AERT-F77F v 118— 4
(1996. 5. 16)

Speculative Execution by Compiler Supported
Branch Prediction Hardware

Tetsuo Hironakat Ashok Halambi} Alex Nicolaut Nikil Dutt

t: IREBWIL KRS BB TER,
T 731-31 IRBT KWK EHET 151-5

E-mail: hironaka@ce.hiroshima-cu.ac.jp

1: Department of Information and Computer Science,
University of California, Irvine CA 92717, USA
E-mail: {ahalambi, nicolau, dutt} @ics.uci.edu

AHRETIZI VL FICL > THB ENLN— F Yo 7o TFREBHEL AV TR 2 IXBOGHE
TRERTLFHELRT.

R=NAAT Ty, ZA=ISRL TG4y - Faky R EDESLVANVEFIMERFIET S
Ty BV CHLASERE YRR TH7-004 TV b - a— FEBEIAKELZMETHS. *
LT, #7Vx2 b 2= FR#ECE oL bBEL 25 TV L0 BIHEFEIC L 2HT7HHTH 5.
BB ETIHEEREOREBLYBRT A0 0EYLFRTH 5D, FREIELVWESLRBIRLE
BHCETLALEDATH S,

ARETRY 7 PO 7L DRI SETRBREL 7oty Y RICEAT S L THEE LR
FEECAHN RBNGIETHPURETH L L ERT.

Speculative Execution by Compiler Supported
Branch Prediction Hardware

Tetsuo Hironakaj Ashok Halambit Alex Nicolau} Nikil Dutt}

1: Department of Computer Engineering,
Hiroshima City University, Hiroshima 731-31, JAPAN
E-mail: hironaka@ce.hiroshima-cu.ac.jp

t: Department of Information and Computer Science,
University of California, Irvine CA 92717, USA
E-mail: { ahalambi, nicolau, dutt }@ics.uct.edu

This paper describes an effecttive method for speculative execution by compiler supported
branch prediction hardware. For processors architecture which count on instruction level par-
allelism, such as superscalar processors, and superpipeline processors, optimizing object code to
extract more instruction level parallelism is a big problem. Especially the control dependency
inside the object code makes this problem worse. Speculative execution is an effective method
to handle the control dependency to achieve more instruction level parallelism. But speculative
execution is effective only when the correct operations are selected for speculation.

This paper presents a method to select correct operations to speculate in high possibility, in
use of compiler supported branch prediction unit.

Keywords: speculative execution, branch prediction, compiler, superscalar, VLIW

—19—

1 Introduction

For processors architecture which its performance
depends on the amount of instruction level par-
allelism, such as superscalar processors, and su-
perpipeline processors, it is important to optimize
the object code by exploiting the instruction level
parallelism as much as possible. Usually this is
done by code optimization such as unrolling, per-
colation scheduling[4], and software pipelining[5].
These optimization methods work extremely well
on loops with simple data dependency.

But with loops with conditional branchs, with
not enough instruction level parallelism, just ap-
plying optimization methods will not be enough
effective. Actually in this case there is no way to
get more instruction level parallelism, instead by
speculatively executing the operations under the
constrains of the conditional branch.

From the previous works [1][2][3], if the specu-
lation are all done correctly it is reported that you
can achieve large speedup in comparison without
speculative execution. The problem is how to pre-
dict whether the conditional branch in loop would
be taken or not at compile time. Recent compilers
get these information by profiling the execution of
the program, or guess it by using some heuristic in
the compiler at compile time. This means which
other method is taken, the guess are done com-
pletely statically at compile time. So they do not
work effectively on conditional branches which its
character differs completely when the input data
of the program changes.

This paper will present a method to predict
the behavior of the conditional branch inside the
loop, and change the version of the loop code dy-
namically, which are optimized differently, using
special designed branch prediction hardware. By
the special designed branch prediction hardware,
the processor can select the most appropriately
optimized code to execute on runtime in each it-
eration, depending on the prediction done by the
special branch prediction hardware.

2 Compiler Supported Branch
Prediction (CSBP)

This section will explain the basic idea of com-
piler supported branch prediction (CSBP). And

also show how this CSBP method can be used in
achieving more performance from the processor.

2.1 Basic Idea of CSBP

Figure 1 describes the main idea of CSBP. If there
is a loop body that contains such code as Fig-
ure 1(a). The code can be compacted by moving
up instruction from the THEN block, ELSE block
and JOIN block to fill the resources of the proces-
sor. On compacting the code, if the branch possi-
blity is not known, compiler will first try to com-
pact the code by moving up the operation from the
JOIN block. This is because the JOIN block is al-
ways executed no matter whether the THEN block
or ELSE block is taken. If the compiler could not
find enough operation to move up from the JOIN
block, then next it will start finding operation to
move up from the THEN block and ELSE block
to compact the loop body. But here is the prob-
lem, if there is no information about the branch
possibility, or the branch possibility changes dras-
tically depending on the input data, the compiler
can not decide which path to move up operation
from the THEN block or from the ELSE block.
This means in the worst case the compiler will se-
lect the wrong path to optimize, and fail to utilize
the resource by the operations in the correct path,
which means it will be filled by operations which
results will be never used and lose performance.

So if there is a method to select the most opti-
mal code to run for each iteration, it may be possi-
ble to run the processor with no performance loss
caused by executing miss speculated operations.
The target of CSBP is to realize this code selec-
tion. For an example by preparing two versions of
code from the same source code, the THEN block
optimized code (figure 1(b)) and the ELSE block
optimized code (figure 1(c)), CSBP method can
make a good guess on selecting the most prefer-
able code to execute based on runtime, by using
similar method used in branch prediction for in-
struction fetch. To make CSBP easy to explain,
we limited the number of the path to THEN block
and ELSE block, but there is no need to limit the
number of path CSBP can handle. CSBP method
can also be applied on codes with more than two
path inside the loop body. The implementation of
CSBP will be discussed on section 3.

2.2 CSBP with two levels of specu-
lation

CSBP can be used in every level of speculative
execution. We categorize the speculation in the
next two levels.

1. Non side-effect level: One level is moving
up operations from the THEN and ELSE
block which has no side-effect to the results,
no matter either the THEN block or ELSE
block is executed. For example, operations
used to calculate address for load/store in
THEN and ELSE block can be moved up
over the branch operation for speculative ex-
ecution with no side effects.

2. Side-effect level: The other level is moving
up operations from the THEN and ELSE
block which may cause side effect to the re-
sults, when the predicted path is not taken.

But when the predicted path is taken, more
performance can be achieved than the for-
mer level. Usually to avoid side effects hard-

If THEN block is predicted ELSE Block

to be taken ware support such as shadow register[6] is

needed for efficient execution. This is also
called boosting.

CSBP can support both level of speculative exe-
cution effectively. Currently either of these two
levels of speculative exection is used by statically
predicting the branch direction, and speculating
the operations of the predicted path. Combining
the CSBP, will make it possible to speculate op-
erations more effectively by predicting the branch
direction dynamically.

3 Implementation of Compiler
Supported Branch Predic-
tion (CSBP)

If ELSE block is predicted
to be taken

ELSE Block

CSBP can be implemented by adding two special
machine instructions to the instruction set archi-
tecture. One is Check Path (CP) and the other is
Branch by Prediction (BP).

e Check Path (CP): CP instruction is used for
profiling the execution of the specific path.
Machine instruction CP will take two operands,
first one is for specifying the register number

(c)Move up operation in ELSE Block

Figure 1: Multi-version Loops

used for writting the results of branch pre-
diction with the execution history of the exe-
cution path, second operand is used for spec-
ifying the branch prediction scheme used with
CSBP. The limit of number of registers CP
can specify, will limit the number of path
CSBP method can handle.

e Branch by Prediction (BP): BP instruction
is a conditional branch instruction, which
branch condition depends on the branch pre-
diction. Branch prediction are done from
the branch history written by the CP in-
struction in the register specified as an operand.
Machine instruction BP will take two operands,
first one is register number to read the branch
history, and the second operand specifies the
target address to branch.

Figure 2 is an example how these two instruc-
tions are used in the loop body by the CSBP
method. Figure 2 contains two versions of code
compiled from the same source code. One version
of code (a) is loop body optimized as the THEN
block is predictied taken, other version of code (c)
is loop body optimized as the ELSE block is pre-
dicted taken. When a simple one bit branch pre-
diction scheme! is used for branch prediction, the
execution of the loop will be done as the following.

The execution of the loops will start the execu-
tion of code (a) from label THEN_OPT. Depend-
ing on whether the THEN block or ELSE block
of code (a) is executed, the result of branch pre-
diction will be updated. The detection of whether
THEN block or ELSE block is taken is done by
checking whether CP is executed before BP. Be-
cause we are assuming a simple one bit branch
prediction scheme, if the THEN block is taken BP
(instruction (b)) will branch to label THEN.OPT
to start the next iteration with the THEN block
optimized code. If the ELSE block is taken BP
(instruction (b)) will not branch and start from
label ELSE_OPT to start the next iteration with
the ELSE block optimized code. ELSE block opti-
mized code (c) works as same as THEN block op-
timized code (a). If the THEN block is taken BP
(instruction (d)) will branch to label THEN_OPT
to start the next iteration with the THEN block
optimized code. If the ELSE block is taken BP

!The result of branch prediction always follows the re-
sults of previous iteration.

will not branch, instead branch instruction (e) will
branch to label ELSE_OPT to start the next iter-
ation with the ELSE block optimized code.

4 Experiments

4.1 Benchmark program

To show how effectively CSBP can work, we have
done some simple experiments with a small sim-
ple program called RTFLSP. The core loop of RT-
FLSP is shown at Figure 3. RTFLSP is a program
to find the root of a function fx(x) known to lie
between the number xI and xh, by using the false
position method. From the character of the pro-
gram, whether the THEN block or ELSE block is
taken will change depending on the inital value of
x] and xh.

4.2 Target architecture

VLIW processor architecture was used for the ex-
periment. The target VLIW processor architec-
ture contains 128 registers with the following func-
tion units that can be used without any conflicts
in resource, two arthimetic logic unit, two shifter
unit, two floating point arthimetic logic unit, two
floating point multiply unit, two floating point di-
vide unit, and two memory access unit. To make
the experiment simple we assumed all of these
function unit have latency of one cycle.

4.3 Object Code generation

The object code of RTFLSP was created by adding
BP and CP instructions to the code generated by
the Percolation Scheduling VLIW compiler devel-
oped in UCI?. The source code of RTFLSP was
compiled into two version of code by changing the
weight of path. One version of code was THEN
block optimized, and the other version was ELSE
block optimized. Since the compiler used for gen-
erating the code does not currently support the
special hardware for speculative execution with
side effect, the level of speculative execution is
now restricted on non side-effect level. The gener-
ated two versions of code are shown in Figure 4.
Each rectangle box numbered with a hex number

2http://www.ics.uci.edu/~ snovack/

overview/project.description.html

~» THEN_OPT:

THEN block
Optimized
Loop Body

£

<

[2
—l BP(prl) THEN_OPT
Y
—> ELSE_OPT:
ELSE block
Optimized
Loop Body

£

¥

! BP(prl) THEN_OPT

<

+*
v
—[BR ELSE_OPT

<

Figure 2: Object code of CSBP

for (j = 1; j <= MAXIT; j++){
rtf = x1 + dx * £f1 / (f1 - fh);
f = fx(rtf);
if (£ < 0.0){

del = x1 -rtf;

x1 = rtf;
£l = £;
Yelse{
del = xh - rtf;
xh = rtf;
fh = f;

X

dx = xh - x1;

if ((fabs(del) < xacc) ||
(f == 0.0) M

return(rtf);

}

Figure 3: Source code of RTFLSP

shown in Figure 4 represents one VLIW instruc-
tion, which contains maximum twelve operation
that can be executed simultaneously. By counting
the number of the box in the path, you can esti-
mate the number of cycles needed to executed one
iterations.

4.4 Results
From Figure 4, we can see the following results.

1. If the THEN block is taken when running
an THEN block optimized version, 10 cycles
are need to execute one iteration.

2. If the ELSE block is taken when running an
THEN block optimized version, 12 cycles are
need to execute one iteration.

3. If the THEN block is taken when running an
ELSE block optimized version, 12 cycles are
need to execute one iteration.

4. If the ELSE block is taken when running an
ELSE block optimized version, 10 cycles are
need to execute one iteration.

Since the conditional branch used in RTFLSP code
chooses its direction of branch by the inital data
and does not change its branch direction later, the
execution time of the program can be estimated
very easily. From the numbers achieved from Fig-
ure 4, it can be said that CSBP can achieve 0 —
20% inprovement in preformance, compared to the
static profile based compilation method, which are
usually used.

Our current experiment is only based on non
side-effect level speculative execution. By combin-
ing special hardware support for side-effect level
speculative execution, we believe the CSBP method
will be more effective.

5 Conclusion

In this paper, we have shown the basic idea of
Compiler Supported Branch Prediction (CSBP),
and described the instruction set needed to be
added to the processor to implement CSBP. To
approve the idea of CSBP we did a simple estima-
tion on non side-effect level speculative execution

and achieved 20% improvement compared to the

static profile based compilation method, which are
usually used.
As more aggressively the speculative is done,

it will be more important to speculate the cor-
rect operations. We believe the CSBP method will
achieve more performance on higher level of spec-
ulative execution, such as side-effect level specula-
tive execution described in section 2.2. For futher

0xb6f710 Loop head

i{—— Non-optimized path;
1w Optimized path
i[:VLIW instruction

research we are planing to estimate the perfor-
mance of CSBP on side-effect level speculative ex-

ecution.

0xb73c88

6 Acknowledgements

The authors would like to thank Steve Novack in
UCI for the usefull discussion, and for the help on

0xb850a0 . .
& using the VLIW compiler.

0xb78e10

[oxb79ca0 | [0xb7c4f8 Backedge | References
0xb72368 STOP | |\ [1] E. M. Riseman and C. Foster, “The Inhibi-
l 0xb7d348 STOP I . . . s
tion of Potential Parallelism by Conditional
(a) THEN block optimized version Jumps,” IEEE Trans. Computer, 21, 12,
1972.

{2] A.Nicolau and J. A. Fisher, “Measuruing the
Parallelism available for Very Long Instruc-
tion Word Architecture,” IEEE Trans. Com-
puter, 33, 11, 1984.

0xb6£710 Loop head
0xb70490
0xb70b50

i —— Non-optimized pa!hs

g_Optimizedpath [3] M. S. Lam and R. P. Wilson, “Limits of
§‘:| VLIW instruction | Control Flow Parallelism,” Proc. of the Ann.

Symp. on Computer Architecture, 1992.

[4] A.Nicolau, “Uniform parallelism exploitation

in ordinary programs,” Proc. of the Int. Conf.
on Parallel Processing, 1985.

[5] Monica S. Lam, A Systolic Array Optimizing
Compiler, Kluwer Academic Publishers, ‘pp.
83-145, 1989.

[6] M. D. Smith, M. S. Lam and M. A. Horowitz,

“Boosting Beyond Static Scheduling in a Su-

[oxb79ca0 | [L0xb704f8 Backedge perscalar Processor,” Proc. of Ann. Symp. on

0xb7a368 STOP | l\ Computer Architecture, 1990.
0xb7d348 STOP

(b) ELSE block optimized version

Figure 4: The generated two versions of code (RT-
FLSP)

