AT —F 7 F 9918
(1993. 3. 12)

An Overview of Asura’s Network
with Simulation Results

David FRASER and Takashi TANAKA

Office of Computer Business
Kubota Corporation
2-47, Shikitsuhigashi 1-chome
Naniwa-ku, Osaka, 556-91

E-mail: {david, takashi} @kocb.astem.or.jp

Asura’s Inter Cluster Network connects its clusters into a closely coupled system. In order to reduce
latency, the ICN is wide enough that commands can be completed in one cycle and multiple transmissions
can occur in parallel. The bandwidth of the ICN scales as more clusters are added to the system with each
link having a bandwidth of 400 Mbytes per second. The ICN uses general point-to-point links that allow
many different network topologies to be used with Asura. This paper describes the ICN and its Network
Interface. Simulation results show that the ICN, together with Asura’s global cache can effectively reduce
the average latency of memory accesses as seen by the CPU.

Keywords: Parallel, network, bandwidth,
network latency, memory hierarchy, cache hierarchy

ASURADXy M T7—IUBEEZDIIZL—2 g
David FRASER. HAE+

v
556—91 :
KEHREXBER 1 TH2H4 75

ASURADAYS —-25A5— -2y b T7—2 (ICN) BEBODASURAZ I A Y — % BITEES
5 Fy T BEEBOLHIC, ICNEBEEITYFE 1Y 47 VTETL, o, BEDF— 4
EREEFICETTH LI CHEENT D, /2, ICNDEY ¥ 2713 400MB/s EEET, 25 A5 &
BOBICIE C-aBMRE S 20T H4 2 Ny FIER#BMT 2, [CNIZEED / — F HO®E 17
“XB720, ASURALTOBALZT Y r—va v THEHIND, 83 STR@BEN 0T — 3 AEIC
EBTE S, AT, ICNLEDRY T =2 - A V8 T2 A ALDOTOMEFFTE S, 2510, ¥
Sab—2a i), ICNOFHEBEREE, ASURADI O—NL - Fxy - by b Ot
mEoWwTHHET 2,

F-T7—K 1 HFL Ay b T—2, NUFIE,
Py b T BIERE., BE AT, BEF vy La,

—133—

1 Introduction

Over the past decade many different architectures
have been proposed for large-scale multiproces-
sor computers. Some early machines have been
shared memory machines, either based on a bus
architecture such as the Alliant, used in the Cedar
project [KUCB86], or based on an expensive mul-
tistage interconnection network such as the BBN
Butterfly [BRO87]. Other machines, such as the
Intel iPSC hypercube [ARLS8S] or a cluster of
workstations, use distributed memory and com-
municate by message passing. Recently the two
types have been combined into distributed shared
memory multiprocessors such as DASH [LEN92],
the KSR1, and SESAME [WIT92]. This class
of computers is based on processing nodes, each
with its own memory, thus the memory is physi-
cally distributed and the network bandwidth and
resources scale as more nodes are added. How-
ever, each processor in the system sees the mem-
ory as a single block and can access it as shared
memory.

Asura is the name of the large-scale, distributed
shared memory, scalable multiprocessor architec-
ture that is presently under research at Kubota
Corporation. The project aims to develop a new
computer architecture that includes an operating
system, a parallel compiler, and a hardware pro-
totype. Figure 1 shows an overview of Asura’s
architecture.

(@]
o
c

&l
=) |5l

CPU
1/0
Ringlet 1
Crossbar
Switch
—J
4 Cluster 4 Cluster .o 4 Cluster
Ringlet 2 Ringlet 3 Ringlet 32

Figure 1: An Overview of the Asura System

Asura can be configured with from 2 to 128
clusters. For the prototype, each cluster is based
on a Titan computer [NAI92] which contains four
CPU boards with 2 processors per board, mem-
ory boards, an NIF (Network Interface) board,
and an I/O board. A graphics board can also
be included. Each CPU board contains two Mips
R4000 microprocessors, each with it’s own pri-

mary and secondary cache. Each memory board
can contain up to 128 Mbytes of memory and is
used as private local memory by the system. The
NIF board contains a 32 Mbyte global cache, 16
Mbytes of global memory, and an interface to the
ICN (Inter Cluster Network), used to connect the
clusters. The global cache serves to hide the la-
tency of accesses to global memory in remote clus-
ters and to isolate the bus protocol of the cluster
from the ICN protocol. This is a key feature of
Asura since it allows us to optimize the intra clus-
ter network (for the prototype machine, this is the
Titan bus) for fine grained parallel processing and
to optimize the ICN network for coarse grained
parallel processing. Asura’s global cache uses a
version of the Synopse protocol [ARC86]. Global
data can be in any of three states: dirty, shared,
and invalid/uncached. The global memory on the
NIF board is referred to as that cluster’s local
global memory. Logically this is identical to the
global memory located in other clusters (remote
global memory) but since accesses to it don’t pass
through the ICN they are faster (see [GLE92]).
This fact can be used by the software to place
data to be used by a cluster in the cluster’s local
global memory to optimize performance.

Section 2 gives an overview of the ICN. Section
3 examines the performance of the ICN based on
the Verilog model of the NIF board. The effect of
varying some of the ICN parameters is discussed
in section 4 and some concluding remarks are in-
cluded in section 5.

2 An Overview of the Ianter
Cluster Network

It is the goal of the ICN to provide a high band-
width, low latency, scalable network to connect
Asura’s clusters into a tightly coupled system. In
order to do that it is necessary to ensure that
the latency of accesses through the network do
not keep the CPUs waiting idle for too long a
time. The ICN is based on a regisier insertion
ring [TAN81] network. Basically each node has
an input buffer and an output buffer and it may
transmit whenever it’s input buffer is empty. This
scheme is very simple and it allows us to imple-
ment a very fast network interface. In the case
of accesses to line locking variables and synchro-
nization variables latency must be kept to a min-
imum and hotspots should be minimized. The
ICN is sixteen bytes wide and all synchronization
and locking commands require eight bytes there-
fore these commands do not acquire any added
latency due to their length and in fact two com-
mands can be sent in the same clock cycle as long
as they are not destined for the same cluster.
Since most traffic in the ICN will be the result
of cache coherency operations the network must
be able to efficiently transfer cache lines. The
global cache uses a line size of 1 Kbyte. This line
size was chosen after simulations showed that the

—134—

large global cache and the use of software con-
trol to prefetch and write back cache lines can
effectively hide the extra latency needed to load
a large cache line. As well, since eight CPUs use
the same global cache a line fetched in response
to an access from one CPU will also implicitly
prefetch data needed by other CPU’s in the same
cluster.

The ICN specification does not require any spe-
cific network topology. Instead the interface to
the ICN consists of one input link and one out-
put link. For the first prototypes of Asura a ring
topology will be used to connect up to eight clus-
ters in a simple, low cost network. For those
applications that demand more processing power
and therefore more clusters a crossbar switch will
be developed to connect directly to clusters or to
connect ringlets of four clusters each. The full,
128 cluster version of Asura will consist of thirty-
two, four cluster ringlets connected by a crossbar
switch. This means that at the most, a message
will have to pass through eight clusters and the
crossbar switch twice to access any cluster in the
system. Figure 2,a shows a four cluster version
of Asura. Figure 2,b shows the full 128 cluster
topology.

The ION is 160 bits wide ! and is further split
up into two, eighty bit wide subnets. It is clocked
at 25 MHz. Each subnet is then further divided
into eight bytes (72 bits) for command and data
transfer and one byte for implementing the net-
work’s bandwidth allocation and priority mech-
anism. In this paper only the command and
data transfer portion will be dealt with. The
bandwidth allocation and priority mechanism was
adapted from the IEEE SCI (Scalable Coherent
Interface) standard and is described in [IEEE91].
When used to issue commands and acknowledge-
ments the following information is transmitted;
the type of command (read, write, coherent, in-
validation, acknowledgement, etc), the amount of
data (none, 1, 2, 3, 4, 8, or 1024 bytes), the is-
suing and receiving unit (cluster, global cache,
global memory), 39 address bits, network prior-
ity information (see[IEEE91]), and parity bits.

A wide variety of commands are supported on
the ICN. Coherent commands read or write 1
Kbyte blocks of data. If the command is ezclu-
sive then the data will be loaded into the global
cache in the dirtystate, otherwise it will be loaded
shared. Non-coherent commands transfer 1,2, 3,
4, or 8 bytes of data that have been marked un-
cacheable. An invalidate operation is provided to
invalidate global cache lines. Special commands
are also provided for synchronization purposes
(see [SAI92]).

The ICN uses a split protocol. Every command
is acknowledged, even if no data is returned. This
in necessary to determine when a synchronization
command has completed globally. The format of

-_

'In future versions it will be possible to transmit the
160 bits on four parallel fiber optic links but this is not
included in the first prototype.

a) 4 Cluster Ringlet

IGIOC :;c.
F or
4 optical

< NIF NI

NIF

b) 128 Cluster System

]

5|

4 cluster
ringlet

lus| Clus|[C] J 1 Tus| Clus] Clu
Tu: lu
Tu Tus|
! 2x32 o
1 Crossbar Tu
T Switch lus,
1 Tu
1u: lus
lu Tu

lus{ Clus C1 lus| Clug| Clus| Clus! Clu:

Figure 2: Examples of ICN Topologies that can
be used with Asura

acknowledgements is similar to commands except
that an ack bit is set.

For non-coherent commands involving data the
data is sent in the same clock cycle as the com-
mand but on the other subnet. In the case of
block transfers the first cycle contains the com-
mand with the property information for the line,
which describes what type of coherence control
protocol to use with the line [MOR92], on the
other subnet. The 1 Kbyte line is then trans-
ferred in the next 64 consecutive clock cycles.

The ICN’s network interface is contained on the
NIF board located in each of Asura’s clusters. A
block diagram of the NIF board is shown in figure
3. It can be seen that the NIF board consists of
six main modules. The global memory contains
16 Mbytes of global memory, the coherence direc-
tory, support for line locking and COLB [GO091)
based barrier synchronization. The global cache
1s a 32 Mbyte shared cache for the eight CPUs
in the cluster. It is non-blocking in that up to
eight accesses to the cache can miss before other
accesses to the cache are blocked. This ensures
that a miss by one CPU’s access will not block the
other seven. The communication controller pro-
vides a non-blocking path between the previous

—135—

Cluster Bus

wired
Register file AND

synchronization| |

registers

Commumication
Controller

ICNI/F
Figure 4

10ICN o L — fromICN

Figure 3: Block Diagram of the NIF board

three modules and is based on a crossbar switch
architecture. It offers a bi-directional link to both
global memory and the global cache and a uni-
directional link both to and from the ICN inter-
face module. The cluster interface connects the
global cache to the cluster’s bus. Wire based syn-
chronization and status registers are contained in
the register file. The ICN interface sends and re-
ceives data from the ICN and is described in the
next paragraph.

from Comm. Cont. to Comm. Cont.

Tx I/F
reques data request F data
req reg 1||datareg de-
reqreg 2 r -[HM[E- MUX |Input
Bypass Tk Controller]
atc
Output FIFO
Controller i
strobe

(optional)
O toICN

from ICN

Figure 4: Block Diagram of the ICN Interface

The ICN interface is shown in figure 4. It con-
sists of and input controller, an oulput coniroller,
a receiver interface, a transmit interface, a bypass
fifo, a receive fifo, and a transmit fifo. Data is
latched in from the ICN and is decoded. A de-
multiplexer is then set up to route the data. If

it is addressed to the cluster, it is written into
the proper receive fifo. There are separate fifos
for data, and command and acknowledgement in-
formation. When the receive interface (Rx I/F
in figure 4) detects that the command and ac-
knowledgement fifo is not empty it reads a com-
mand and starts to arbitrate for the communica-
tion controller. If necessary data is read, and it
is sent together with the command to either the
global memory or the global cache. The receive
interface is pipelined so that it can send a new
command or acknowledgement to the communi-
cation controller every clock cycle. Data that is
not addressed to the cluster is written to the by-
pass fifo. When the communication controller has
information to be sent on the ICN it writes the
information into the transmit fifo with the help of
the transmit interface. The output controller is
constantly monitoring the transmit fifo and the
bypass fifo. If there is anything in the bypass
fifo it will be transmitted immediately. If the by-
pass fifo is empty then a command will be sent
from the transmit fifo. The output controller is
pipelined so as to be able to send a new command
every ICN clock cycle. The output controller will
also place two commands in each cycle if it is pos-
sible.

3 Performance Analysis of
the ICN

The final judge of Asura’s memory architecture
will be the time that it takes to run applications
on it. In the case of the ICN this will depend
to a large extent on how well it can hide the la-
tency of accesses to memory that are either un-
cachable, such as line locking or synchronization
commands, or miss in the global cache. There
are two components that must be examined to
determine the performance of Asura’s ICN: The
latency due to the cluster and the latency due to
the ICN. The latency due to the cluster is known
since both the actual hardware and a hardware
description model written in Verilog of the Titan
exist. For the ICN a Verilog behavioral model
was written and simulations performed to deter-
mine its performance. The factors that we are in-
terested in are the bandwidth between the CPU
and the different levels of memory and the la-
tency of accesses. Of particular interest is the
time to get data to the CPU in the case of a cache
miss. Unless otherwise stated, all of the results
are based on a four cluster system connected in
a ring topology. The following abbreviations will
be used: CPU for the R4000 microprocessor, I-c
for the on-chip primary cache, 2-c¢ for the sec-
ondary cache, LM for the local memory in each
cluster, GC for the global cache, LGM for the
global memory located in the same cluster as the
CPU, and RGM for global memory located in an-
other cluster.

—136—

B]w CPU T I 2-c GC GC
and l-c | 2-c | LM/GC | LGM | RGM
Clock(MHz) | 100 | 50 T6 % 25
Width(B) 4] 16 8 16 16
BW(MB/s) | 400 | 800 128 | 400 | 400

Table 1: A Summary of the Bandwidth between
the Different Levels of the Memory Hierarchy

[[MTrans/s | MB/s']

Cluster Bandwidth
Coherent Read 3.94] 126
ICN Bandwidth
Word reads per link 24.60 98.4
Block Reads per link 0.38 | 387.5

Table 2: Cluster and ICN bandwidth
3.1 Bandwidth

Bandwidth is the capacity of the network to move
data between different levels of the memory hier-
archy. Table 1 sums up the bandwidth between
the different levels of the Asura hierarchy. The
entries in the table show peak performance in
Mbytes per second.

Since each cluster is based on a Titan computer
the specifications of the cluster bus cannot be
easily changed and the ICN should be designed
to match the cluster bus. In order to see how
well the present ICN design matches the cluster
bus the bandwidth of the cluster bus will be com-
pared to the bandwidth of the ICN for Asura sys-
tem configurations of different numbers of clus-
ters. The case of coherent (block) reads to RGM
will be used as an example since the command
will travel both the cluster bus and the ICN.

Table 2 shows the actual system bandwidth for
various commands. The cluster bus in eight bytes
wide and clocked by a 16 MHz clock. This gives
a peak bandwidth of 128 MB/s. In the case of a
read, for each word of data returned, a read re-
quest must be issued. However, the cluster bus
has separate address/data cycles and data return
cycles that can be overlapped so that there is no
loss of bandwidth. As well, the memory board
spends 1.6% of its time in DRAM refresh cycles
so the total bandwidth is 126 MB/s. This is the
same whether or not the read is local or remote
since the cluster bus uses a split transaction pro-
tocol and for a normal load from RGM there is no
transaction generated on the cluster bus of the re-
mote cluster. The word read value for the ICN as-
sumes one word being transferred per cycle. The
block read assumes one cycle for property infor-
mation followed by 64, 16 byte transfers to trans-
fer a 1 KB line. The results are summarized in
figure 5. It can be seen that for all cases that the
bandwidth of the ICN exceeds that of the cluster
bus. Therefore it may be possible to decrease the
performance of the ICN to match its bandwidth
to that of the cluster bus but this would adversely
affect latency as is discussed in section 4

Total Bandwidth of the Cluster buses
and the ICN vs Number of Clusters
4000y

4 8
Number of Clusters

16 24 32 48 64

~—— Cluster Limit
——e— ICN Limit

Figure 5:
3.2 Latency

Latency is the time that a CPU must wait from
the time that it issues a request until, in the
case of a read, it receives the data, or in the
case of a write, it may proceed with the next
request. Asura’s CPUs are Mips R4000s which
use an internal 100 MHz clock. The high speed
of the clock means that the memory architecture
is much more important than in a system with
a slow CPU since the same delay in seconds will
mean many more idle cycles in the system with
the fast clock than in the slow one.

In the latency measurements to follow only the
case of a cache refill is examined. This is an im-
portant case since a CPU always stalls on a read
miss and will be idle until the data is fetched.
Therefore the values used indicate the number of
CPU (100 MHz) clock cycles between when the
CPU issues the request to when it actually re-
ceives the data. In all the graphs in this section
the following abbreviations are used: LM and GC
are the latency involved in reading 32 bytes from
local memory and the global cache. LGM, and
the various RGM accesses involve first loading a
new 1 Kbyte line from global memory into the
global cache and then supplying a 32 B line to
the secondary cache. S and d mean that the line
is already loaded in the shared or dirty state in
another global cache. L and r indicate that the
other cache is in the same (local) cluster, or in
another (remote) cluster, as the global memory.

Figure 6 shows the latency of coherent reads
when the access misses at various levels of the
memory hierarchy. The results are further di-
vided by what part of the memory hierarchy
is causing the delay. Though accesses to the
global cache are supposed to complete in the same
amount of time as those to local memory it can be
seen that, even though it takes less time to access
the global cache than the local memory, the clus-
ter interface adds a delay of 78 clock cycles. This

—137—

Latency of Memory Accesses vs Access Type
broken down by Hardware Module

1800 ~

1600 -

1400
1200 -

1000

Latency]
cpu 800

cycles) 600 -

0
SY8Ez=zg3 %%
8 QO & 32 23
= =2 = =
O O U O
Access Type ¥ X ox X
Module Contributing to Latency
E1 Global memory I3 Global cache
g Titan interface
B Ninwrface Titan bus
Q] Comm. controller W CPU.lc2c
Figure 6:

is because the cluster interface buffers requests
from the cluster bus while the global cache is busy
dealing with the global memory or the ICN inter-
face (See figure 3). The next point to notice is the
delay due to global memory (and the global cache
when it must write a line back to global memory).
This latency is due almost entirely to the size of
the global cache line as it takes about 280 cycles
to read a 1 Kbyte line from global memory. The
ICN interface adds 72 cycles of latency for each
transaction and 18 cycles for each cluster that is
bypassed in the ring. Therefore in the full Asura
configuration of 128 clusters the total delay due
to the ICN will be 72+ (18 x 6) = 180 cycles plus
the delay of the crossbar which will be at least
72 x 2 = 144 cycles. This means that the delay
caused by adding eight clusters to a ring network
is the same as that caused by using a crossbar
switch. In other words, for less than eight clus-
ters, a ring topology will provide faster response
than a crossbar topology.

Another point to remember is that in a well
behaved program that there will be good locality
of references. Therefore if it is necessary to fetch
a 1 Kbyte line from global memory it should im-
plicitly prefetch several 32 B intra cluster cache
lines. In table 3 the best and worst case latencies
to retrieve one word are shown. The best case
values assume that if four words must be fetched
from local memory to supply the CPU with one
word that the next three accesses will hit in the

—138—

Latency of Memory Accesses vs
Access Type: Best Case Values

40
Latency 30
(CPU 20
cycles)
10
0 T L) L) 1 1 L 1
Q o —
£ 45382 3 3
§ 8 = E
— N 1G]
Access Type o~
Figure 7:
Latency of Memory Accesses vs
Access Type: Worst Case
2000
1500
Latency
(CPU 1000
cycles)
500
0 -5 ¥ T T T T T
Q Q —
£ 3838 3%z %
3 < o
o o ~ =
— o~
Access Type 8
Figure 8:

primary cache or that if 1 Kbyte of data must
be fetched from global memory then the next 31
((1024/32) — 1) misses to that line will hit in the
global cache. The worst case values assume a miss
on each access.

It can be seen in figure 8 that while the latency
for the worst case, indicating that every access
misses, rises sharply if there is a miss in the global
cache due to the time required to read a 1 Kbyte
line from memory. However for the best case it
can be seen in figure 7 that though the average
latency for accesses that miss in the global cache
is not that much higher than for accesses that
hit in the global cache. This is because of the
prefetching effect of the large global cache line.
In the best case, for each miss in the global cache
the next 31 accesses will hit. Also it is seen that
a limit is reached that is below 40 CPU cycles per
word.

4 Discussion
From the results of the simulations the difficulty

of keeping Asura’s CPUs supplied with data can
be seen. In this section the latency added by each

[Operation | Best Case | Worst Case |
{ Read from | MB/s T CIk [MB/s T CIk

Tc 400.0 T] 400.0 1

2-c 69.6 6| 200 20
LM 18.2 | 22 2.7 150
GC 13.1 | 30 1.8 | 218
LGM 12.6 | 32 0.7 | 556
RGM 124 | 32 0.6 | 684
RGM(d-r) | 111 36 0.2 | 1618

Table 3: Average Time per Access on a Cache
Miss

module will be discussed and improvements sug-
gested.

A miss in the primary cache will cause the CPU
to sit idle for the 20 cycles that it takes to fetch a
cache line from the secondary cache. In the case
of a miss in the secondary cache the overhead of
the CPU board is 92 clock cycles. In designing the
ICN and NIF board this is the base from which
the design started from.

The cluster I/F contributes 78 clock cycles of
delay to send and receive a 32 byte line which
amounts to 13, 16 MHz cycles. Of these, 9 of the
cycles are needed to deal with the 4 read requests
and 5 data return cycles. The other 4 cycles in-
clude arbitrating for the cluster bus and the delay
of the buffer between the cluster interface and the
global cache. By coupling the design of the clus-
ter interface and the global cache more closely it
should be possible to overlap these 4 cycles with
the activity of reading the cache line. This would
leave a delay of 54 CPU cycles.

The latency due to the global cache and the
global memory is primarily due to the large global
cache line size. The global cache contributes ap-
proximately 25% of the total latency and the
global memory 40%. To decrease the line size
would shorten the delay but as seen in table 3
much of this delay can be hidden if there is a
high locality of reference among data accesses.
Decreasing the line size would actually increase
the average latency as seen by the CPU for appli-
cations that exhibited behavior close to the ideal
case as discussed below.

The ICN adds approximately 6% to 16% to the
delay or 108 to 216 CPU cycles. The bright side
of this is that for the full sized system this reaches
a limit of about 330 cycles due to the use of the
crossbar switch. Unfortunately, perhaps the only
way to reduce this latency is to increase the clock
speed of the ICN which is limited by the the speed
of commercial FIFO integrated circuits.

4.1 The Affect of Varying the ICN
Parameters on Latency

In this section the effect on latency of varying
the size of the global line size and the width of
the ICN are examined. The global line size is of
interest because, as shown in table 3, for appli-
cations that do not follow the best case latency
would be very high for accesses that miss in the

—139—

Latency of Memory Accesses vs Access
Type for varying Global Cache Line size

2400
2000
1600 -1
1200
Latency J
(CPU 800 -
cycles) i
400 -
0 T T I i 1 L] 1 T
2253593
38 g § L3 &3
R
Access Type X & ~ g
Global Cache Line Size
—— 0B —m— 2568
—e— 328 ~—}— 5128
—p— B —a— KB
—O— 128B ——f— 2KB
Figure 9:

global cache and that 53% to 72% of the latency
is due to the cache line. Figure 9 shows the af-
fect of varying the line size on the latency. It can
clearly be seen that there is a large jump in la-
tency when the cache line size changes from 512
bytes to 1 Kbyte. This would imply that it may
be advantageous to halve the global cache line
size.

The width of the ICN is of interest more from
an economical point of view. The 16 byte width
of the ICN makes it difficult to build the ICN
interface due to the large number of integrated
circuit pins needed. In fact, the ICN interface
will probably have to be made in a bit-slice fash-
ion. Reducing the width of the ICN would in-
crease latency and reduce bandwidth but would
greatly reduce costs and increase ease of manu-
facturing. Figure 10 shows the effect on latency
of the width of the ICN. The graph only shows
the effect for block transfers and since the transfer
time is dominated by the line size it is apparent
that a high ICN bandwidth is needed to trans-
fer a large line in a reasonable amount of time.
If it proves reasonable to decrease the line size
and/or increase the clock speed then it may prove
possible to decrease the line width and therefore
gain the benefits of a narrow network. In the
case of synchronization and command messages,
messages are only 8 bytes wide so they are little
affected by the width of the ICN.

Latency of Memory Accesses vs Access
Type for Varying Width of the ICN

Latency 4000 -
(CPU 1
cycles)

2000

0—T— T T T T 1
38EFLEES
AccessType & & & &
——f}=— 2B e 16B
—e— 48 —g— 328
—g— 8B
Figure 10:

5 Conclusion

Asura’s NIF board implements its ICN and in-
terfaces it to its cluster. The ICN runs at 25
MHz and is 16 bytes wide. The bandwidth of
the ICN is 400 Mbytes per second and provides
slightly higher bandwidth than the combined in-
tra cluster busses of the cluster. The latency of
accesses is dominated by the time it takes to read
the large, 1 Kbyte global cache line. However,
for programs that exhibit good locality of refer-
ence, much of this delay can be hidden, due to the
implicit prefetching effect of the large line. By de-
creasing the line size the latency can be greatly
reduced but for well behaved programs this could
actually increase the overall latency of accesses.
In order to decrease the cost of manufacturing
and make the hardware smaller the width of the
ICN could be decreased but this would have to
be coupled with some adjustment to make up for
the increase in latency. This paper presented the
results of the first prototype design and it will
be refined in the future based on this and further
studies.

References

[ARCS86] Archibald, James and Jean-Loup Baer,
Cache Coherence Protocols: Evaluation
Using a Multiprocessor Simulation Model.

ACM Transactions on Computer Systems,
Vol. 4, No.4, Novemnber 1986, pp 273-298.

[ARL88] Arlauskas, Ramune, iPSC/2 System: A
Second Generation Hypercube. ACM, 1988.

[BRO8T] Brooks 111, E. D,
A Butterfly Processor-Memory Interconnec-
tion for a Vector Processing Environment,
Parallel Computing, 4:103-110, 1987.

[GLE92] Gleeson, Tim, Memory Hierarchy in
Asura: Discussion document. an unpub-
lished work of Kubota Corporation, July
1992.

[GOO091] Woest, Philip J. and James R. Good-
man, An Analysis of Synchronization Mech-
anisms in Shared-Memory Multiprocessors.
International Symposium on Shared Mem-
ory Multiprocessing, pp 152-165, April 1991.

[IEEE91]) SCI: Scalable Coherent Interface; Log-
ical, Physical and Cache Coherence Speci-
fications. Draft for Sponsor Ballot Review,
IEEE, New York, N.Y., January 1991.

[KUC86] Kuck, David J., Edward S. David-
son, Duncan H. Lawrie, and Ahmed H.
Sameh. Parallel Supercomputing Today and
the Cedar Approach. Science, 231(2):967-
974, 1986.

[LEN92] Lenoski, Daniel E., The Design and
Analysis of DASH: A Scalable Directory-
Based Multiprocessor. Technical Report No.
CSL-TR-92-507, Computer Systems Labora-
tory, Stanford University, February 1992.

[MORY2] Mori, Shin-ichiro et al. A Distributed
Shared Memory Multiprocessor: ASURA -
QOverview and Memory Architecture -. Sub-
mitted to the International Conference on
Supercomputing 93.

[NAI92] Naito, Jun, Kazuki Joe, Hiroaki Mat-
suno and Hiroyuki Nitta, Performance Eval-
uation of the ASURA Cluster, Technical Re-
port 92-ARC-97-10, IPSJ, Dec. 1992.

[SAI92] Saito, Hideki et al. The Event Correspon-
dent Cache Coherency Scheme and Its Appli-
cation to Barrier Synchronization, Technical
Report No. 92-ARC-95-2, IPSJ, 1992.

[TANS81] Tanenbaum, Andrew S., Computer Net-
works, Prentice-Hall, Tokyo, 1981

[TIT90] Titan Hardware Reference Manual, an
unpublished work of Stardent Computer
Inc., 1990.

[WIT92] Wittie, Larry D., Gudjon Hermanns-
son, and Ai Li, Eager Sharing for Effi-
cient Massive Parallelism. Extended ver-
sion of Parallel Processing Conf. 1992
paper. First International Symposium on
High-Performance Disiribulted Compuling.
September 1992

—140—

