HEET -7 27F+ 107—10
(1994. 7. 21)

FH A LAY VT EROISERTF—F 70— VICHT 53 —FE
K ey NIt
SR TER AR TR

COHRYTIE. AP F—y 7n—<I)F oy HERET S, kO AR
&4Ax9yf?&%Av—f&%%%wfﬁﬁ%ﬁ%ﬁmbfmkcbﬁb\i
WA RTOICT -7 70 —< ¥ VU CTIGSIIIEREMICET I N RO S X R
b#%b(ﬁ%ﬁﬁﬁﬁﬁ@%ﬁ@@%f%5o%9T$ﬁif@%§fyﬁ~y
WFOZERICFTEIA LAY VTOFHEEAFALTEL 7o XAMEED
FIEABET S, AvbE—VICTFHIAN LAY VT ET—7 70— D7 T %
FIA UTKIEEBARR LA v — UPIEF IR FEINS HEERET Ui, R
DOEEXRE UM KB EHK T 2 HEE, Fr A VRET 2 — X, #fF7 = —
A BT = — XA g/ LT,

A distributed dataflow machine which uses time stamp
Hiroshi NAGASE Hiroshi SUZUKI

Department of Information and computer engineering
Kanazawa Institute of Technology
7-1 ougigaoka nonoichi ishikawa 921 Japan

In this paper, we consider a distributed dataflow multi-processor. In a Neumann processor,
realize a global time is realized by time stamp. However, in a dataflow machine, it is difficult
to realize a strict global time, since, instructions are asynchronousely executed, and it is
difficult to achieve roll back. Hence, In this paper, we consider the method of the process
communication that insert the reservation value of time stamp, expected in a receive message,
in a send message beforhand. These time stamps are easily realized as a part of tags,

originally used as colors of operands.

1. Introduction

In a distributed processing system, many
processes concurrently operate and thus accomplish
high performance.
related processes, concurrency control is necessary
to assure correct execution of processes. If one

However, among mutually

supposes existence of a central process that is
responsible for time control, many problems can be
avoided which are specific to distributed systems.
However, in the controlled
performance bottleneck often arises, and a failure of
center process may causes a serious trouble of a

central system,

total system. Therefore, in a distributed system;
concurrency control had better be decentralized.

For Neumann processors, there exist many
researches about concurrency control.(1X2) This
paper discusses concurrency control of dataflow
machines. Since a dataflow machine is classified to
a tag machine, we utilize time stamps. Precisely,

'

'colors ' are used for distinguishing concurrent
processes (or functions), wheras 'time stamps' are
used for realizing a global clock. The latter clock is
obtained by message handling.

In this paper, we consider dataflow multi-
processors. Process communication and mutual
exclusion are realised using time stamps. Since in a
dataflow machine, are executed
asynchronously, it is necessary to correctly identify
senders and receivers at process communication. It

instructions

is also to be noted that asynchronous execution of
instructions inhibits winding back of time stamps.
Hence, to attain globally ordered time stamps are
not easy in a dataflow machine. These problems are
considered in the following sections.

v

2. Existing methods

A method of process communication for a
dataflow machine was proposed by Yamada et al®
which uses a special hardware called a structured
memory. A structured memory is composed of a
memory and a queue. In this memory, read and
write operations happen asynchronously. If a read
operation precedes a write operation, a read
operation cah wait for completion of a write

operation in the following way.

(1) Common areas between two processes are
reserved in a memory for control of process
communication. Receiver process writes, in that
area, his color and an entry address of received
message. At the same time, a flag, called a
presence bit, is put on a memory to signify
validity of color and entry address.

(2) Sender process reads a color and an entry
address written in a structured memory. Then, a
presence bit is put off. Send message is tagged
with a color of a receiver process, and is send to
a specified entry address.

(3) If a sender tries to read a structured memory in
advance that a receiver writes to that memory,
the read request waits for completion of a write
operation at a structured memory.

send .
i Reciever

process B

Sender
process A

(2) read operation (1) write operation
Ppresence bit

data
color

011 walting for buffer memory

0/1 { entry address

0 read instruction poln.t"

A

another walting Instruction
Fig.1. Process communication using a structured
memory3),
For mutual exclusion, a
mstruction is used in a Neumann processor. A
problem of this method is a memory access neck
caused by repeated test instructions. There are other

' test and set

methods that prevent repetition of common memory

accesses. these methods usually

broadcast occupation of a common memory, and

However,

this announcement augments the number of process
communications.

To overcome these problems, an autonomous
method of mutual exclusion was proposed for a
dataflow machine.®® As shown in Fig.2, the method
uses control processes and an arbitration token. In
an entrance control process, access requests for a
common memory are queucd. When an arbitration
token enters the process, the first request in the
queue is taken and is sent to a procedure, in which
memory accesses are operated. After the operation
is over, an arbitration token is again returned to the

entrance process.
The method, so far stated, is called a '
suppress matching method,' since an arbitration

color

token can pair with any access requests regardless
of their colors. The remarkable feature of this
method is that it reduces access load of a common
memory. Another point is that a request process can
continue the execution of his process after he sent
an access request, since an access is autonomdusly
permitted at common memories. However, in this
method, one cannot regulate the order of accesses in
a specified manner (e.g. order of events related to
accesses). Introduction of time stamps, presented in
the following section, intends to accomplish
sequential access of a common memory.

3. Process communication

3.1 Assumed processor architecture

In the following sections, a multi-processor is
supposed, where each processor is a dataflow
machine. At execution time, several processes exist
in each processor, and every process is composed of
several functions. To achieve parallel processing,
each function is tagged with a unique color. Here,
colors are issued at a tag manager, which is located
at every processor. For simplicity, we suppose that
the number of colors are infinite.

entrance control proceg

[arbitration
token

l procedure

exit control process

Fig.2. Mutual exclusion.

3.2 Necessity of time stamp

Process communication is defined as message
transfer from a sender process to a receiver process.
Usually a send request and a receive request are not
synchronized. Then, there are three approaches to

cope with the difference of timing. The first
approach is to use the function of operand waiting

inherent to dataflow machines. In this

case,

message is directly sent to an instruction like an

ordinary operand. One difference from usual
operand transfer is that a sender and a receiver have
different colors. Hence, a sender must send his

message tagged with a receiver's color. Since a

receiver may do function calls at any time, it is not

easy for a sender to know receiver's color. The
second approach is a contention method. Process
communication shown in section 2 takes this
approach, and for this objective, a channel is

introduced. Physically, a channel corresponds to a

structure memory and a queue. The features of this

method are summarized below.

(1) A structure memory plays a role of color
transformation. However, colors of a sender and a
receiver must be mutually pre-known, and must
be fixed wuntil the

communication.

termination of process

(2) A receiver can preset a receive request. Hence,
a receiver address can be determined at the
execution time.

(3) A queue is used for waiting a send message
when a receive request is delayed. Since messages
are accepted by FIFO algorithm, one cannot
control the order of messages.

The third approach uses time stamps, and is a
basis of this paper. Generally, time stamps offer
timing information in a distributed systeln.(4) The
concept of time stamps, here, is similar to those
conventional time stamps. However, the proposing
time stamps have also a function of relating a pair
of send and receive messages. Precisely a send
message includes a time stamp that will be used in a
return message. Hence a time stamp is a flag which
discriminates a return message. For this objective,
another solution may be a use of color. However, as
shown in the first approach, colors are insufficient
since they are dynamically changed at function calls.

3.3 Proposed process communication
An overview of process communication is
illustrated at Fig.3. and three steps included here

are explained now.

Gotomcormd

color 1 color 2 color n
start start
e) |G
[end] [:nd] end J
communicate
phase phase phase

Fig.3. Overview of process communication.

start
communication
phase

(1) Set-up-channel phase
Initially, a channel must be set up between two
processes A and B. Precisely, process A prepares a

structured memory shown in Fig.4.

CH-number: N,

reserved time | message recejve
stamp color color

recieve
address

Fig.4. Structure memory of process A.
Now, let us explain each item in Fig.4.

¢ CH-number »s+ means the number NA which
identifies process A.

*Reserved time stamp *+» means an expected time
stamp which will be used in a return message
from process B.

* Message color es¢ means an expected color
which will be used in a return message from
process B.

* Receive color s+ means an internal color of
process A, which will be used to receive a
message from process B.

* Receive address s+ means an instruction of
process A, which will accept a message from

process B.

After process A finishes preparing his structure
memory, he sends a channel request including a
channel number NA to process B. Then, process B
similarly prepares a structured memory, and returns
NB. When process A
communicates with several processes, he prepares

a channel number

only one structured memory, and sends channel
requests to all other processes.

(2) Start-communication phase

Now, process A sends a start-communicate
command to process B. For this sake, in advance,
process A determines the values of following
parameters.

Reserved time stamp tR A *+* being calculated
as
tRA =tsA H1
where tg A is a time stamp of a command to be sent.
The value of tgA is determined by a tag manager,
which is introduced as a color handling process in
the beginning of this section. Precisely,

tsa = (the newest t; o which has been already
registered) +1
being determined
simply as a present color Cp A of process A. If

Receive color Cp

there is a possibility of a function call, another

color must be hunted and reserved.

Receive address ¢+ being the first entry

address of a received message, and must be

fixed in advance of process communication.

After these parameters are registered at a

structure memory of a channel N 4, process A sends
a start-communicate command of Fig.5.

| CH-number N 5 E command [coloGCAI time stamp(t,s)]

command: start-communicate
Fig.5. Start-communicate command.
Then, process B fulfills a structure memory of
channel Ng as follows.

Reserved time stamp tRpy ** being calculated
by a tag manager as
tRB = tsB +1
where tgpg is a time stamp of a command to be sent,
and
tgg =max { tsa, tp } 1.
Here, tR is a present tR g, the newest reserved time
stamp before receiving a message of process A
Manager color +++ being CpA.
Other parts »+« being the same as process A.
After these parameters arc registered at a

structure memory of a channel Ny, process B sends
an ACK command of Fig.6, with t o =tga + 1.

{ CH-number N ‘ command I color Cyy | time stamp(tra,tss) ‘

command: ACK
Fig.6. ACK command.
(3) communication phase

Process A sends an information message of the

format in Fig.7.

l CH-number Ng ! command | color C 5 l time stamp(t,a,tsa) [Data J

command: information frame
Fig.7. Information message.

A structure memory of process A is fulfilled as
in the start-communication phase. Process B also
sends a message similar to Fig.7.

Example

Let us illustrate an example of a time sequence

in Fig.8.

Process A Process B

ten ta

R P
time stamp 6§
- execution
tea tus
time stamp 9

o, u G/ tm=mx (8.10)+1 =11
t:s ta
tgo=max { 11,9)+1 = %

Fig.8. An example of process communication.

taa= tem+1 =13

Firstly, process A waits for a message reserving
a time stamp 6, though the newest reserved time
stamp is 10. The situation happens when process B
communicates with other processes. After receiving
a massage, process B calculates tyg and trg. The
explanation of the remaining part is abbreviated.

4. Discussions ,

4.1 Internal processing with time stamps

Though an idea of time stamps is well known,
features of this paper come from time stamp
reservation. By the reservation, a sender can
accurately receive a return massage from a receiver.
However, in order to accomplish the reservation,
each process must transfer a time stamp at
execution time of instructions.

Then, there arises a problem that time stamps
should be matched, as well as colors, when an

instruction of a dataflow program fires. This is not
so easy, because there are several cases when time
stamps are not fixed deterministically as in Fig.9. In
these cases, time stamps must be forcibly changed,
and how to change values is dependent on a system
designer.

Introduction of time stamps at execution time
has also been studied by Nishikawa et al(5), They
pointed out that parallel computing of stream data
arc possible with time stamps.

4.2 Tag manager

A tag manager is assigned for each processor,
and handles colors and time stamps for all
processes included 1n a processor. Hence, a tag

manager must operate sequentially.

process A

color Gy G

process B
Gu G color
ta tu
Mi(1,3)
T

M2 (2, 3y
ta s
. M34, 4y
e

TN, 5)

Fig.10. Simultaneous process communications.

To explain the necessity of sequential operations,
let us consider a time sequence of Fig.10.In this

figure, simultaneously two
=5

reccive (

t=5or7?

send (t=5 or 72~

Fig.9. Indeterministic values of time stamps.
communications are proceeded with different
colors. In detail, two functions exist at process A,
and they share a common channel, since a structure
memory is assigned to each process. Hence, process
A receives two messages M3 and M4 with the same
trA (=4) from process B.

To distinguish M3 and M4 at process A, two

methods may be applied.

(1) Identify M3 and M4 by colors. For this sake
M3 is colored with Cgy, and M4 is colored with

Cri.
(2) Assigne different values to tgA's of M1 and M2,

In the first method, start communication phase
must run at every function call, which becomes an
overhead of process communication. Hence, a color
Cg of message had better be fixed to an initial
value assigned at start-communication phase. Then,
the second method must be applied, and to assign a.
unique value to tgA, a tag manager must determine
a new time stamp sequentially.

4.3 Effects
With the use of time stamps, the following
effects seem to be obtained.

(1) A lost message shown in Fig.11 can be
detected.Basically, a timer is set to a reserved
time stamp of a structure memory, and time
out is detected. For this timer, a global clock is
necessary, and time stamps can play a role of a
global clock.

(2) Message disordering can be corrected at a
receiver process as shown in Fig.12.

Process A Process B
reserved receive t ti
time stamp | address N%
4 4 -
3 .. |reserved receive
tra tap ‘.. |time stamp | address

Fig.12. Correction of message order.

Since reserved time stamp t. is assigned to each
message, a destination address of a received
message is obtained from a receive address of a
structure memory.

(3) Multi process communication is possible as
illustrated in Fig.13.

rocess A rocess B
P P!

X

Fig.11. Lost message.

process A process B

! M4(5,6)Cy §

Fig.13. l:n communication.

process C

CH-number N4
reserved message
time stamp |color

5 Cp
5 Ce

rocess A rocess B
p p

ta ts
M1 4,5)
M3 (6,6) M2 4,6)

M4(7) tsB
M

Fig.14. Continuous message sending.

Here, process A communicates with process
B and process C concurrently. Moreover, a
structure memory of CH-number N 4 is shared with
process B and process C. Hence, continued
messages with reserved time stamp of 5 are not
distinguished by a channel nor by a time stamp, but
are separated by colors.
(4) Continuous message sending is permitted with
some modifications of communication methods. Let
us consider a time sequence of Fig.14.

Process B sends two messages M1 and M2
having the same t, 5 (=4). These are return
messages for a preceding message from process A.
Moreover, process B sends a new message M4 with
tsp being 7. If process A sends a message M3 with
tsA being 6, process A must identify which of M4
or M5 being a return message of M3. This
distinction can be easily done by checking t. o

included in each message.

(5) Mutual exclusion is already explained in
section 2. Using time stamps, enhanced access
control is possible.

Fig.15 illustrates an access manager of a common
memory.

Difference from Fig.2 is a function of entrance
control process. In the new method, read and write
access conditions are registered. Here, color is used,
if necessary, to Iumit an accessible process.
However, more important constraints are time
stamps tRp and tyy, which enable the following
access rules.

(1) Read access message with tga (process A
is supposed to access) is aborted if
tsA < ty. Else the read access id accepted, and
tRE is incremented as

tRE = tRE 1.

(2) Write access message with tg4 is aborted
iftgpA <max { tRg, ty }. Else, the write access
is accepted, and tyy is incremented as

tyy =ty t1L.

As shown in Fig.8, time stamps tgp, tgg, *** of
messages approximate a global clock when process
frequently communicate with each other. Therefore,
by using time stamps, one can avoid illegal
operations like the case when a delayed read
operation is executed on data which are already
renewed.

Though time stamps are effective for mutual
exclusion, one had better be careful to use them.
The first point is that a time stamp is not a strict
hardware clock. Colors, included in Fig.15, may
simplify the problem, since a real sequential clock
is obtained in a single color (= function).

The second point is "what is a basis for an
access order?". Let us consider a situation shown in
Fig.16.

m%
entrance control process

R [eotor | tme s
W [eotor [time samp]

Procedure

exit control process

Fig.15. Mutual exclusion with time stamps.

C) arbitration
token

process B % 2

tea
2 7 ts
process A \process D
3 8
external » N\
events 3
process C
4
toa tic

Fig.16. Transfer of time stamps.

Here, external events are input to process A, and
messages are transferred to process D. Since
messages pass through different processes B and C,
the order of time stamps at process D does not
coincide with the order of external events. Then, a
problem arises that process D should obey the order
of global clock tgp and tyc, or the order of initial
events. If the latter order is inherent, the order of
external events must be included, as third time
stamp, in each message. These two points stated
above are important but remained as further studies.

5. Conclusion

This paper discusses process communication for
a distributed dataflow machine. The proposed
method uses time stamps to constitute a logical
clock which approximates a global clock when
processes frequently communicate with each other.
Especially the reservation of a time stamp which
will be used in a return message is effective for an
accurate message transfer. To show the effects,
several discussions are presented including message
reordering and mutual exclusion. Finally, as a
remained problem, the relations between a time
stamp and an order of external events are

considered. Deadlocks and fail-safeness are other

mmportant problem which must be studied in future.

Acknowledgment
The authors wish thank Mr.Tawa and other
students who discuss with us for this work.

Reference

(L)

(2)-

(3)

(4)

(5)

"Special section on distributed processing”,
Jour. of Info. Proc. Soct. of Japan, vol. 28,
No.4, 1987.
"Special section on algorithms for fault-
tolerant distributed systems", Jour. of Info.
Proc. Soci. of Japan, Vol.34, No.11, 1993,
Shigeki Yamada, at al, "Design and
evaluation of a dataflow-controlled
switching system which exploits all forms of
parallelism inherent in the switching
processing.”, Kluwer Academic Publishers,
to be appear.
Yonezawa et al,"Method and
representation",Iwanami, 1992,
Nishikawa, Terada, Asada, "A Data-Driven
Schema Incorporating History
Sensitinity.", ,Vol. J66-D No.10, pp.1169-
1176,1983.

