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Overview of a Massively Parallel Computer Prototype:
JUMP-1
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Takashi Matsumoto*! and Shin-ichiro Mori*3
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*4 Tokyo Engineering University, * Kyoto University, *6 Kobe University

This paper summarizes the architecture of a massively parallel computer, JUMP-1. The most impor-
tant objective of the JUMP-1 is the implementation of an efficient distributed shared-memory system
reducing access latency. To cope with it, we introduced a three level cache system not only managing its
coherency by both invalidate and update protocols, but also providing inter-processor communication
and synchronization mechanism. We also proposed a scalable interconnection network fit for the dis-
tributed management of memory consistency, and a scalable I/O system for high speed image and file

processing. As for the interconnection network, the performance evaluation result shows its advantage
to conventional scalable networks.



1 Introduction

To construct a new scheme of information process-
ing in 21st century, we are now pursuing a joint
university project called JUMPP (Japan Univer-
sity Massively Parallel Processing Project). This
project aims to give fundamental paradigms and
technologies for 10® scale massively parallel pro-
cessing. The research items of the project are com-
putation models, programming languages, operat-
ing systems, and hardware systems. .

It is also planned to build a prototype sys-
tem as the substantiation of these research works,
and as the platform for further research. The
prototype hardware system is called JUMP-1, on
which a prototype operating system, prototype
language processing systems, and various applica-
tions will be implemented. The JUMP-1 is a gen-
eral purpose parallel computer with a distributed
shared-memory system. It has 1024 processors to-
gether with intelligent caches, memory manage-
ment co-processors, a high performance intercon-
nection network, and image and file I/O systems.

In the following sections, Section 2 to Section 6,
the architecture of the JUMP-1 and its components
are summarized. The performance evaluation re-
sults of the interconnection network is shown in
Section 7. Section 8 gives the conclusion and our
research schedule.

2 Global Architecture

As a general-purpose processing system, the
JUMP-1 must satisfy various requirements, which
may contradict each other. The global architecture
of the JUMP-1 is designed to satisfy the most fun-
damental issues for massively parallel processing
systems. They are:

Efficient globally-addressable memory
Since a shared-memory programming model is
as general as a sequential programming model
in uniprocessor, efficient globally-addressable
memory is crucial to realize general-purpose
massively parallel processing.

The shared-memory system reduces overheads
on implicit process communications through
shared variables if a shared-memory is prop-
erly supported by hardware and architecture.

Optimized shared memory system that uti-
lize update protocol
Existing snoop-cache protocols are not suf-
ficient for reducing cache-cache traffic to
achieve efficient parallel processing in numer-
ical intensive computations and fine-grained

computations. This is because numerical
intensive applications require very frequent
and wide memory accesses and because fine-
grained computations require frequent inter-
processor communication and synchronization
through a shared-memory.

At the same time, other difficulties such as
memory access latency and synchronization
overheads must be solved for efficient execu-
tions on massively parallel processing systems.

Efficient message-passing and synchroniza-

tion supports
In applications that are not data-parallel,
overheads related to message passing and fine-
grained synchronization are major sources of
deficiency. One approach to these problem
is to add separate message handling and syn-
chronization mechanisms to a processor. How-
ever, those mechanisms limits merits of shared
virtual address space unless they are imple-
mented on separate virtual name spaces.

For avoiding excessively complication and
overheads on name space translation, message-
passing operation and synchronization must
be realized on a single shared virtual memory
system.

Optimized to both coarse-grained and fine-

grained programs
When application programs are regular nu-
merical incentive computations, performance
on coarse-grained computations are the most
important issue. While, very fine-grained
operations are necessary for irregular prob-
lems and implementation of efficient shared
virtual memory. They are also correspond-
ing to local computations and global com-
putations respectively. Concurrent execution
of local and coarse-grained computations and
global and fine-grained computations is essen-
tial to achieve general-purpose massively par-
allel processing.

Scalable network architecture

Scalable network architecture is a widely rec-
ognized requirement. However, scalability of
the shared virtual memory space is far more
important for general-purpose massively par-
allel processing than scalability of data traffic
which is determined by the property of phys-
ical transmission lines. Therefore network ar-
chitecture that supports scalable shared vir-
tual memory protocols is necessary for con-
structing scalable massively parallel systems.
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Figure 1: Global architecture of JUMP-1

The second requirement for scalable network
architecture is that the system must smoothly
scale to any system size. In this point of
view, several network topology like hyper-
cubes, hyper-crossbar cannot smoothly scale.
Partitioning capability is another scalability
requirement that is important under multi-
user / multi-programming environment. The
performance of the partition must be scale
down as the size of partition decreases.

Scalable I/O subsystems

Data transfer between I/O devices and pro-
cessing elements has different characteristics
from communication between processing ele-
ments. Major differences are (1) locality of
connections, (2) time duration of connections
and (3) allowed latency. When a partitioned
operating system is used, I/O data transfer
cannot be routed on a interconnection net-
work because I/O connections has no-locality.
Therefore, a separate I/O network and 1/0
subsystem is required to achieve scalable an
1/0 subsystem.

The JUMP-1 adopts clustered architecture (Fig-
ure 1) as a basic architecture. Clustered archi-
tecture has several good properties for massively
parallel systems because (1) clustered architecture

reduce the cost of interconnection network for typ-
ical numerical intensive applications, (2) it im-
proves utilization of the interconnection network,
(3) it allows more efficient memory consistency
protocols and synchronization protocols and (4)
it matches current physical implementation tech-
nology. For optimizing compilers and applica-
tion programmers, clustered architecture has ad-
ditional benefits. Since local processors are more
tightly coupled than non-clustered system, opti-
mizing compilers can exploit short-range paral-
lelism in application programs. Furthermore, a
program on a cluster can directly access large
amount of memory, which is essential to implement
irregular applications and operating systems.

As shown in figure 1, the JUMP-1 consists of
256 processor clusters and three different networks.
The first network is Recursive Diagonal Torus
(RDT) network for interconnecting processor clus-
ters as described in the later section. The sec-
ond network is an I/O network for disks and high-
definition video devices. The I/O network is a
point to point high-speed serial link with network
concentrator which dynamically change the assign-
ment of I/O devices to clusters. The third network
is a maintenance network for booting, instrumen-
tation and debugging, which is a tree-structured
SCSI buses.

Figure 2 shows the block-diagram of a cluster.
A cluster consists of 4 coarse-grained processors
(CPU), 2 fine-grained processors that is directly
connected to a main memory (Memory-Based Pro-
cessor, or MBP), 4 secondary caches (L2 cache)
that interface between a CPU and an MBP, two
network interface processors (NIPs), a network
router, an I/O network interface and a common
bus.

A CPU is a off the shelf RISC processor (SUN
SuperSparc) for the main part of the application
programs because current RISC shows the best
performance in sequential computations with lo-
cality in memory references by introducing large
amount of process context (registers and system re-
sources). The characteristics of an MBP is to com-
plement a CPU for short thread fined-grained com-
putations with frequent context switches. Since
there are no commercial fine-grained MPU, the
MBP is a custom design processor with associated
support hardware as described later. An L2 cache
memory is a secondary cache memory from CPU
and the target of cache injection [1] with synchro-
nization functions. Therefore, a CPU and an MBP
form a decoupled architecture for global memory
access operations. A main memory, also called L3
cache, has synchronization tags on each word for
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Figure 2: Block diagram of a cluster

implementing I-structures, FIFO queues and other
memory-based synchronization primitives.

A NIP is an interface processor to RDT network,
which generates network routing information, as-
sembles packets with error check code. A router is
a node of RDT network with elastic barrier hard-
ware. An I/O network interface is a high-speed
serial transmitter/receiver (TAXI) with message
buffers.

The global memory architecture of the JUMP-1
is a strategic memory system (SMS) which inte-
grates shared virtual memory, synchronization and
cache injection. The main features of the JUMP-1
SMS are as follows:

1. Three level virtual address space for flexi-
ble memory sharing, migration and protection
(figure 3).

2. Dynamic switching of coherent protocols for

optimizing access latency and network (bus)
traffic (ICSCM, [2]).

3. Memory based synchronization on both L2
caches and main memories.

4. Integration of synchronization, communica-
tion and consistency protocols, which ex-
tends dynamic switching of coherent proto-
cols to support producer-consumer synchro-
nization efficiently [3].
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Figure 3: Address translation in JUMP-1

5. Cache injection facility (CIF) for efficient com-
munications by non-demand-driven memory
operations [1].

6. Two level consistency protocol for efficient im-
plementation of SMS. Snooping protocols are
used to keep consistency in a cluster and a
pseudo-full-map directory based protocols [4]
are used to keep consistency among clusters.

Figure 3 outlines the address translation mecha-
nisms in the JUMP-1. For implementing three level
virtual address space, three translation lookaside
buffers are used. A P-TLB is placed in a CPU and
translates logical addresses to cluster addresses,
which is used for accessing the main memory when
the target is within the cluster. C-TLB is placed in
an MBP and translates cluster addresses to global
net-addresses, which is used for accessing remote
memories, message passing. N-TLB is placed in an
MBP and translates global net-addresses to clus-
ter addresses. N-TLB also act as capability lists
for protection on global memory accesses.

3 Processor and Secondary
Cache

A processing element (PE) consists of a RISC pro-
cessor, SuperSparc, and a secondary cache. Super-
Sparc has on-chip primary caches, a 5-way set asso-
ciative 20 K-byte instruction cache, and a 4-way set
associative 16 K-byte data cache. Both caches are
physically-addressed and each cache line of them
can be invalidate by a request from off-chip mem-
ory interface. These features and the write policy



of the data cache, write-thorough and no write-
allocate, give us a free hand of secondary cache
configuration and its coherence control. Partial
store ordering model also enables us to adopt weak
ordering memory consistency scheme.

The secondary cache is 1M-byte, direct map-
ping, write-back, unified, snoop cache. It has so-
phisticated mechanisms not only for multicache co-
herence control, but also for interprocessor commu-
nication and synchronization.

3.1 Coherence Control

The secondary cache supports both of two major
coherence control protocols, write-invalidate and
write-update. Programmers, compilers and/or op-
erating system can specify one of these protocols
as a page attribute according to the usage of data
in the page. The attribute is cached as a part of
cache tag.

Each line of the secondary cache has one of the
following five states for multicache coherence. con-
trol.

e invalid
o exclusive, dirty

o locally-shared, clean
o locally-shared, dirty
e globally-shared, clean

The states with locally-shared mean that copies of
the line are only in a cluster, while a globally-shared
line may be shared by two or more clusters. This
distinction will reduce the load of MBP, because it
can ignore a write for a locally-shared line and may
not acknowledge the write with a bus transaction.

The load of MBP will also be reduced by inter-
cache data transferring with random reply policy.
When a PE misses its secondary cache and requests
to obtain a line, every cache having the line tries
to respond to the request as soon as it become free
from its processor’s requests. Then the cache with
smallest load will reply the line, while others will
cancel their trials. This policy has advantage over
that with ownership concept to fix a cache respon-
sible for the reply, because of better load balancing
and shorter response time.

3.2 Communication and Synchro-
nization

As described in the following section, MBP pro-
vides various operations for interprocessor commu-
nication and synchronization. The performance of
these operations, however, would be limited be-
cause of the distance from a processor to MBP.
Therefore, we introduced caching mechanisms for
two important schemes, I-structure and FIFO, in
order to reduce access latency of them([5].
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Figure 4: Cached I-structure

Each - word in the secondary cache has a
full/empty bit to indicate the presence of a valid
data. Since the processor doesn’t has such an ad-
ditional bit, a special command, specified in a part
of physical address, is available to load the bit as a
data. Moreover, another load command performs
a predefined action if the word is empty, while it
obtains the valid data in the full case. The action
for the empty case, specified as a page attribute, is
loading a special data pattern or raising an inter-
rupt synchronous to the load operation. As shown
in Figure 4, the response data of ordinary and spe-
cial load operations are cached in the primary data
cache to minimize the latency.

The presence bit is also used to cache the words
at the FIFO top. The secondary cache tries to
prefetch eight words from a FIFO and gives each
word to the processor bypassing the primary cache
as the response of a special dequeue command.
Since the presence bit of a prefetched word is
turned empty if the word is beyond the FIFO bot-
tom, a dequeue causing underflow will result the
same as the load of an empty I-structure. Another
type of FIFO is packet FIFO whose entry is a data
packet up to 32-byte. The dequeue operation for
this type FIFO removes the top packet and moves
it to a buffer area. Since the buffer can be cached
into both primary and secondary cache, the latency
of the access to the contents of a packet is mini-
mized. Moreover, the latency of moving the top
packet will be hidden by a small prefetch buffer in
the secondary cache.

4 Memory-Based Processor

Memory-Based Processor (MBP) is a fine-grained
processing element for global operations that in-
clude management of memory consistency, memory
based synchronization, message handling and user-
level fine-grain operations. Asshown in figure 5, an
MBP is connected to L2 cache memory through a
common bus, an RDT router through a network
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Although the name space of memory based
barriers is virtual memory address space, the
name space of the elastic barrier is the proces-
sor space because elastic barrier is supported
by hardware. Since the number of proces-
sors in the JUMP-1 is too large for flat im-
plementation of the barrier, elastic barrier is
realized through RDT network, in which bar-
rier operations are combined at higher levels
in RDT network. MBP interfaces barrier re-
quests from CPUs to RDT network router and
manages partitioning of elastic barriers.
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Figure 5: MBP connections

interface processor and I/O links. In this section,
the function and the construction of the MBP are
outlined. Detailed description of the MBP is found

ated by an MBP for realizing data-driven op-
eration. In both cases, the target of cache
injection is a block already on the cache or
an empty block. The combination of cache
injection facility and memory based synchro-
nization can reduce network traffic related to
processor communications.

. Management of message passing operations
in [7, 8].

An MBP has following functions to complement
coarse-grained CPU:

Strategic Memory System Management
Address translation, protection, data trans-
fer and snooping operation to L2 cache mem-
ory, memory consistency preservation among
clusters by a pseudo-fullmap directory scheme
and accesses to remote memories are included
in strategic memory system management [8].
The consistency protocol based on the pseudo-
full map directory utilizes the hierarchical con-
struction of the interconnection network for
reducing update/invalidate requests on the in-
terconnection network and for reducing the
length of the entry of the directory.

Memory based synchronization
Memory based synchronization is the mech-

At an MBP, all the requests is interpreted as
a message. An MBP recéives messages from a
CPU through L2 cache, from an RDT router
through an NIP and from an I/O link. The
MBP responds to a message in two different
ways:

1. When the message invokes MBP activi-
ties, the message is written in an MBP
message buffer and the corresponding
MBP instruction pointer is added to
MBP context queue.

2. When the message invokes CPU activi-
ties, the MBP tries to inject the message
to L2 cache memory and modifies the ac-
tive context queue by memory based syn-
chronization operation.

anism to implement I-structures [10], FIFO Thread management for coarse-grained pro-
queues, memory barriers and Fetch and OP cessing elements

primitives on each memory location. In
the JUMP-1, both L2 cache memories and
main storages have a synchronization tag on
each memory location and implement memory
.based synchronization.

Implementation of an elastic barrier

Since locality is the key to archive high perfor-
mance on coarse-grained processing elements,
a sophisticated thread management that can-
not be realized by a simple hardware con-
text queue is indispensable. The JUMP-1 uses
memory based FIFO queues as context queues




that is managed by an MBP. The basic prin-
ciple of thread scheduling is based on Snoopy
Spin-Wait method proposed in [12].

Macro Dataflow computations

In macro dataflow computations, an MBP
functions as a matching memory, L2 cache
works as an active macro-node queue by cache
injection, and a coarse-grained processing ele-
ments execute macro-node and output tokens
to subsequent nodes. Pipeline bubbles caused
by non-firing input tokens are campletely elim-
inated in the JUMP-1 by concurrent execution
of MBP and CPU.

Management of an RDT router
An RDT router requires initialization, estab-
lishment of a partition, set up of routing infor-
mation and network clearing. Since an RDT
router does not have managing capability, all
these primitives are realized by an MBP con-
nected to that router.

Execution of user-level fine-grain programs
Other than basic primitives motioned above,
an user can run his fine-grain programs on
MBP. Garbage-collection, transaction process-
ing are examples of user-defined fine-grain pro-
grams. Programs are stored in a main memory
and all the working spaces are also reserved in
a main memory.

Figure 6 shows the block-diagram of the MBP.
Among MBP functions listed above, those which
are frequently used and have large influence on
performance are implemented in MBP hardware
function-blocks and other functions are realized
by MBP-core programs. The following functions
are selected for implementing by MBP hardware
function-blocks:

Shared bus interface
Shared bus interface unit controls block-data
transfer between L2 cache, cache injection and
snooping protocols. Regular memory accesses
are serviced by this unit.

Address translation
Successful cases of cluster addresses to net-
addresses translation are performed by C-TLB
hardware. Net-addresses to cluster addresses
are translated by N-TLB. Housekeeping oper-
ations for C-TLB and N-TLB is realized by
MBP-core programs.

Consistency preservation between clusters
Broadcast / selectable multi-cast communica-
tion necessary for the pseudo-full-map direc-
tory scheme is realized by inter-cluster access
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Figure 6: MBP Block diagram

managing unit. Since RDT does not preserve
communication orders, inter-cluster access ac-
knowledge managing unit and per-processor
access ordering unit control access order and
collection of acknowledge signals for memory
consistency protocols.

Basic memory based synchronization
Successful access in I-structures and other sim-
ple memory based synchronization primitives
are processed in sync-bits control unit. Unsuc-
cessful access in I-structures and other compli-
cated primitives are processed by MBP-core
programs.

Basic primitives for I/O links
DMA operations and hardware buffer controls
for a TAXI network are implemented by MBP
hardware function. Error handling primitives
are realized by MBP-core programs.

MBP-core is a processor optimized to very short
thread, network interface and memory with syn-
chronization tags. The main objectives of the MBP
is to emulate MBP functions that is not directly im-
plemented by MBP hardwired function-blocks and
execute user fine-grained programs. Detailed de-
scription of MBP-core architecture is described in

[9].

5 Interconnection Network:
RDT

The following properties are required for the inter-
connection network used in the JUMP-1. (1) Two



dimensional torus structure can be easily emulated
because parallel applications have been also devel-
oped in the JUMPP project on the torus connected
multicomputer AP1000[13]. (2) In order to man-
age the distributed shared memory system with the
hierarchical full-map directory, inherent tree struc-
ture with multiple roots is required. (3) Diameter
must be smaller than that of hypercube with rea-
sonable fixed number of degree.

To cope with these requirements, we proposed a
novel interconnection network called the Recursive
Diagonal Torus (RDT)[14].

The RDT is defined on a two-dimensional near-
est neighbor torus (IV x N) which is called the base
torus or rank-0 torus.

Here, let be the four additional links between
node (z,y) and nodes (mod(z % n,N),mod(y £
n, N)) on the rank-i torus. The resulting network
is a torus called rank-(i+1) torus. n is called the
cardinal number, and here, we set it 2. As an ex-
ample, a rank-1 torus and a rank-2 torus are shown
in Figure 7(a) and (b) respectively. Note that 8 in-
dependent upper toruses are formed on a torus.

/

(b) rank-2

(a) rank-1

Figure 7: The RDT theory of organization

Recursive Diagonal Torus RDT(n,R,m) is a
class of networks in which each node has links to
form base (rank-0) torus and m upper toruses (the
maximum rank is R) with the cardinal number n
(here, n = 2). Note that, each node can select dif-
ferent rank of upper toruses from others.

The RDT in which every node has links to form
all possible upper toruses (RDT(n,R,R)) is called
the perfect RDT (PRDT(n,R)) where n is the
cardinal number (here, n=2) and R is the maxi-
mum rank. Although the PRDT is unrealistic be-
cause of its large degree (4(R+ 1)), it is important
as a basis for establishing routing algorithm, broad-
casting, and other message transfer algorithms on
the RDT.

The JUMP-1 must be scalable to the system with
ten thousand nodes (for example, array of 128 x128
nodes or 256 x 256 nodes ). In this case, m is set to
be 1 (degree = 8). For this number of nodes, the

maximum rank of upper toruses is 4. Thus, the
RDT(2,4,1) is treated here.

In the RDT, each node can select different rank
toruses from others. Thus, the structure of the
RDT(2,4,1) also varies with the rank of toruses
which are assigned to each node. This assignment
is called the torus assignment. Various torus as-
signment strategies can be selected considering the
traffic of the network. If the local traffic is large,
the number of nodes which have low ranks should
be increased. However, complicated torus assign-
ment introduces difficulty to the message routing
algorithm and implementation. For the JUMP-1,
we selected a a relatively sunple torus assignment
shown in Figure 8.
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Figure 8: Torus assignment used in JUMP-1

The RDT provides the following features for the
JUMP-1.

e A simple routing algorithm called the vector
routing, which is near optimal and easy to be
implemented, enables smaller diameter than
that of the hypercube (11 for 2'® nodes) with
smaller degree (8 links per node).

o Using its inherent hierarchical structure in up-
per toruses, the distributed multicast required
for the hierarchical full-map directory can be
efficiently implemented. Trees and the hy-
percube connection are easily emulated. The
FFT and the bitonic sorting algorithms are
also easy to implement.

o With the best use of the redundant structure,
fault tolerant techniques can be easily applied
on the RDT.

Precise definitions and discussions on the RDT are
described in [14][15].




6 I/O System

6.1 Image and file I/O subsystems

The I/O system consists of image I/O and file I/O
subsystems. The image I/O subsystem supports
high quality image processing for scientific visual-
ization. The file I/O subsystem provides a large
amount of non-volatile data storage.

In vector-type supercomputers, I/O systems are
commonly connected with a single high speed I/0
channel, such as HIPPI, or an internal bus. In
the JUMP-1 system, this approach would cause
communication bottleneck at a specific cluster con-
nected to the I/O channel when the other clusters
request a large number of I/O operations. Thus
we took an approach based on not a single central-
ized I/O channel but a number of distributed I/O
links as shown in Fig. 9. Each link is composed of
high speed serial communication LSI and FIFO as
described below.

For example, in order to display a high-vision
image (1920 x 1035 pixels per frame) on a monitor
in real time (30 frames/sec.), a centralized channel
is required to have high transmission bandwidth
(about 180 MBytes/sec.). However, by dividing a
channel into several links, say 32 links, the band-
width can be reduced to about 5.6 MBytes/sec (45
Mbps). Several serial links from clusters are com-
bined into frame buffers for image input/output,
then image data are transferred to a image I/O
devices such as an HDTV monitor or a camera
through a fast video bus. Asin an image I/O inter-
face, a disk I/O interface is connected to JUMP-1
clusters via many fast serial links, then data from
disk storage devices are transferred by an 1/O con-
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Figure 9: Organization of an I/O system

TSt
Hele

Figure 10: Virtual-FIFO organization

troller through a SCSI bus.

Since only connecting via fast serial communi-
cation links between an I/O interface and clusters
cannot achieve a high performance I/O system, an
efficient communication organization among them
has to be implemented. Thus, we propose a
Virtual-FIFO mechanism for an efficient I/O com-
munication organization as described below.

6.2 Virtual-FIFO mechanism via
fast serial communication

A configuration of Virtual-FIFO mechanism is de-
scribed in Fig. 10. A communication block con-
sists of fast serial communication LSI (AMD TAXI)
chip sets for transmitting and receiving, Send- and
Receive-FIFOs and a communication controller
which controls asynchronous communication by us-
ing a simple Xon/Xoff protocol. By connecting
two communication blocks via a twisted pair or
coaxial cable, a bi-directional first-in first-out facil-
ity is constructed between them. Combining some
Virtual-FIFOs implements I/O subsystem which
holds wide range I/O bandwidth and is flexible for
I/0 cable length.

Merits in I/O communication via Virtual-FIFOs
are shown as follows.

¢ Relaxing distance constraint: Since the num-
bers of processing elements grows, an overall
system configuration becomes larger, in con-
sidering physical distance between an I/O sys-
tem and clusters, connecting via fast serial
links is one of the most effective implemen-
tations for massively parallel computing sys-
tems.

Enhancing communication throughput: A
communication sequences consists of five
phases, (a)writing into Send-FIFO (b)parallel-
serial transforming (c)serial transmission
(d)serial-parallel transforming (e) reading
from Receive-FIFQO. Since these five phases



can be overlapped in Virtual-FIFO organiza-
tion, a communication throughput can be en-
hanced.

7 Performance Evaluation

7.1 INSIGHT : An Interconnection
Network Simulator

An interconnection network simulator, called IN-
SIGHT is developed to evaluate the performance
of various interconnection networks toward realiza-
tion of massively parallel computers [18][19].

INSIGHT provides salient features to investigate
the desired interconnection network using network
description language which is used to specify the
characteristics of the interconnection network such
as its topology, flow control, channel width, and
others. ,

INSIGHT aims to evaluate the performance of

an interconnection network for massively parallel:

computers containing thousands or tens of thou-
sand processor elements. INSIGHT performs sim-
ulation based on the specifications of the target in-
terconnection network written in network descrip-
tion language. Furthermore, the various communi-
cation patterns obtained from the execution of par-
allel programs are used in the simulation providing
practical application tests to the interconnection
network.

INSIGHT is useful tool for the performance eval-
uation and the support of development of desired
interconnection network, because of that it can
modify its parameters which is needed for simu-
lations.

7.2 Performance Analysis of RDT

In this section, we will consider four types of in-
terconnection networks having 4096 nodes with-
out considering the bisection width, i.e., the
RDT(2,4,1), the 2-dimensional torus (64x64), the
3-dimensional torus (16x16x16), and the 12-
dimensional hypercube.

In the implementation, the simulation param-
eters for each interconnection network are set as
follows:

Flow control niethod : store and forward
Routing method : deterministic routing

Channel width : 32 bits with bidirectional con-
nection links

Packet size : 128 bits (Header size : 64 bits,
Data size : 64 bits)

Data transfer frequency : 50 MHz

These are on the assumptions that data transfer
between channels can be completed within 1 clock
period, the routing process time in each node is
set to 40 nanoseconds (i.e., 2 clock periods) assum-
ing that decision making for the next node takes
one clock period, and to pass through the exchange
switch is also one clock period.

In this simulation, a message which is given a
randomly generated destination node has been cre-
ated with message size ranging from 4 bytes to 128
bytes. Then, we obtain the average network la-
tency of the first generated 10,000 messages at 2
microseconds interval, and at increasing message
creation interval.

The plot of the average network latency as a
function of message creation interval for the RDT,
2-dimensional torus, 3-dimensional torus, and the
12-dimensional hypercube are shown in Figure 11.
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Figure 11: Message creation interval vs. Average
network latency.

The 2-dimensional torus has a high latency be-
cause there are only few connection links per node
and collision often occurs. In contrast, the hyper-
cube which is a high-dimensional topology has low
latency. The RDT(2,4,1) also has low latency, sim-
ilar to the hypercube, in spite of the few communi-
cation links per node. Great improvement on the




latency is clearly observed on the RDT(2,4,1) with
low hardware cost..

8 Concluding Remarks

The architecture of the JUMP-1, a massively par-
allel computer prototype, has been described. This
paper has also given unique features of its key
components, the intelligent secondary cache, mem-
ory management co-processor MBP, interconnec-
tion network RDT, and I/O system with TAXI.
The performance evaluation results, obtained from
the network simulator INSIGHT, prove the effi-
ciency of the RDT.

The architectural and functional design of the
JUMP-1 has been finished, and we are now pur-
suing the logic design of four ASIC chips for each
components. The system will be completed in the
first quarter of 1995.
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