSRYERER B V. KR CHAZAWAEe—NAfE, Xxvy (FYV 740
7 Z0FH) , B XUSKTEBEEOHERIC D W TRET 3.

Normal Hypercube Algorithm Performance on the AP1000

Isaac Chuang Takeshi Horie
Fujitsu Laboratories Ltd.
1015 Kamikodanaka, Nakahara-ku
Kawasaki 211, Japan
monkey@‘mit.edu, lions@flab. fujitsu. co.jp

We show that the simulation of a N2 processor Normal Hypercube Algorithm 4 on a NxN
processor Fujitsu AP1000 torus may be performed in 2N cycles. Our results indicate that A
is often faster than the corresponding normal torus algorithm, because the number of messages
passed is lower and thus overhead is reduced. We present performance data for global reduction,
scan (prefix calculation), and all-to-all personalized communications.

1 Introducti_on

Normal hypercube algorithms constitute an
important class of algorithms used to deal with
parallel prefix calculation, global reduction, fast
Fourier transforms, and sorting, among other
problems common to distributed memory par-
allel processors. The ability to efficiently simu-
late normal hypercube algorithms is important
in the design and evaluation of potential net-
work structures. .

In this paper, we investigate the simulation
of normal hypercube algorithms on the Fujitsu
AP1000’s two-dimensional toroidal mesh inter-
connect. In Section 2, we define the prob-
lem in detail and estimate the expected perfor-
mance. We also propose an optimal node map-
ping function based on the “crossover” net-
work.. Next, we present experimental results
comparing the use of normal hypercube algo-
rithms to the usual torus algorithms for several
problems including global reduction, prefix cal-
culation, and all-to-all personalized communi-
cations. Finally, we conclude with an evalua-
tion of the usefulness of normal hypercube al-
gorithms on the AP1000.

2 Normal Hypercube Algorithms
on a 2D Torus

The problem we consider here is the simu-
lation of a normal hypercube algorithmona N
processor, AP1000 (two-dimensional, wormhole-
routed, structured-buffer pool) toroidal mesh(1].
The algorithm is based on a N processor hy-
percube.

Normal hypercube algorithms A are defined[2]
as those which utilize only one dimension of
hypercube edges at any step, and moreover,
use only consecutive dimensions in consecutive
steps. In this paper, without loss of generality,
we limit ourselves to the subset .4’ which in-
cludes only those normal hypercube algorithms
which use each dimension once and only once.
This simplifies performance estimation.

2.1 Hypercube networks

Our strategy in embedding a normal hyper-
cube algorithm A’ on a torus is to provide a
mapping function between the nodes of the hy-
percube and those of the torus. To do this, we
first consider the labeling of nodes in two hy-
percubic networks, the butterfly and crossover.

The r-dimensional butterfly network, which
is quite similar in structure to the hypercube,
has (r + 1)2" nodes labeled by pairs (w,%},
where i is the level of the node (0 < i < 1)
and w is a r-bit number denoting the node’s
row. Two nodes (w,1) and {w’,%’') are linked
if and only if ¢/ = ¢+ 1 and either w = v’
orw = we®?2" (“®” denotes an exclusive-or

operation).
4 p p p
® < S, ©
@, [/ 8, &,
/o » /e 4
Rowo ()

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Phase 1

Phase 0 Phase 2
B 1: N=8 crossover network which is compu-
tationally equivalent to the butterfly network.

! is a multistage

The r-dimensional crossover
interconnect network (MIN) similar to the but-
terfly; only the placement of cross edges dif-
fers. Two nodes {w,i) and (w',#) are linked
if and only if ¥ = ¢+ 1 and either w = v/
or (w+ 2)mod2" = w'. A 3-dimensional
crossover network is shown in Figure 1. The
crossover is not isomorphic to the butterfly, but
is of interest for its unidirectional communica-

tion pattern (it maps well onto a torus).

1The crossover is similar to the network used in [3)].

Note that a N-node normal hypercube algo-
rithm A’ may be simulated trivially on a log N
dimensional butterfly network, by mapping the
log N steps of A’ to consecutive levels 7 of the
butterfly. Likewise, A’ also may be simulated
trivially on the crossover. Visualization of A’
on a butterfly or hypercube is easy, because
A’ is simply a calculation which traverses the
MIN once through, for example, from left to
right.

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

2: Raster scan labeling of nodes in a two
dimensional torus. '

2.2 The AP1000 Torus

The axa two-dimensional torus has a? nodes,
each of which is connected via one physical
channel to its four nearest neighbors. The di-
ameter of this network is a. Wormbhole routing[4]
allows m-flit messages to be passed between d-
hop nodes in time proportional to (m/B + d),
where B is the bandwidth of the physical chan-
nel. Structured-buffer pools[l] are used to im-
prove throughput? by allowing the bandwidth
B of a single physical channel to be distributed

2This works in a similar manner to Virtual Channels[5)

between contending messages such that d mes-
sages sharing the same channel each receive a
bandwidth of about B/d.

We also assume that routing on the torus is
performed unidirectionally and statically. All
messages are first routed in the +z (east) di-
rection, then in the —y (south) direction after
arriving at the appropriate column. Routing
is handled entirely by the hardware, and does
not involve any processor interaction except for
message generation and reception. Although
the AP1000 may also route messages bidirec-
tionally, it does so with less efficiency[6].

We label the nodes of the torus by drawing
the torus as a mesh with wraparound connec-
tions, then beginning with the top left node
as number 0, we enumerate nodes in raster-
fashion through the entire array. This labeling
scheme is pictured in Figure 2.

3: 4x4 torus showing the four messages
passed from node 0 during the four phases in
simulating a r=3 crossover network. During
the first 2 phases, messages are passed in rows,
and during the last 2 phases, in columns. All
nodes send a message in each phase; in phase
i node j sends to node j + 2°. Wraparound
paths forming the torus are not drawn.

Finally, we define a normal torus algorithm
Ay as one which operates on a axa torus in 2a
phases in the following manner. In the first a
phases, information is passed from east to west
between all neighboring nodes, and in the re-
maining a phases, information is passed from
north to south. As usual, at each step compu-
tation may be performed at each node. Nor-
mal torus algorithms are often used to perform
sorting, global reduction, and other calcula-
tions on a two-dimensional torus.

2.3 ‘Mappihg Functions

A N-node normal hypercube algorithm A’
may be executed on the AP1000 torus by map-
ping hypercube node u to torus node v = f(u),
where the function f(z) is the identity function
f(z) = z. Synchronization between phases in
A’ is performed implicitly, because all nodes
in the torus participate, and all nodes must
receive messages at each step in the algorithm.

Alternatively, we may choose a mapping func-
tion based on the butterfly or crossover net-
works, whereby node (w,?) is mapped to node
w of the torus at phase 7 in A’. In this case,
note that only cross edges require message pass-
ing; straight edges are all internal. Thus, the
number of messages passed at each step in A’
is N, which is optimal.

2.4 Theoretical Performance Com-

parison

Given the mapping function defined in the
previous sections, we first postulate that em-
bedding of the crossover communication pat-
tern in the torus will achieve superior perfor-
mance to that for a butterfly, because of its
more uniform traffic; physical channels between
nodes on the torus are shared between fewer
messages when scans are generated from the
crossover rather than the butterfly MIN3. We

3Note that this distinction only matters for tori with

unidirectional interconnects; with bidirectional routing

believe this postulate is obvious by inspection,
and provide experimental verification in Sec-
tion 3.1.

Second, we postulate that a normal hyper-
cube algorithm A’ running on an AP1000 torus
will run at least as fast as the equivalent nor-
mal torus algorithm A, achieving the same pur-
pose (global reduction, sorting, etc.). In fact,
A’ will usually run significantly faster. To show
this, we first estimate the number of cycles
needed to perform the communication needed
when embedding A’ on a torus.

Without loss of generality, consider the em-
bedding of a 2n-dimensional crossover network
in a rectangular torus with N =2"x2" nodes.
During phase i (0 < i < 2n), messages are
passed from node j to node j + d;;, where d; =
2! Phase i corresponds to the communication
between levels 7 and 7+ 1 of the crossover, and
torus node j is mapped to the crossover nodes
{4,%), as explained in the last section. Be-
cause of the raster-labeling of the torus nodes,
it happens to be that messages sent during the
first n phases are routed mainly along rows,
while those sent during the second n phaSes
are routed along columns only. This is shown
in Figure 3.

Because wormhole routing is used, the num-
ber of cycles needed to pass rﬁessages between
two nodes is largely independent of the dis-
tance between the nodes. Thus, message la-
tency depends primarily on the length of the
message being sent, and the maximum number
of messages sharing a required physical chan-
nel. We define 7y = L/B as the number of
cycles required to send a message of length L
between nodes over a channel with bandwidth
B in the absence of network congestion.

In our case, when node j sends to j + d;
for 0 < i < n, d; — i other nodes will also be
sending messages along the same path. Thus,
the effective bandwidth is degraded from B to

there should be no difference in the performance of the

crossover and butterfly mappings

—100—

approximately B/d; during the first n phases.
During the second n phases, n < i< 2n,d;/2"
nodes send messages down each column, giv-
ing an effective bandwidth of approximately
B/d;p.

Taking into account network congestion, there-
fore, we find that the total number of cycles 7
needed to simulate a crossover on the torus is
approximately given by:

r ool 2n—1
Tt:ﬁzzdi+zdi~n; (1)
1=0 i=n

n=202"-1)~2VN. (2)

Note that this expression does not hold strictly
when L is small, because for small L, distance
becomes important in calculating message la-
tency, and also, network congestion degrada-
tion factors become harder to estimate. For
example, when L = 1 flit, no congestion occurs
because one flit is exchanged between nodes
each cycle and no messages ever share the same
physical channel*

The significance of Eq. (2) is clear; it shows
that a normal hypercube algorithm A’ simu-
lated on a square, N-node AP1000 torus us-
ing a crossover generated scan runs in approx-
imately the same time (number of communi-
cation cycles) as for a normal torus algorithm
Ai. Furthermore, only log, N phases are re-
quired to simulate A’, compared to the 2N
phases needed for A;; this is possible because
hardware routing mechanisms are used to dis-
tribute limited resources. Reducing the num-
ber of required phases reduces the overhead in-
curred in calling message passing library func-
tions because fewer messages are sent.

3 Benchmark Results

We evaluated the performance of normal hy-
percube algorithm simulation on the Fujitsu

“Note that Eq. (2) is a direct generalization of the
results of Nassimi and Sahni(7}.

AP1000. In this section, we first present data
comparing the performance of the different com-
munication patterns discussed above, then sum-
marize results for global reduction, scans (pre-
fix calculation), and all-to-all personalized com-

munications.

3.1 Communication Kernels

We evaluated the execution time of three dif-
ferent communication patterns on the AP1000,
varying the message size and the number of
processors. The code kernels are described be-
low.

The butterfly kernel exchanges messages
between all N processors in'log, N phases. In
the code below, n is the number of processors,
len is the length of the message exchanged in
bytes, and cid is the raster-scan ID-number
assigned to each processor.

for(i=1;i<n;i<<=1){
-SendMsg(cid"i,msg,len);
RecvMsg(cid™i);

The butterfly kernel is expected to perform
worse than the crossover kernel, listed below,
which exchanges messages between processors
in a unidirectional pattern, thus allowing fewer
physical channels to have to be shared between
messages. Both the butterfly and crossover
may be used to simulate a normal hypercube
algorithm on the AP1000. mask is set to n-1,
where n is understood to be an integer power
of two.

for(i=1;i<n;i<<=1){
SendMsg((cid+i)&mask,msg,len);
RecvMsg((cid-i)&mask);

}

Communication for the normal torus algo-
rithm is performed using the code kernel be-
low. Messages are first passed between all pro-
cessors on each row, then on each column. nx
and ny are the number of processors in each
dimension, and nx+ny phases are performed.

—101—

for(i=0;i<nx;i++){

SendEast(msg,len);
RecvWest();

}

for(i=0;i<ny;i++){
SendSouth(msg,len);
RecvNotrh();

}

Execution times for the three kernels are shown
in Figure 4. For short messages, the crossover
network always performs best, as expected.

2000 /
[
1500 Buttortly e
Crossover /
o / Torus

Fo—
E
5w I(/‘ //
P -
u Butiertly /'ﬁw
300 /

ya
v

16 32 64 128 256 512
Number of Processors

B 4: Execution times of the four communi-
cation kernels. The message size is fixed at 16
bytes. User-level message passing library func-
tions were used.

3.2 Global Reduction

Global reduction is the calculation of y =
TR ®Z2®@ Q@i ® - ®zN-1, over the
values z; held in the N processors, and the
redistribution of the result y to all processors.
In general, ® may be any binary operation.

Figure 5 compares the performance of a global
sum function implemented using two different
communication patterns: crossover, and binary

90

80

70

/L
L.
/P
e

i Crossover /}

[}

E 80 Binary Tree....5....
= /(+ Broadcast

c

2

2 s /4

(]

& pd

ot

30

16 32 64 128 256 512
Number of Processors

[5: Performance of the global sum function

on the AP1000 as a function of the number of
processors. The crossover and binary tree+broadcast
algorithms are compared. The algorithms were
implemented using system-level calls to native
machine I/0.

@
2 /
Q 9.00.
E /
'—
= 8.80. A
S pd
5 8.60.
leJ 8.40.

.20

8.00. //

7.80.

16 32 64 128 256 §12

Number of Processors

6: Execution time per phase tphase = ttotal/ logy N
for global summation using the crossover net-
work.

—102—

tree. The binary-tree algorithm uses log, N
phases like the crossover, but requires an ad-
ditional step at the end to broadcast the final
result to all the processors. The crossover al-
gorithm performs better than the tree until the
number of processors exceeds 64, because the
crossover suffers more contention than the tree
doesS.

The large difference in execution times shown
in Figure 4 and those in Figure 5 arises as a
result of using user-level as opposed to system-
level message passing functions®. Figure 6 shows
the time per phase calculated from data for the
crossover network from Figure 5. The linear
increase for large N is due to increased con-
tention in the network.

3.3 Scan (Parallel Prefix)

The scan operation[9], otherwise known as
parallel prefix calculation[3}, is widely used in
hypercube algorithms, and in numerical codes
for solving tridiagonal equations, among other
problems. Mathematically, prefix calculation
is defined as the calculation of all y;, for 0 <
i<M,andy; =20z Q%2Q - Q@21 QZ;.
In particular, this calculation arises in loop 5 of
the Livermore Fortran Kernels[10] benchmark
suite. We find that using the crossover net-
work, the AP1000 can achieve a peak of 12.6
Mflops for this loop (M=1000), using 64 pro-
cessors. Figure 7 indicates that performance
rapidly levels out as the number of operands in-
creases, because operation time becomes dom-
inated by single-processor speed and not inter-
processor communication.

5 Although the message size is fixed (one double (8
bytes)), including 8 bytes of header information, this
is 4 flits in the current AP1000 implementation

6Times in Figure 5 arguably represent the best per-
formance achievable with the AP1000 for the problem
considered. It is instructive to compare 64-processor
AP1000 and EM-4[8] times for the same communi-
cation pattern: global sum 47.3us vs. 14.4us (note
that the EM-4 time is for Z ints). Reception in the
AP1000 is slowed by software message matching.

'
=0 %
100 s‘z//
128
© L
Al
3 16
% 10
i, y
//
2
-y
0s /£
7
3 100 1000 10000

Number of Operands

7: Performance of the scan operation. Speed
of the calculation of partial producté of dou-
bles is plotted as a function of the number
of operands for 16 to 512 processor configu-
rations. A peak of around 230 Mflops can be
attained using 512 processors.

o000 Ve
- 4

A

A\
~ Hwio-ﬂaynry/ / i Normak-Torus
/ //’/
=\

32 “ 128 256

2000

§

Execution Time [us]

Number of Processors

8: Comparison of the performance of the
Horie-Hayashi (Ann), Normal Hypercube (App),
and Normal Torus (A4) algorithms for one-double
(8 byte) all-to-all personalized communications
on the AP1000.

—~103—

3.4 All-to-all personalized commu-

nications

All-to-all personalized communicationsisthe
problem in which every processor desires to
send every other processor a unique message.
On a two-dimensional torus, this may be per-
formed using the Horie-Hayashi algorithm][6],
Anh. Alternatively a bucket-passing normal
hypercube algorithm, Ayp, may be simulated.
The advantage of the latter course is that the
number of steps is reduced dramatically, from
approximately N1-5/4 to log, N for N proces-
sors. However, using Ag,; requires that N/2
messages be exchanged between processors at
each step; thus, for large messages, Ayp is in-
ferior to Apn. As Figure 8 shows, the App al-
gorithm is useful for small messages. App and
Apnt are always faster than App because the
message size is small, and App is faster than

Apn: for N < 128.

4 Conclusion

We have shown that although it may often
seem non-intuitive to use a hypercube-based
algorithm on a torus-based architecture com-
puter such as the AP1000, better performance
can often be attained using such algorithms
rather than regular torus algorithms because
the number of communication phases is reduced.
We have also presented an optimal mapping
function based on the crossover network, which
adapts well to unidirecitonally routed tori.

We acknowledge T. Shimizu for his assis-
tance, and thank M. Ishii, H, Shiraishii, H.
Sato, K. Hayashi, and the MIT-Japan program
for making the collaborative research visit pos-
sible.

B30k

{1] T. Horie, H. Ishihata, and M. Ikesaka. De-
sign and Implementation of an Intercon-
neciton Network for the AP1000. To Ap-
pear (IFIP ’92), 1992.

[2] F. Thomas Leighton. Introduction {0 Par-
allel Algorithms: Arrays, Trees, Hyper-
cubes. Morgan Kaufmann Publishers, San
Mateo, California, 1992,

[3) W. Daniel Hillis and Jr. Guy L. Steele.
Data Parallel Algorithms. Communica-
tions of the ACM, 29(12):1170, 1986.

[4] W.J. Dally and C. L. Seitz. Deadlock-free
message routing in multiprocessor inter-
connection networks. IEEE Transactions
on Compulers, 36(5):547, May 1987.

[5] W. J. Dally. Virtual-Channel Flow Con-
trol. In Proceedings of the 17" Annual In-
ternational Symposium on Computer Ar-
chitecture, page 60. IEEE Computer Soci-
ety Press, May 1990.

[6] T. Horie and K. Hayashi. F—9 X% »
P =2 B0 3 RESNLEELA (An
Optimal All-to-all Personalized Commu-
nication Algorithm for Torus Networks).
In JSPP 92, page 187, June 1992.

(7] Howard J. Siegel. Interconnection Nel-
works for Large-Scale Parallel Processing.
McGraw-Hill Publishing Company, New

York, NY, 1990.

[8] A. Shaw, Y. Kodama, M. Sato, S. Sakai,
and Y. Yamaguchi. Data-Parallel Pro-
gramming on the EM-4 Dataflow Parallel
Supercomputer. In JSPP ’92, page 179,
June 1992.

[9] Guy E. Blelloch. Scan Primitives and Par-
allel Vector Models. Technical Report MIT-
LCS-TR-463, MIT-LCS, October.1989.

[10] Frank McMahon. The Livermore Fortran
Kernels: A Computer Test of the Numer-
ical Performance Range. Lawrence Liver-
more National Laboratory document UCRL-
53745, December 1986. '

—104—

